Загрузить PDF
Загрузить PDF
Джоуль (Дж) – это одна из важнейших единиц измерения в Международной системе единиц (СИ). В джоулях измеряется работа, энергия и количество теплоты. Чтобы представить окончательный результат в джоулях, работайте с единицами измерения, принятыми в СИ. Если в задаче даны другие единицы измерения, конвертируйте их в единицы измерения из Международной системы единиц.
-
1
Понятие работы в физике. Если вы передвинете коробку, то вы совершите работу. Если вы поднимите коробку, то вы совершите работу. Чтобы работа была выполнена, необходимо соблюдение двух условий:[1]
- Вы прикладываете постоянную силу.
- Под действием приложенной силы тело перемещается по направлению действия силы.
-
2
Вычислите работу. Для этого перемножьте силу и расстояние (на которое переместилось тело). В СИ сила измеряется в ньютонах, а расстояние в метрах. Если вы используете эти единицы, полученная работа будет измеряться в джоулях.
- При решении задач определите направление приложенной силы. Поднимая коробку, сила направлена снизу вверх, но если вы возьмете коробку в руки и пройдете некоторое расстояние, то вы не совершите работу – вы прикладываете силу, чтобы коробка не упала, но под действием этой силы коробка не перемещается.[2]
- При решении задач определите направление приложенной силы. Поднимая коробку, сила направлена снизу вверх, но если вы возьмете коробку в руки и пройдете некоторое расстояние, то вы не совершите работу – вы прикладываете силу, чтобы коробка не упала, но под действием этой силы коробка не перемещается.[2]
-
3
Найдите массу тела. Она необходима для вычисления силы, которую нужно приложить, чтобы переместить тело. Рассмотрим пример: вычислите работу, совершаемую спортсменом при подъеме (с пола до груди) штанги массой 10 кг.
- Если в задаче даны нестандартные единицы измерения, конвертируйте их в единицы измерения СИ.
-
4
Вычислите силу. Сила = масса х ускорение. В нашем примере учитываем ускорение свободного падения, которое равно 9,8 м/с2. Сила, которую нужно приложить, чтобы переместить штангу вверх, равна 10 (кг) х 9,8 (м/с2) = 98 кг∙м/с2 = 98 Н.
- Если тело перемещается в горизонтальной плоскости, не учитывайте ускорение свободного падения. Возможно, в задаче потребуют вычислить силу, необходимую для преодоления трения. Если ускорение в задаче дано, просто умножьте его на данную массу тела.
-
5
Измерьте пройденное расстояние. В нашем примере допустим, что штанга поднимается на высоту 1,5 м. (Если в задаче даны нестандартные единицы измерения, конвертируйте их в единицы измерения СИ.)
-
6
Умножьте силу на расстояние. Для того, чтобы поднять штангу массой 10 кг на высоту 1,5 м, спортсмен совершит работу, равную 98 х 1,5 = 147 Дж.
-
7
Вычислите работу, когда сила направлена под углом. Предыдущий пример был довольно прост: направления силы и движения тела совпадали. Но в некоторых случаях сила направлена под углом к направлению движения. Рассмотрим пример: вычислите работу, совершаемую ребенком, который тянет сани на расстояние 25 м за веревку, имеющую отклонение от горизонтали в 30º. В этом случае работа = сила х косинус (θ) х расстояние. Угол θ – это угол между направлением силы и направлением движения.[3]
-
8
Найдите общую приложенную силу. В нашем примере допустим, что ребенок прикладывает силу, равную 10 Н.
- Если в задаче сказано, что сила направлена вверх, или вправо/влево, или ее направление совпадает с направлением движения тела, то для вычисления работы просто перемножьте силу и расстояние.
-
9
Вычислите соответствующую силу. В нашем примере только некоторая часть от общей силы тянет сани вперед. Так как веревка направлена вверх (под углом к горизонтали), другая часть от общей силы пытается приподнять сани. Поэтому вычислите силу, направление которой совпадает с направлением движения.
- В нашем примере угол θ (между землей и веревкой) равен 30º.
- cosθ = cos30º = (√3)/2 = 0,866. Найдите это значение при помощи калькулятора; в качестве единицы измерения угла в калькуляторе установите градусы.
- Умножьте общую силу на cosθ. В нашем примере: 10 х 0,866 = 8,66 Н – это сила, направление которой совпадает с направлением движения.
-
10
Умножьте соответствующую силу на расстояние, чтобы вычислить работу. В нашем примере: 8,66 (Н) х 20 (м) = 173,2 Дж.
Реклама
-
1
Мощность и энергия. Мощность измеряется в ваттах (Вт) и характеризует скорость изменения, преобразования, передачи или потребления энергии, которая измеряется в джоулях (Дж). Чтобы вычислить энергию (Дж) по данной мощности (Вт), необходимо знать отрезок времени.
-
2
Для вычисления энергии (Дж) умножьте мощность (Вт) на время (с). Устройство, мощность которого равна 1 Вт, потребляет 1 Дж энергии за каждую 1 с. Например, вычислим энергию, потребляемую лампочкой мощностью 60 Вт в течение 120 секунд: 60 (Вт) х 120 (с) = 7200 Дж[4]
- Эта формула верна для любой мощности, измеренной в ваттах, но чаще всего применяется в задачах с участием электричества.
Реклама
-
1
Кинетическая энергия – это энергия движения. Она может быть выражена в джоулях (Дж).
- Кинетическая энергия эквивалентна работе, совершенной для ускорения неподвижного тела до определенной скорости. Достигнув определенной скорости, кинетическая энергия тела остается постоянной до тех пор, пока не преобразуется в тепло (от трения), гравитационную потенциальную энергию (при движении против силы тяжести) или другие виды энергии.
-
2
Найдите массу тела. Например, вычислите кинетическую энергию велосипеда и велосипедиста. Масса велосипедиста равна 50 кг, а масса велосипеда равна 20 кг, то есть общая масса тела равна 70 кг (рассматривайте велосипед и велосипедиста как единое тело, так как они будут двигаться в одном направлении и с одной скоростью).
-
3
Вычислите скорость. Если скорость дана в задаче, перейдите к следующему шагу; в противном случае вычислите ее одним из способов, указанных ниже. Обратите внимание, что здесь направлением скорости можно пренебречь; более того, предположим, что велосипедист едет строго по прямой.
- Если велосипедист ехал с постоянной скоростью (без ускорения), измерьте пройденное расстояние (м) и разделите его на время (с), затраченное на прохождение этого расстояния. Так вы получите среднюю скорость.
- Если велосипедист ускорялся, а значение ускорения и направление движения не менялись, то скорость в данный момент времени t вычисляется по формуле: ускорение х t + начальная скорость. Время измеряется в секундах, скорость в м/с, ускорение в м/с2.
-
4
Подставьте значения в формулу. Кинетическая энергия = (1/2)mv2, где m – масса, v – скорость. Например, если скорость велосипедиста равна 15 м/с, то его кинетическая энергия K = (1/2)(70 кг)(15 м/с)2 = (1/2)(70 кг)(15 м/с)(15 м/с) = 7875 кг∙м2/с2 = 7875 Н∙м = 7875 Дж
- Формула для вычисления кинетической энергии выводится из определения работы (W = FΔs) и кинематического уравнения (v2 = v02 + 2aΔs, где Δs – пройденное расстояние).[5]
Реклама
- Формула для вычисления кинетической энергии выводится из определения работы (W = FΔs) и кинематического уравнения (v2 = v02 + 2aΔs, где Δs – пройденное расстояние).[5]
-
1
Найдите массу нагретого тела. Для этого используйте балансовые или пружинные весы. Если тело – это жидкость, сначала взвесьте пустой контейнер (в который выльете жидкость), чтобы найти его массу. Взвесив жидкость, вычтите из полученного значения массу пустого контейнера, чтобы найти массу жидкости. Например, рассмотрим воду массой 500 г.
- Чтобы результат измерялся в джоулях, масса должна измеряться в граммах.
-
2
Найдите удельную теплоемкость тела. Ее можно найти в учебнике по химии, физике или в интернете. Удельная теплоемкость воды равна 4,19 Дж/г.[6]
- Удельная теплоемкость немного меняется с изменением температуры и давления. Например, в некоторых источниках удельная теплоемкость воды равна 4,18 Дж/г (так как разные источники выбирают различные значения «эталонной температуры»).
- Температура может измеряться в градусах по Кельвину или Цельсию (так как разность двух значений температур будет одинаковой), но не в градусах по Фаренгейту.
-
3
Найдите начальную температуру тела. Если тело – это жидкость, воспользуйтесь термометром.
-
4
Нагрейте тело и найдите его конечную температуру. Так вы сможете найти количество теплоты, переданной телу при его нагревании.
- Если вы хотите найти общую энергию, преобразованную в тепло, считайте, что начальная температура тела равна абсолютному нулю (0 по Кельвину или -273,15 по Цельсию). Обычно это не применяется.
-
5
Вычтите начальную температуру тела из конечной температуры, чтобы найти изменение температуры тела. Например, воду нагревают с 15 градусов по Цельсию до 35 градусов по Цельсию, то есть изменение температуры воды равно 20 градусам по Цельсию.
-
6
Перемножьте массу тела, его удельную теплоемкость и изменение температуры тела. Формула: H = mcΔT, где ΔT – это изменение температуры. В нашем примере: 500 х 4,19 х 20 = 41,900 Дж
- Количество теплоты иногда измеряется в калориях или килокалориях. Калории – это количество теплоты, необходимое для повышения температуры 1 грамма воды на 1 градус по Цельсию; килокалории – это количество теплоты, необходимое для повышения температуры 1 кг воды на 1 градус по Цельсию. В приведенном выше примере для повышения температуры 500 г воды на 20 градусов по Цельсию потребуется 10000 калорий или 10 ккал.
Реклама
-
1
Здесь описывается способ вычисления потока энергии в электрической цепи. Приводится практический пример, на основе которого можно решать физические задачи. Для начала вычислим мощность по формуле P = I2 x R, где I – сила тока (А), R –сопротивление (Ом).[7]
Вы найдете мощность (Вт), при помощи которой можно вычислить энергию (Дж) (смотрите вторую главу). -
2
Возьмите резистор. Значение сопротивления (Ом) резистора обозначается числом или маркировкой в виде цветной полосы. Вы также можете определить сопротивление резистора, подключив его к омметру или мультиметру. Например, возьмем резистор с сопротивлением 10 Ом.
-
3
Подключите резистор к источнику тока. Для этого используйте зажимы «крокодил» или экспериментальный стенд с электрической цепью.
-
4
В течение определенного времени через цепь пропускайте ток. Например, делайте это в течение 10 с.
-
5
Определите силу тока. Для этого воспользуйтесь амперметром или мультиметром. Например, сила тока равна 100 мА = 0,1 А.
-
6
Вычислите мощность (Вт) по формуле P = I2 x R. В нашем примере: Р = 0,12 х 10 = 0,01 х 10 = 0,1 Вт = 100 мВт
-
7
Перемножьте мощность и время, чтобы найти энергию (Дж). В нашем примере: 0,1 (Вт) х 10 (с) = 1 Дж.
- Так как 1 джоуль – это небольшое значение, а мощность электроприборов указывается в ваттах, милливаттах и киловаттах, то в жилищно-коммунальной сфере энергию обычно измеряют в киловатт-часах. Если 1 Вт = 1 Дж/с, то 1 Дж = 1 Вт∙с; если 1 кВт = 1 кДж/с, то 1 кДж = 1 кВт∙с. Так как 1 ч = 3600 с, то 1 кВт∙ч = 3600 кВт∙с = 3600 кДж = 3600000 Дж.
Реклама
Советы
- В СИ энергия и работа также измеряется в эргах. 1 эрг = 1 дина (единица измерения силы) х 1 см. 1 Дж = 10000000 эрг.
Реклама
Предупреждения
- Джоуль и ньютон-метр – это единицы измерения работы. В джоулях измеряют энергию и работу, совершенную при движении тела по прямой. Если же тело вращается, применяется единица измерения ньютон-метр.
Реклама
Что вам понадобится
Работа и кинетическая энергия:
- Секундомер или таймер
- Весы
- Калькулятор с функцией косинуса
Электрическая энергия:
- Резистор
- Провода или экспериментальный стенд
- Мультиметр (или омметр и амперметр)
- Зажимы «крокодил»
Количество теплоты:
- Нагреваемое тело
- Источник тепла (например, горелка)
- Термометр
- Справочник для определения удельной теплоемкости нагреваемого тела
Об этой статье
Эту страницу просматривали 59 670 раз.
Была ли эта статья полезной?
Download Article
Download Article
Named for English physicist James Prescott Joule, the joule (J) is one of the cornerstone units of the International metric system. The joule is used as a unit of work, energy, and heat, and is widely used in scientific applications. If you want your answer to be in joules, always make sure to use standard scientific units. The «foot pound» or the «British thermal unit» are still used in some fields, but they have no place in your physics homework.
Formulas
Joules are a unit of energy. Here are formulas for the most common situations where you would calculate energy. As long as you use the SI units listed beneath each formula, your answer will be in joules.
-
1
Understand what work means in physics. If you push a box across the room, you’ve done work. If you lift it upward, you’ve done work. There are two important qualities that have to be there for «work» to happen:[1]
- You’re applying constant force.
- The force is causing the object to move in the direction of the force.
-
2
Define work. Work is easy to calculate. Just multiply the amount of force used, and the amount of distance traveled. Usually, scientists measure force in Newtons, and distance in meters. If you use these units, your answer will be work in units of Joules.[2]
- Whenever you read a word problem about work, stop and think where the force is being applied. If you lift a box, you’re pushing upward, and the box is moving up — so the distance is however much it rises. But if you then walk forward holding the box, there’s no work happening at all. You’re pushing upward still, to keep the box from falling, but the box isn’t moving up.[3]
Advertisement
- Whenever you read a word problem about work, stop and think where the force is being applied. If you lift a box, you’re pushing upward, and the box is moving up — so the distance is however much it rises. But if you then walk forward holding the box, there’s no work happening at all. You’re pushing upward still, to keep the box from falling, but the box isn’t moving up.[3]
-
3
Find the mass of the object being moved. You need to know the mass to figure out how much force you need to move it. For our first example, we’ll use a person lifting a weight from the floor to her chest, and calculate how much work that person exerts on the weight. Let’s say the weight has a mass of 10 kilograms (kg).
- Avoid using pounds or other non-standard units, or your final answer won’t be in terms of joules.
-
4
Calculate the force. Force = mass x acceleration. In our example, lifting a weight straight up, the acceleration we’re fighting is due to gravity, which equals 9.8 meters/second2. Calculate the force required to move our weight upward by multiplying (10 kg) x (9.8 m/s2) = 98 kg m/s2 = 98 Newtons (N).
- If the object is being moved horizontally, gravity is irrelevant. The problem may ask you to calculate the force required to overcome friction instead. If the problem tells you how fast the object is accelerating when it is pushed, you can multiply the acceleration given with the mass.
-
5
Measure the distance being moved. For this example, let’s say the weight is being lifted 1.5 meters (m). The distance must be measured in meters, or your final answer will not be written in Joules.
-
6
Multiply the force by the distance. To lift a 98 Newton weight 1.5 meters upward, you’ll need to exert 98 x 1.5 = 147 Joules of work.[4]
-
7
Calculate work for objects moving at an angle. Our example above was simple: someone exerted a force upward on the object, and the object moved upward. Sometimes, the direction of the force and the movement of the object aren’t quite the same, due to multiple forces acting on the object. In the next example, we’ll calculate the amount of Joules needed for a kid to drag a sled 20 meters across flat snow by pulling on a rope angled upward at 30º. For this scenario, Work = force x cosine(θ) x distance. The θ symbol is the Greek letter «theta,» and describes the angle between the direction of force and the direction of movement.[5]
-
8
Find the total force applied. For this problem, let’s say the kid is pulling on the rope with a force of 10 Newtons.[6]
- If the problem gives you the «rightward force,» «upward force,» or «force in the direction of motion,» it has already calculated the «force x cos(θ)» part of the problem, and you can skip down to multiplying the values together
-
9
Calculate the relevant force. Only some of the force is pulling the sled forward. Since the rope is at an angle upward, the rest of the force is trying to yank the sled upward, uselessly pulling against gravity. Calculate the force that applies in the direction of motion:
- In our example, the angle θ between the flat snow and the rope is 30º.
- Calculate cos(θ). cos(30º) = (√3)/2 = about 0.866. You can use a calculator to find this value, but make sure your calculator is set to the same unit as your angle measurement (degrees or radians).
- Multiply the total force x cos(θ). In our example, 10N x 0.866 = 8.66 N of force in the direction of motion.
-
10
Multiply force x distance. Now that we know how much force is actually going toward the direction of motion, we can calculate work as usual. Our problem tells us the sled moved 20 meters forward, so calculate 8.66 N x 20 m = 173.2 joules of work.[7]
Advertisement
-
1
Understand power and energy. Watts are a measure of power, or how fast energy is used (energy over time). Joules is a measure of energy. In order to convert from watts to joules, you need to specify a length of time. The longer a current flows, the more energy it uses.
-
2
Multiply watts by seconds to get joules. A 1 Watt device consumes 1 Joule of energy every 1 second. If you multiply the number of watts by the number of seconds, you’ll end up with joules. To find out how much energy a 60W light bulb consumes in 120 seconds, simply multiply (60 watts) x (120 seconds) = 7200 Joules.[8]
- This formula works for any form of power measured in watts, but electricity is the most common application.
Advertisement
-
1
Understand kinetic energy. Kinetic energy is the amount of energy in the form of motion. Like any unit of energy, it can be express in units of Joules.[9]
- Kinetic energy is equivalent to the amount of work done to accelerate a stationary object to a certain speed. Once it has reached that speed, the object retains that amount of kinetic energy until that energy transforms into heat (from friction), gravitational potential energy (from moving against gravity), or other types of energy.
-
2
Find the mass of the object. For example, we can measure the kinetic energy of a bicycle & bicyclist. Let’s say the cyclist has a mass of 50 kg, and the cycle has a mass of 20 kg, for a total mass m of 70 kg. We can now treat them as one 70 kg object, since they’ll be traveling together at the same speed.
-
3
Calculate speed. If you already know the bicyclist’s speed or velocity, just write it down and move on. If you need to calculate it yourself, use one of these methods below. Note that we care about the speed, not the velocity (which is speed in a certain direction), even though the abbreviation v is often used. Ignore any turns the bicyclist makes and pretend all distance traveled is one straight line.[10]
- If the bicyclist moved at a constant rate (didn’t accelerate), measure the distance the bicyclist traveled in meters, and divide it by the number of seconds it took to move that distance. This will give you the average speed, which in this scenario is the same as the speed at any given moment.
- If the bicyclist is accelerating at constant acceleration and doesn’t change direction, calculate his speed at time t with the formula «speed at time t = (acceleration)(t) + initial speed. Use seconds to measure time, meters/second to measure speed, and m/s2 to measure acceleration.
-
4
Enter these numbers into the following formula. Kinetic energy = (1/2)mv2.[11]
For instance, if the bicyclist is traveling at 15 m/s, its kinetic energy K = (1/2)(70 kg)(15 m/s)2 = (1/2)(70 kg)(15 m/s)(15 m/s) = 7875 kgm2/s2 = 7875 newton meters = 7875 joules.- The kinetic energy formula can be derived from the definition of work, W = FΔs, and the kinematic equation v2 = v02 + 2aΔs.[12]
Δs refers to «change in position,» or the amount of distance traveled.
- The kinetic energy formula can be derived from the definition of work, W = FΔs, and the kinematic equation v2 = v02 + 2aΔs.[12]
Advertisement
-
1
Find the mass of the object being heated. Use a balance or spring scale for this. If the object is a liquid, first weigh the empty container the liquid will be held in and find its mass. You’ll need to subtract this from the mass of the container and liquid together to find the liquid’s mass. For this example, we’ll assume the object is 500 grams of water.
- Use grams, not any other unit, or the result will not be in Joules.
-
2
Find the object’s specific heat capacity. This information can be found in a chemistry reference, either in book form or online. For water, the specific heat capacity c is 4.19 joules per gram for each degree Celsius it is heated – or 4.1855, if you need to be very precise.[13]
- Specific heat capacity actually varies slightly based on temperature and pressure. Different organizations and textbooks use different «standard temperatures,» so you may see the specific heat capacity of water listed as 4.179 instead.
- You can use Kelvin instead of Celsius, since a difference in temperature is the same in both units (heating something by 3ºC is the same as heating by 3 Kelvin). Do not use Fahrenheit, or your result will not be in Joules.
-
3
Find the current temperature of the object. If the object is a liquid, you can use a bulb thermometer. For some objects, you may need a probe thermometer.
-
4
Heat the object and measure the temperature again. This will let use measure the amount of heat being added to the object during the heat.
- If you want to measure the total amount of energy stored as heat, you can pretend the initial temperature was absolute zero: 0 Kelvin or -273.15ºC. This is not typically useful.
-
5
Subtract the original temperature from the heated temperature. This will produce the degrees of temperature change in the object. Assuming the water was originally at 15 degrees Celsius and heated to 35 degrees Celsius, the temperature change would be 20 degrees Celsius.[14]
-
6
Multiply the mass of the object by its specific heat capacity and by the amount of temperature change. This formula is written H = mcΔT, where ΔT means «change in temperature.»[15]
For this example, this would be 500g x 4.19 x 20, or 41,900 joules.- Heat is more commonly expressed in the metric system in terms of either calories or kilocalories. A calorie is defined as the amount of heat required to raise the temperature of 1 gram of water 1 degree Celsius, while a Kilocalorie (or Calorie) is the amount of heat required to raise the temperature of 1 kilogram of water 1 degree Celsius. In the example above, raising 500 grams of water 20 degrees Celsius would expend 10,000 calories or 10 kilocalories.
Advertisement
-
1
Use the steps below to calculate energy flow in an electrical circuit. The steps below are written as a practical example, but you can use the method to understand written physics problems as well. First, we’ll calculate the power P using the formula P = I2 x R, where I is the current in amperes (amps) and R is the resistance in ohms.[16]
These units give us the power in watts, so from there, we’ can use the formula in the previous step to calculate the energy in joules. -
2
Choose a resistor. Resistors are rated in ohms, with the rating either labeled directly or indicated with a series of colored bands. You can also test a resistor’s resistance by connecting it to an ohmmeter or multimeter. For this example, we’ll assume the resistor is rated at 10 ohms.
-
3
Connect the resistor to a current source. Either connect wires to the resistor with Fahnestock or alligator clips, or plug the resistor into a testing board.
-
4
Run a current through the circuit for a set period of time. For this example, we’ll use a period of 10 seconds.
-
5
Measure the strength of the current. Do this with an ammeter or a multimeter. Most household current is in milliamperes, or thousandths of an ampere, so we’ll assume the current is 100 milliamperes, or 0.1 ampere.
-
6
Use the formula P = I2 x R. To find the power, multiply the square of the current by the resistance. This yields the power output in watts. Squaring 0.1 gives 0.01, multiplied by 10, gives a power output of 0.1 watt, or 100 milliwatts.
-
7
Multiply the power by the amount of time elapsed. This gives the energy output in joules. 0.1 watt x 10 seconds equals 1 joule of electrical energy.
- As joules are small units, and because appliances commonly use watts, milliwatts, and kilowatts to indicate how much power they use, utilities commonly measure their energy output in kilowatt-hours. One watt equals 1 joule per second, or 1 joule equals 1 watt-second; a kilowatt equals 1 kilojoules per second and a kilojoule equals 1 kilowatt-second. As there are 3,600 seconds in an hour, 1 kilowatt-hour equals 3,600 kilowatt-seconds, 3,600 kilojoules, or 3,600,000 joules.
Advertisement
Add New Question
-
Question
Hair dryer (1500 W) operated for 5 minutes what’s the amount of electrical energy?
1500W = 1500 J/s. 5 minutes = 300 s. Amount of Joules = 300 s * 1500 J/s = 450000 J = 450 kJ.
-
Question
How do I convert kilojoules into joules?
There are 1000 joules per kilojoule. Therefore, multiply the kilojoule value by 1000 to get the joule equivalent value. Example: 4.23 kJ = 4230J.
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
-
Related to the joule is another metric unit of work and energy called the erg; 1 erg equals 1 dyne of force times a distance of 1 cm. One joule equals 10,000,000 ergs.
Advertisement
-
Although the terms «joule» and «newton-meter» describe the same unit, in practice «joule» is used when representing any form of energy and for work performed in a straight line, as in the example above of running up a flight of stairs. When used to measure torque, the application of force in rotating an object, the term «newton-meter» is preferred.
Advertisement
Things You’ll Need
Work or Kinetic Energy:
- Stopwatch or timer
- Scale or balance
- Calculator with cosine function (work only, not always needed)
Calculating Electrical Energy:
- Resistor
- Wires or test board
- Multimeter (or separate ohmmeter and ammeter)
- Fahnestock or alligator clips
Heat:
- Object to heat
- Heat source (such as a Bunsen burner)
- Thermometer (either bulb or probe thermometer)
- Chemistry reference book (for finding the specific heat capacity of the object being heated)
References
About This Article
Article SummaryX
To calculate heat in joules, start by finding the mass in grams of the object being heated. Then, find the object’s heat capacity in Celsius or Kelvin. Once you have the mass and heat capacity, find the object’s current temperature and its temperature after it’s heated. Next, subtract the original temperature from the heated temperature and multiply the difference by the mass and the heat capacity to find the heat in joules. To learn how to calculate energy or work in joules, keep reading!
Did this summary help you?
Thanks to all authors for creating a page that has been read 557,368 times.
Reader Success Stories
-
«Just that l got the formula was helpful because many websites don’t have that just very long writing.»
Did this article help you?
Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.
В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.
Определение и формула
Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».
Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I2*R*Δt
Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U2/R * Δt ⇒ Q = U*I*Δt.
Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.
Дифференциальная форма
Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax)2 и в начале пробега (mu2)/2 , то есть
Здесь u – скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.
Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:
Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент, E – напряжённость поля.
Интегральная форма
Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:
гдеR – полное сопротивление проводника.
Учитывая, чтоU = I×R, из последней формулы имеем:
- P = U×I;
- P = I2R;
- P = U2/R.
Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:
Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.
Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.
Физический смысл
Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.
На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.
На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.
Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон Джоуля-Ленца, которым мы пользуемся по сегодняшний день.
Практическая польза закона Джоуля-Ленца
При
сильном нагревании можно наблюдать излучение видимого спектра света, что
происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают
тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим,
но можем ощутить своими тепловыми рецепторами.
Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.
Проанализировав выражение U2/R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.
В борьбе с короткими замыканиями используют:
- автоматические выключатели:
- электронные защитные блоки;
- плавкие предохранители;
- другие защитные устройства.
Применение и практический смысл
Непосредственное
превращение электричества в тепловую энергию нельзя назвать экономически
выгодным. Однако, с точки зрения удобства и доступности современного
человечества к источникам электроэнергии различные нагревательные приборы
продолжают массово применяться как в быту, так и на производстве.
Перечислим некоторые из них:
- электрочайники;
- утюги;
- фены;
- варочные плиты;
- паяльники;
- сварочные
аппараты и многое другое.
На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.
Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.
Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.
Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.
Джоуль.
Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Имеет русское обозначение – Дж и международное обозначение – J.
Джоуль, как единица измерения
Применение
Представление джоуля в других единицах измерения – формулы
Перевод в другие единицы измерения
Кратные и дольные единицы
Интересные примеры
Другие единицы измерения
Джоуль, как единица измерения:
Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ), названная в честь английского физика Джеймса Прескотта Джоуля.
Джоуль как единица измерения имеет русское обозначение – Дж и международное обозначение – J.
В классической физике джоуль равен работе, совершаемой при перемещении точки приложения силы, равной 1 (одному) ньютону (Н), на расстояние одного метра в направлении действия силы.
Дж = Н · м = кг · м2 / с2.
1 Дж = 1 Н · 1 м = 1 кг · 1 м2 / 1 с2.
В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт (В) для поддержания силы тока в 1 ампер (А). Это энергия, которая выделится за 1 секунду при прохождении тока через проводник силой тока 1 ампер (А) при напряжении 1 вольт (В).
В Международную систему единиц джоуль введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы джоуль пишется со строчной буквы, а её обозначение – с заглавной (Дж). Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием джоуля.
Джоуль включен в первый раздел Общероссийский классификатор единиц измерения (ОКЕИ) – “Международные единицы измерения, включенные в ОКЕИ“.
Применение:
В джоулях измеряют выполненную работу, энергию и количество теплоты.
Представление джоуля в других единицах измерения – формулы:
Через основные единицы системы СИ джоуль выражается следующим образом:
Дж = Н · м
Дж = кг · м2 / с2.
Дж = Вт / с.
Дж = А2 · Ом · с.
Дж = А2 · с / См.
Дж = В2 · с / Ом.
Дж = В2 · с · См.
Дж = Кл · В.
где А – ампер, В – вольт, Дж – джоуль, Кл – кулон, м – метр, Н – ньютон, с – секунда, Вт – ватт, кг – килограмм, Ом – ом., См – сименс.
Перевод в другие единицы измерения:
1 Дж ≈ 6,24151 ⋅ 1018 эВ
1 МДж = 0,277(7) кВт · ч
1 кВт · ч = 3,6 МДж
1 Дж ≈ 0,238846 калориям
1 калория (международная) = 4,1868 Дж
1 килограмм-сила-метр (кгс·м) = 9,80665 Дж
1 Дж ≈ 0,101972 кгс·м
Кратные и дольные единицы:
Кратные и дольные единицы образуются с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
величина | название | обозначение | величина | название | обозначение | ||
101 Дж | декаджоуль | даДж | daJ | 10−1 Дж | дециджоуль | дДж | dJ |
102 Дж | гектоджоуль | гДж | hJ | 10−2 Дж | сантиджоуль | сДж | cJ |
103 Дж | килоджоуль | кДж | kJ | 10−3 Дж | миллиджоуль | мДж | mJ |
106 Дж | мегаджоуль | МДж | MJ | 10−6 Дж | микроджоуль | мкДж | µJ |
109 Дж | гигаджоуль | ГДж | GJ | 10−9 Дж | наноджоуль | нДж | nJ |
1012 Дж | тераджоуль | ТДж | TJ | 10−12 Дж | пикоджоуль | пДж | pJ |
1015 Дж | петаджоуль | ПДж | PJ | 10−15 Дж | фемтоджоуль | фДж | fJ |
1018 Дж | эксаджоуль | ЭДж | EJ | 10−18 Дж | аттоджоуль | аДж | aJ |
1021 Дж | зеттаджоуль | ЗДж | ZJ | 10−21 Дж | зептоджоуль | зДж | zJ |
1024 Дж | иоттаджоуль | ИДж | YJ | 10−24 Дж | иоктоджоуль | иДж | yJ |
Интересные примеры:
Дульная энергия пули при выстреле из автомата Калашникова – 2030 Дж.
Энергия, необходимая для нагрева 1 литра воды от 20 до 100 °C, составляет 3,35⋅105 Дж.
Энергия, выделяемая при взрыве 1 тонны тринитротолуола (тротиловый эквивалент), – 4,184⋅109 Дж.
Источник: https://ru.wikipedia.org/wiki/Джоуль
Примечание: © Фото https://www.pexels.com, https://pixabay.com
формула энергии закон джоуля ленца можно
тепловой 1 м дж джоуль ленц закон равен 2 2 равен единица
теплота масса тела сила количество теплоты работа кинетическая энергия в джоулях в секунду
10 5 8 6 20 200 100 виды сколько степени джоулей
килоджоули скорость в джоули в кг килограммы
3 4 джоуля
Коэффициент востребованности
7 994
Инструкция по использованию: Чтобы перевести ватты (Вт) в джоули (Дж), введите мощность P в ваттах (Вт), временной период t в секундах (с), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение энергии E в джоулях (Дж).
Содержание
скрыть
- Калькулятор Вт в Дж
- Формула для перевода Вт в Дж
Калькулятор Вт в Дж
Формула для перевода Вт в Дж
EДж = PВт ⋅ tс
Энергия E в джоулях (Дж) равняется мощности P в ваттах (Вт), умноженной на время t в секундах (с).