Как найти эпюру q по эпюре m

1.На прямом элементе без нагрузки по его длине поперечная сила постоянна и эпюра Q имеет прямоугольную форму.

2.В сечении, которое совпадает с действующей поперек оси стержня сосредоточенной силой, ординаты эпюры Q слева и справа от силы имеют скачок, равный величине этой силы.

3.На участке с равномерно распределенной нагрузкой эпюра Q прямолинейна и имеет наклон к оси стержня (рис. 3.11, 3), тангенс угла которого равен интенсивности нагрузки q = dQ / dx =tg β . Нулевому значению

на эпюре Q на участке с равномерно распределенной нагрузкой соответствует экстремальное значение на эпюре M .

Пример построения эпюры Q по эпюре М

Для построения эпюры Q на прямолинейном элементе при отсутствии на нем нагрузки и при действии по его длине равномерно распределенной нагрузки достаточно иметь соответственно одну и две ординаты по концам элемента.

В программе SCAD поперечные силы на КЭ вычисляются минимум в двух концевых сечениях. Поэтому информации для построения эпюры Q достаточно.

Однако иногда у расчетчика возникает необходимость построения эпюры Q по эпюре M вручную. Для этого можно использовать уравнение Q =dM / dx .

Отсюда следует, что на любом КЭ стержня с прямолинейной эпюрой M величина Q будет постоянной и значение Q и знак определятся из выражения (3.2).

Полагая, что на участках прямолинейных эпюр M , приведенных на рис. 3.1, местная система координат направлена так, как показано на рис. 3.2, 3.3. В соответствии с этим поставлены знаки ординат эпюр M . Тогда по формуле (3.2) получим те же величины Q, которые были получены на рис. 3.11 первым способом.

При построении эпюры Q на участках с равномерно распределенной нагрузкой

используют формулу (3.3), полученную по аналогии с формулой (3.1) на основе принципа независимости действия сил.

Поперечные силы Qн,к по этой формуле определяют для крайних сечений элемента (в

узлах «н» и «к» МСК) как сумму ординат Qo

= ±ql / 2 эпюры Qo

для балки, загруженной

н,к

равномерно распределенной нагрузкой (рис. 3.12,а), и ординат

Qн,к(лом) = (M к M н) / l ,

вызванной опорными моментами M н и Mк, действующими

по концам элемента

(рис. 3.12, б, г):

Q

= ± ql

+ M к M н .

(3.3)

н,к

2

l

Обратим внимание, что первое слагаемое при нагрузке направленной «вниз» всегда имеет один и тот же вид (см. 3.12,а). Второе слагаемое дает эпюру с постоянными

53

ординатами на всем элементе, но знак этого слагаемого зависит от знаков моментов по концам КЭ. На рис. 3.12,б, г показаны варианты с положительным и отрицательным знаками

второго слагаемого. При этом изменяются суммарные ординаты, сдвигая нулевую ординату суммарной эпюры Q «вправо» при положительном втором слагаемом и «влево» – при

отрицательном (рис. 3.12,в,д).

Пример. Вычислим по формуле (3.3) ординаты эпюры Q на участке с равномерно

54

распределенной нагрузкой на рис. 3.11, позиция 3. При назначенной МСК (см. рис. 3.4, 3.5) M н = −ql 2 / 2 , M к = 0 . Тогда по формуле (3.3) получаем

Qн,к ql

ql

.

+( ql ) =

2

2

0

Результат совпадает с простым определением ординат (см. рис. 3.11, позиция 3).

(3.4)

Qн,к первым способом

3.3. Эпюра продольных сил N

Процедура построения ординат эпюры N

Для построения ординаты эпюры N в каком – либо сечении необходимо:

1.Одним из приведенных ниже способов определить численное значение

продольной силы в сечении и ее знак.

2.Отложить найденное численное значение N в виде ординаты перпендикулярно оси стержня с одной из сторон стержня в соответствии со знаком N .

Способ 1. Определение продольной силы в сечении стержня из уравнения равновесия части стержня

слева или справа от сечения Численное значение продольной силы в любом сечении стержня равно

численному значению алгебраической суммы проекций всех внешних сил, действующих на стержневую систему с любой одной из сторон сечения, на касательную к оси стержня.

Растягивающая продольная сила в сечении стержня считается положительной, сжимающая – отрицательной (рис. 3.13).

55

Иными словами, способ 1 состоит в определении N из уравнения

слева

справа

равновесия

вида Pк,i

= 0 (или Pк,i = 0), где Pк,i – проекция силы с

i

i

номером i

(i =1, 2,…np )

слева (или справа) от сечения на касательную к оси

стержня со своим знаком по отношению к рассматриваемому поперечному сечению стержня.

Эпюры N для нагрузок, изображенных на рис. 3.1 и 3.11, ординаты которых вычислены этим способом, приведены на рис. 3.14.

Способ 2. Определение продольной силы в сечении стержня из рассмотрения равновесия узлов стержневой системы

Для иллюстрации второго способа рассмотрим узел C на рис. 3.1, позиция 2. Вырежем узел и рассмотрим его равновесие под действием поперечных и продольных сил. Векторы поперечных сил, действующие на узел, найдем по правилу «тупого узла» (рис. 3.15). Продольные силы в двух разрезанных стержнях (с номерами s и r) определятся из двух уравнений равновесия вида X = 0; Z = 0 .

Рассмотрим теперь некоторый узел с двумя наклонными по отношению друг к другу стержнями (рис. 3.16). Предположим, что поперечные силы,

56

Соседние файлы в предмете Теоретическая механика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

 1. Как строить эпюру  Q по эпюре M

(или как проверить их соответствие друг другу)

1 правило –определение знака эпюры Q по эпюре М:

Если на эп.М граничная линия эпюры «поворачивается» от «нулевой» линии по часовой стрелке, то Q – положительна; если – против часовой стрелки, то Q – отрицательна. Например:

2 правило:определение значений поперечной силы Q по дифференциальной зависимости Q = dM/dx = tg α

а) если эпюра М прямолинейна:

Примеры: Построить эпюру поперечных сил Q.

 а) Эпюра моментов М — прямолинейна.

б) Если эпюра моментов – квадратная парабола (на участке – равномерно — распределённая нагрузка). В этом случае пользуются принципом независимости действия сил: сначала определяют поперечную силу от равномерно — распределённой нагрузки — «балочную поперечную силу» Qб, затем определяют поперечную силу от изгибающего момента и складывают их.

1-й способ – по формуле:          Q = Qб – Мпр. + Млев./ l

Знаки моментов: плюс + по часовой стрелке, минус — против часовой стрелки.

2-й способ – «визуальный» («по здравому смыслу»):

Сначала определяем реакции от нагрузки: 12, затем – от моментов: 8, затем их складываем: 12+8=20, 12-8=4. Знаки Q определяем, как обычно.

2. Как найти экстремальный момент?

Его надо искать в том сечении, где Q = 0 (меняет знак).

(Q = dM/dx ;  из математики: в экстремальных значениях функции первая производная равна нулю).

Объяснение на примере:

1-й способ(для студентов):

1) отмечаем Х;

2) выражаем Qx через Х, приравнивая её к нулю. Находим Х:

 Qx= ‒ 2 + 4·Х = 0; Х = 0.5м;

3) определяем Мех по правилу: Мех = 2·Х ‒ 4·Х· Х/2 = 2·0.5 – 4·0.5·0.25 = 0.5.

2-й способ – по дифференциальным зависимостям:q =  = tgα; 

Рассматриваем треугольник на эпюре Q: Х=  

 (более простой, особенно в примерах с большим количеством участков).

1) отмечаем Х;

2) Находим   Х = Q/q = 2/4 = 0.5.

3) определяем Мех по правилу: Мех = 2·Х ‒ 4·Х· Х/2 = 2·0.5 – 4·0.5·0.25 = 0.5.

Пример решения задачи на построение эпюр внутренних поперечных сил Qy и изгибающих моментов Mx для стальной балки на двух шарнирных опорах, нагруженной сосредоточенной силой F, моментом m и равномерно распределенной нагрузкой q.

Задача

Двухопорная балка с системой внешних нагрузок

Для заданной двухопорной балки, нагруженной силой F, моментом M и равномерно распределенной нагрузкой q построить эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.

Другие примеры решений >
Помощь с решением задач >

Решение задачи

Опорные реакции для данной расчетной схемы были определены здесь.

Балка имеет 3 силовых участка. Обозначим их римскими цифрами, например, справа налево.

Обозначение силовых участков балки

Для расчета внутренних силовых факторов по участкам балки воспользуемся методом сечений.

Расчет значений

Начнем с первого силового участка (CD).

Проведем поперечное сечение в пределах участка, в любом месте между точками C и D.

Данное сечение делит балку на две части (левую и правую). Для определения внутренних факторов можно выбрать любую из них, но лучше выбирать менее нагруженную часть балки. Очевидно это будет ее правая часть.

Сечение балки по первому участку

Расстояние от правой границы участка до рассматриваемого сечения обозначим переменной z1, которая может принимать значения от 0 до 1,5 метров (т.е. 0 ≤ z≤ 1,5м).

Подробно, все расчеты значений и построение эпюр Q и M для балки показаны в нашем видеоуроке:

Другие видео

Мысленно отбросим на время всю левую часть балки.

Рассматриваем правую часть балки

Поперечная сила Q в данном сечении первого участка будет равна сумме всех внешних сил приложенных к рассматриваемой части балки с учетом их знака, т.е.

Расчет поперечной силы на первом силовом участке

Здесь сила F записана положительной, т.к. стремится повернуть правую часть балки по ходу часовой стрелки относительно рассматриваемого сечения.

В данном выражении отсутствует переменная z1, что говорит о том, что внутренняя поперечная сила будет одинакова для всех сечений этого участка.

Изгибающий момент M в рассматриваемом сечении определяется как сумма изгибающих моментов от всех внешних нагрузок выбранной части балки.

С учетом правила знаков при изгибе получаем

Выражение для изгибающих моментов на первом участке

Здесь сила F записана отрицательной, т.к. стремиться сжать нижние слои балки.

В полученном выражении переменная z1 является плечом момента силы F для данного сечения балки.

Как видно из полученного выражения изгибающий момент по длине участка меняется линейно (т.к. z1 в первой степени), поэтому для построения эпюры на данном участке нам достаточно двух точек.

Этими точками будут значения изгибающего момента на границах I участка, т.е. при z1=0 и при z1=1,5м

Значения момента на границах первого участка

На первом участке внутренние усилия определены.

Переходим на второй силовой участок (BC).

Так же начинаем с того, что проводим сечение в любом месте участка и выбираем рассматриваемую часть балки. Здесь также удобнее рассмотреть правую часть балки.

Расстояние до рассматриваемого сечения от правой границы участка обозначим переменной z2. При этом 0 ≤ z≤ 1м.

Сечение по второму участку балки

Запишем выражения и рассчитаем граничные значения внутренней поперечной силы Q

Расчет поперечных сил на втором участке балки

И изгибающего момента M

Выражение для расчета изгибающего момента на втором участке

Здесь опорная реакция RC положительна, потому что сжимает верхний слой, а сила F и распределенная нагрузка q отрицательны, т.к. сжимают нижний слой балки.
Как записывается момент распределенной нагрузки показано здесь.

В выражении для MxII переменная во второй степени, поэтому эпюра моментов на втором участке будет иметь вид параболы.

Как известно, для построения параболы необходимо знать положение минимум трех ее точек. Но как будет показано дальше, в некоторых случаях при построении эпюр, параболы можно вычерчивать всего лишь по двум точкам. Рассчитаем их значения:

Значения изгибающего момента на границах второго участка балки

Осталось найти внутренние усилия на III силовом участке (AB).

Рассекаем балку между точками A и B. Выбираем менее нагруженную левую часть. 0 ≤ z3 ≤ 2м – интервал возможных положений сечения относительно левой границы участка.

Записываем выражения для Q и M и вычисляем значения в крайних точках

Сечение балки по третьему участку

Расчет значений Q и M на третьем силовом участке двухопорной балки

Здесь видно что выражение для QyIII — линейное, а на эпюре Mx на данном участке будет парабола.

По полученным данным строим эпюры.

Построение эпюр

Для построения эпюр рассчитанные значения откладываем от базовой линии на соответствующих участках.

Начинаем с эпюры поперечных сил Q.

На первом участке выражение для Q не зависело от z1 поэтому его значение будет постоянным (QyI=const) по длине участка, т.е. линия эпюры будет параллельна базовой.

На втором участке были получены два значения Q: -58,3 кН при z2=0 и -18,3кН при z2=1м. Переменная z2 откладывалась от правой границы участка, поэтому z2=0 в точке C, соответственно в т. B переменная z2=1м.

Построенная эпюра поперечных сил Q

Аналогично откладываются значения Q на третьем участке и значения M на эпюре изгибающих моментов.

Точки на II и III участках эпюры Q и на I участке эпюры M соединяются отрезками, так как распределение внутренних сил и моментов там линейное (переменная z в первой степени).

Соединение линейных участков эпюр Q и M

А при соединении точек эпюры M параболами, надо смотреть на эпюру Q.

Дело в том, что эпюра поперечных сил это первая производная эпюры изгибающих моментов. Поэтому в сечениях балки, где Q=0 на эпюре M будет экстремум.

Как видно эпюра Q пересекает нулевую линию только на третьем силовом участке балки. Поэтому, ввиду того что нас интересуют только пиковые значения изгибающих моментов, на втором участке две крайние точки достаточно соединить параболой, не имеющей экстремума, выпуклость которой направлена навстречу распределенной нагрузке.

Для более точного построения линии параболы на данном участке можно найти значения момента для промежуточных положений сечения, например при z2=0,5м.

Парабола без экстремума на втором участке эпюры M

На третьем участке, в сечении, где Q пересекает базовую линию необходимо рассчитать точку экстремума.

Как рассчитывать экстремум эпюры моментов

Для этого выражение для QyIII приравнивается к нулю и рассчитывается значение z3, при котором изгибающий момент на участке принимает экстремальное значение. Его подставляют в выражение для MxIII

Определение экстремума эпюры моментов на третьем участке балки

Это значение откладывается на эпюре M под точкой пересечения эпюры Q с базовой линией

Точка экстремума на третьем участке эпюры изгибающих моментов

после чего три точки соединяются плавной линией.

Построенные эпюры поперечных сил и изгибающих моментов для двухопорной балки

Эпюры внутренних поперечных сил и изгибающих моментов построены.

Проверка эпюр поперечных сил >
и изгибающих моментов >
Расчеты для подбора сечений балки >
Другие примеры решения задач >

В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.

В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.

Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.

Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.

Поперечные силы и изгибающие моменты

При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).

Схема нагружения балки
Поперечные силы и изгибающие моменты в произвольном сечении балки

Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.

Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.

Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!

Обозначения поперечных сил и изгибающих моментов

Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.

Например, если выбрать следующие обозначения для координатных осей:

Обозначения поперечных сил и изгибающих моментов с привязкой к координатным осям

То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.

Расчётная схема балки

Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:

Простая схема балки, свободная от нагрузок

А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.

К примеру, балка может иметь прямоугольное поперечное сечение:

Балки имеющая прямоугольную форму поперечного сечения

Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.

Правила знаков для поперечных сил и изгибающих моментов

В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).

Расчётная схема

Расчётная схема консольной балки загруженная сосредоточенным усилием

Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).

Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.

Правило знаков для поперечных сил

Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
ПО часовой стрелке, то её нужно учесть с «плюсом»;

Правило – положительное значение поперечной силы

ПРОТИВ часовой стрелки — учитываем её с «минусом».

Правило – отрицательное значение поперечной силы

Таким образом, для нашего случая, поперечная сила в сечении A будет равна:

Правило знаков для изгибающих моментов

Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.

Схема показывающая верхние и нижние волокна консольной балки

Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.

Схема деформированной балки с указанием растянутых и сжатых волокон

В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.

На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
верхние волокна, то учитываем его с «минусом»

Правило – отрицательное значение изгибающего момента

нижние волокна, то нужно учесть его с «плюсом».

Правило – положительное значение изгибающего момента

Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.

Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:

Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:

Отрицательное значение изгибающего момента – правило
Положительное значение изгибающего момента – правило

Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:

Как построить эпюры поперечных сил и изгибающих моментов ?

В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.

Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉

Построение эпюр для консольной балки

В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:

Расчётная схема — консольной балки, загруженной силами и моментом

Будем рассчитывать балку справа налево.

Рассмотрим первый участок

Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.

Указание расчётного сечения на первом участке

Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.

Поперечные силы на первом участке

Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:

Как видишь, поперечная сила будет постоянна на первом участке:

Уже можем отразить это на эпюре поперечных сил:

Построение эпюры поперечных сил на первом участке

Изгибающие моменты на первом участке

Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:

Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:

Откладываем полученные значения:

Построение эпюры изгибающих моментов на первом участке

Расчёт второго участка

Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.

Указание второго расчётного сечения

Поперечные силы на втором участке

Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:

Теперь можем показать окончательную эпюру поперечных сил:

Построение окончательной эпюры поперечных сил

Изгибающие моменты на втором участке

Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:

Вычисляем значения на границах второго участка:

Показываем окончательную эпюру изгибащих моментов:

Построение окончательной эпюры изгибающих моментов

Проверка построенных эпюр

Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.

Определение реакций в жёсткой заделке

Первым делом, нам потребуется определить реакции в заделке:

Обозначение реакций в жёсткой заделке на расчётной схеме

Расчёт эпюр поперечных сил и изгибающих моментов

Рассчитываем все участки теперь слева направо:

Обозначение расчётных сечений для участков балки

Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:

Построение эпюр изгибающих моментов для расчёта балки слева направо

Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:

Схема демонстрирующая, что расчёт балки можно выполнять с двух сторон

Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.

Эпюра моментов со стороны растянутых или сжатых волокон

По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.

Причем сама эпюра была построенна со стороны растянутых волокон:

Эпюра изгибающих моментов построенная со стороны растянутых волокон

Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:

Эпюра изгибающих моментов построенная со стороны сжатых волокон

Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.

Учёт распределённой нагрузки

Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.

Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:

Расчётная схема консольной балки, загруженной распределённой нагрузкой

Определение поперечной силы и изгибающего момента в сечении A

Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.

После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:

Сворачивание распределённой нагрузки до сосредоточенной силы

Тогда поперечная сила QA будет равна:

Изгибающий момент Mизг, A будет равен:

Расчёт эпюр поперечных сил и изгибающих моментов

Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:

Обозначение расчётного сечения для написания уравнений

Уравнение для поперечных сил будет следующее:

Рассчитаем значения на эпюре поперечных сил:

Построение эпюры поперечных сил для консольной балки от распределённой нагрузки

Уравнение для изгибающих моментов будет следующее:

Тогда значения на эпюре будут такими:

Откладывание ординат для построения эпюры изгибающих моментов

На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.

Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:

Построение эпюры изгибающих моментов со стороны растянутых волокон для консольной балки от распределённой нагрузки

Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:

Построение эпюры изгибающих моментов со стороны сжатых волокон для консольной балки от распределённой нагрузки

Построение эпюр для двухопорной балки

А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:

Расчётная схема двухопорной балки

Определим реакции опор:

Расчётная схема двухопорной балки с обозначением реакций в опорах

Рассчитываем первый участок:

Строим эпюры на первом участке:

Построение эпюр сил и моментов на первом участке

Определение экстремума на эпюре моментов

Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.

Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:

Отсюда найти значение координаты:

Затем подставить это значение в уравнение для изгибающих моментов:

Теперь можем указать экстремум на эпюре:

Указание экстремума на эпюре изгибающих моментов

Расчет эпюр на остальных участках

Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:

Определение экстремума:

Построение эпюр поперечных сил и изгибающих моментов для двухопорной балки

Оценка правильности построенных эпюр поперечных сил и изгибающих моментов

И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.

Вот несколько признаков, правильно построенных эпюр:

  • На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
  • На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
  • Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
  • Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.

Для балки определить  опорные реакции и построить эпюры изгибающих моментов (М) и поперечных сил (Q).

2016-09-11-11-11-20-skrinshot-ekrana

  1. Обозначаем опоры буквами А и В и направляем опорные реакции RА и RВ.

2016-09-11-11-15-02-skrinshot-ekrana

Составляем уравнения равновесия.

2016-09-11-11-05-44-skrinshot-ekrana

Проверка

2016-09-11-11-16-10-skrinshot-ekrana

Записываем значения RА и RВ на расчетную схему.

2. Построение эпюры поперечных сил методом сечений. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения.

2016-09-11-11-21-02-skrinshot-ekrana

сеч. 1-1   ход слева.

Сечение проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z1 влево от сечения до начала участка. Длина участка 2 м. Правило знаков для Q — см. здесь.

2016-09-11-11-23-08-skrinshot-ekrana

Строим по найденным значением эпюру Q.

сеч. 2-2   ход справа.

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z вправо от сечения до начала участка. Длина участка 6 м.

2016-09-11-12-13-12-skrinshot-ekrana

Строим эпюру Q.

сеч. 3-3   ход справа.

2016-09-11-11-31-25-skrinshot-ekrana

сеч. 4-4   ход справа.

2016-09-11-11-32-25-skrinshot-ekrana

Строим эпюру Q.

2016-09-11-11-34-19-skrinshot-ekrana

3. Построение эпюры М методом характерных точек.

Характерная точка – точка, сколь-либо заметная на балке. Это точки А, В, С, D, а также точка К, в которой Q=0 и изгибающий момент имеет экстремум. Также в середине консоли поставим дополнительную точку Е, поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

2016-09-11-11-38-47-skrinshot-ekrana

Итак, точки расставлены, приступаем к определению в них  значений изгибающих моментов. Правило знаков — см. здесь.

Участки NA, ADпараболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных ), участки DС, СВпрямые наклонные линии.

2016-09-11-11-43-05-skrinshot-ekrana

Момент в точке D следует определять как слева, так и справа от точки D. Сам момент в эти выражения не входит. В точке D получим два значения с разницей на величину mскачок на его величину.

2016-09-11-11-44-18-skrinshot-ekrana

Теперь следует определить момент в точке К (Q=0). Однако сначала определим положение точки К, обозначив расстояние от нее до начала участка неизвестным х.

2016-09-11-11-46-32-skrinshot-ekrana

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

2016-09-11-11-47-50-skrinshot-ekrana

Но поперечная сила в т. К равна 0, а z2 равняется неизвестному х.

Получаем уравнение:

2016-09-11-11-48-52-skrinshot-ekrana

Теперь, зная х, определим  момент в точке К с правой стороны.

2016-09-11-12-07-29-skrinshot-ekrana

Строим эпюру М. Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

2016-09-11-12-09-52-skrinshot-ekrana

Понравилась статья? Поделить с друзьями:
  • Как найти объем циллиндра
  • Мтс без доступа к сети как исправить windows 7
  • Как можно решить или найти значение выражения
  • Новоясеневский проспект 1 гибдд как найти
  • Plugy d2 install path not found как исправить