Как найти ф в физике электромагнитная индукция

Электромагнитная индукция

Содержание

  • Явление электромагнитной индукции
  • Магнитный поток
  • Закон электромагнитной индукции Фарадея
  • Правило Ленца
  • Самоиндукция
  • Индуктивность
  • Энергия магнитного поля
  • Основные формулы раздела «Электромагнитная индукция»

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Опыты Фарадея

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​( S )​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​( B )​, площади поверхности ​( S )​, пронизываемой данным потоком, и косинуса угла ​( alpha )​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​( Phi )​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​( alpha )​ магнитный поток может быть положительным (( alpha ) < 90°) или отрицательным (( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​( N )​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​( R )​:

При движении проводника длиной ​( l )​ со скоростью ​( v )​ в постоянном однородном магнитном поле с индукцией ​( vec{B} )​ ЭДС электромагнитной индукции равна:

где ​( alpha )​ – угол между векторами ​( vec{B} )​ и ( vec{v} ).

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​( varepsilon_{is} )​, возникающая в катушке с индуктивностью ​( L )​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​( Phi )​ через контур из этого проводника пропорционален модулю индукции ​( vec{B} )​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​( L )​ между силой тока ​( I )​ в контуре и магнитным потоком ​( Phi )​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

6. Решение проверить.

Электромагнитная индукция

3.1 (62.41%) 108 votes

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с  самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

Изображение магнитного поля при помощи силовых линий

Изображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

Правило правой руки

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

основные формулы электричество и магнетизм

Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

Правило левой руки для силы Ампера

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

магнетизм основные понятия и формулы

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

Определение направления силы Лоренца

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

формулы по теме магнетизм

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

магнетизм формулы по физике

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

электричество и магнетизм формулы

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

Соленоид

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

магнетизм формулы

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.

электричество и магнетизм формулы

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

Магнитный поток

При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

электричество и магнетизм формулы

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

электричество и магнетизм формулы

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

электричество и магнетизм формулы

Формула для ЭДС самоиндукции:

электричество и магнетизм формулы

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

электричество и магнетизм формулы

Объемная плотность энергии поля:

электричество и магнетизм формулы

Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

Электричество рождает магнетизм

Сперва Эрстед в Дании, а потом Ампер с коллегами во Франции в начале XIX века собрали немало свидетельств воздействия электрического тока на магниты: стрелка компаса поворачивалась, если рядом протекал ток, линейный магнит втягивался в соленоид, сталь намагничивалась, будучи помещенной в катушку с током и т.п. Даже утвердилось мнение, что все эффекты, демонстрируемые с постоянными магнитами, можно воспроизвести, создавая электрический ток соответствующей силы и конфигурации или, иначе говоря, магнитные поля возбуждаются движущимися электрическими зарядами.

… а магнетизм – электричество!

Также было установлено, что магнитное поле действует на движущийся электрический заряд (см. сила Ампера и сила Лоренца), но вот доказательств того, что магнитное поле может воздействовать на неподвижный электрический заряд, долгое время получить не удавалось, но многие предполагали – хотя бы в силу симметрии! – что такое воздействие должно существовать. Честь открыть его выпала великому англичанину Майклу Фарадею: он экспериментально установил, что на электрический заряд действует меняющееся магнитное поле, или – другими словами – меняющееся магнитное поле порождает электрическое поле.

Формула и правило

Наиболее изящным выражением закона электромагнитной индукции Фарадея является следующая формула:

E=−dФdtE = — frac{dtext{Ф}}{dt},

где EE – электродвижущая сила (ЭДС), возникающая в замкнутом контуре,

Фtext{Ф} – поток вектора магнитной индукции через поверхность, натянутую на этот контур.

Другими словами ЭДС в контуре есть производная магнитного потока, взятая с обратным знаком.

Представляется, однако, что для лучшего понимания явления необходимо сделать пару пояснений.

Первое: поток Фtext{Ф} вектора (в данном случае вектора B‾overline{B}) через поверхность – математическое понятие, это есть сумма произведений BΔScos⁡αBDelta Scos{alpha}, где ΔSDelta S – очень маленький плоский элемент поверхности, BB – модуль вектора в точках этого элемента, а αalpha – угол между нормалью к выбранному элементу и направлением вектора B‾overline{B}. Например, если поле однородно, а контур – окружность радиуса RR, ограничивающая круг, плоскость которого перпендикулярна вектору B‾overline{B}, то поток вектора через круг Ф=BπR2text{Ф} = B pi R^2.

Второе: ЭДС, обусловленная сторонними силами, которыми в данном случае являются силы электрического поля, созданного не зарядами, а изменением магнитного поля, возбуждает в замкнутом контуре электрический ток, чье направление задается знаком минус в вышеприведенной формуле закона Фарадея. Но практически проще и физически осмысленнее (и глубже) определять его, опираясь на правило Ленца: индукционный ток производит магнитное поле, призванное компенсировать изменение потока вектора магнитной индукции исходного поля, породившее ток. К примеру, если поток индукции исходного поля уменьшается, то ток потечет таким образом, что порожденное им магнитное поле будет увеличивать поток результирующего (т.е. суммы векторов исходного и возникшего полей) вектора магнитной индукции.

Как этим пользоваться. Задача

Рассмотрим следующую задачу.

В одной плоскости расположены две квадратные рамки, изготовленные из одной и той же проволоки, причем на меньшую рамку пошло вполовину меньше провода. Сила тока, наведенная в большей рамке при изменении магнитного поля, составляет 2A2A. Какова сила тока, наведенная в меньшей рамке?

Дано:
п=2text{п}=2
I=2AI=2A
i=?i = ?

Решение

По закону электромагнитной индукции ЭДС в контуре E=−dФdtE = -frac{dtext{Ф}}{dt}, Фtext{Ф} – поток вектора магнитной индукции через рамку. Рамки квадратные, а значит площадь меньшей из них меньше в 4 раза, как и производная потока Фtext{Ф}, а значит и ЭДС Е (считаем магнитное поле однородным). Ток в рамке есть отношение ЭДС к сопротивлению рамки, у меньшей рамки оно вдвое меньше, соответственно i=0,25E0,5R=0,5I=1Ai=frac{0,25E}{0,5R} = 0,5I = 1A.

Ответ: i=0,5I=1Ai = 0,5I = 1A.

Тест по теме «Закон электромагнитной индукции Фарадея»

Электромагнитная индукция

Магнитный поток

Под магнитным потоком понимают поток $Ф$ вектора магнитной индукции $B↖{→}$ через какую-либо поверхность $S$.

Магнитный поток $Ф$, пронизывающий контур, равен произведению модуля вектора индукции магнитного поля $В↖{→}$ на площадь $S$, ограниченную этим контуром, и на косинус угла а между нормалью к плоскости контура $n↖{→}$ и вектором $B↖{→}$.

$Ф=BScosα$

Произведение $Bcosα=B_n$ является проекцией вектора магнитной индукции на нормаль к плоскости контура, поэтому

$Ф=B_{n}S$

Магнитный поток пропорционален числу линий магнитной индукции, пронизывающих поверхность контура, и характеризует распределение магнитного поля на поверхности, ограниченной замкнутым контуром.

Единицей магнитного потока в СИ является вебер (Вб). Магнитный поток в $1$ Вб создается однородным магнитным полем с индукцией $1$ Тл через поверхность площадью $1$ м2, расположенную перпендикулярно вектору магнитной индукции.

Закон электромагнитной индукции Фарадея

М. Фарадеем было установлено, что сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

$I_i∼{∆Ф}/{∆t}$

Возникновение тока в замкнутом контуре означает наличие сторонних сил, работа которых по перемещению единичного заряда в контуре называется электродвижущей силой (ЭДС). Это означает, что при изменении потока через поверхность, ограниченную замкнутым контуром, в контуре возникает ЭДС $ε_1$ которую называют ЭДС индукции. Согласно закону Ома для замкнутой цепи, $I_i={ε_i}/{R}$.

Следовательно, ЭДС индукции пропорциональна ${∆Ф}/{∆t}$, поскольку сопротивление $R$ не зависит от изменения магнитного потока.

Закон электромагнитной индукции формулируется так:

ЭДС индукции $ε_1$ в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

$ε_1=|{∆Ф}/{∆t}|$

Применение правила Ленца к замкнутому контуру с положительной нормалью приводит к выражению:

$ε_1=-{∆Ф}/{∆t}$

Формула $ε_1=-{∆Ф}/{∆t}$ выражает основной закон электромагнитной индукции.

На рис. внешнее магнитное поле индукции $В$ возрастает со временем и направлено вдоль положительной нормали к контуру с током.

Индуцированный ток противоположен выбранному направлению обхода в соответствии с индуцированным магнитным полем $В’$.

Описанные выше опыты свидетельствуют о том, что электромагнитная индукция — это возникновение электрического поля и электрического тока при изменении во времени магнитного поля или при движении проводника в магнитном поле. Эти два типа эффектов электромагнитной индукции отличаются физической природой процессов, отвечающих за их возникновение. Первый тип обусловлен наведением вихревого электрического поля переменным магнитным полем, второй — действием сил Лоренца на движущиеся заряды в стационарном магнитном поле. В обоих случаях выполняется основной закон индукции, выраженный формулой $ε_1=-{∆Ф}/{∆t}$.

Вихревое электрическое поле

В первом типе электромагнитной индукции ЭДС возникает в неподвижном замкнутом проводнике при любом изменении магнитного поля.

С другой стороны, известно, что возникновение электродвижущей силы в любой цепи связано со сторонними силами, действующими на заряды в этой цепи. Под сторонними силами имеются в виду силы неэлектростатического характера. Какова же природа этих сил в данном случае?

Результаты различных экспериментов по электромагнитной индукции показали, что ЭДС индукции не зависит ни от материала проводника (металл, электролит и т. д.), ни от его состояния (например, величины и распределения температуры). Отсюда следует вывод, что сторонние силы связаны с самим магнитным полем.

Анализ явления электромагнитной индукции привел Дж. Максвелла к заключению, что причиной появления ЭДС индукции является электрическое поле, отличающееся от электростатического поля следующими особенностями.

1. Возникновение поля никак не связано с наличием проводников; оно существует в пространстве, окружающем переменное магнитное поле, независимо от наличия в нем проводников; проводники являются лишь индикаторами поля (если проводник замкнут, по нему течет ток).

2. Это поле не является электростатическим, поскольку силовые линии электростатического поля всегда разомкнуты, они начинаются и заканчиваются на зарядах, и напряжение по замкнутому контуру в электростатическом поле равно нулю; электростатическое поле не может поддерживать движение зарядов в замкнутом контуре, т. е. привести к возникновению ЭДС.

3. В противоположность последнему индуцированное переменным магнитным полем электрическое поле является вихревым (как и магнитное поле); оно имеет замкнутые силовые линии, приводит к возникновению ЭДС индукции, приводящей в движение заряды по замкнутым проводам.

4. В отличие от электростатического поля, работа сил вихревого электрического поля и электрическое напряжение по замкнутому контуру не равны нулю, а значение напряжения между двумя точками определяется не только их взаимным положением, но и формой контура, соединяющего эти точки.

Все вышеизложенное позволяет сделать вывод, который выражает первое основное положение теории Максвелла: любое изменение магнитного поля вызывает появление вихревого электрического поля.

Направление силовых линий напряженности $Е↖{→}$ совпадает с направлением индукционного тока. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике. Чем быстрее меняется индукция магнитного поля, тем больше напряженность индуцированного электрического поля.

Вихревые токи (токи Фуко). В массивном проводнике, находящемся в переменном магнитном поле, вихревое электрическое поле вызывает индукционный ток. Поскольку линии напряженности $Е↖{→}$ замкнуты, то и линии тока внутри этого массивного проводника замкнуты, поэтому они называются вихревыми токами, или токами Фуко. В 1855 г. Ж. Б. Л. Фуко обнаружил нагревание ферромагнитных сердечников, а также других металлических тел в переменном магнитном поле. Он объяснил этот эффект возбуждением индукционных токов. Фуко предложил способ уменьшения потерь энергии за счет нагрева — изготавливать сердечники и другие магнитопроводы в виде пластин, разделенных тонкими изолирующими пленками, и ориентировать поверхности этих пластин перпендикулярно вектору напряженности вихревого электрического поля (т. е. чтобы они пересекали возможные линии вихревых токов).

Нагрев вихревыми токами массивных проводников используется в индукционных печах для плавки металлов и изготовления сплавов.

ЭДС индукции в движущихся проводниках

ЭДС индукции в проводниках, движущихся в постоянном магнитном поле, соответствует второму типу электромагнитной индукции, обусловленному не переменным внешним магнитным полем, а действием сил Лоренца на свободные заряды проводника.

ЭДС индукции, возникающая на концах проводника длиной $l$, движущегося с постоянной скоростью $υ↖{→}$ под некоторым углом $α$ к вектору индукции $В↖{→}$ однородного магнитного поля, равна:

$ε_i={A}/{|q|}={F_{L}l}/{|q|}={|q|υBlsinα}/{|q|}=υBlsinα$

где $А$ — работа силы Лоренца по перемещению заряда $q$ на пути $l, F_L$ — сила Лоренца, действующая на движущийся заряд.

Если такой проводник входит в состав замкнутой цепи, остальные части которой неподвижны, то в цепи возникает электрический ток. Сила тока равна:

$I={ε_i}/{R+r}={υBlsinα}/{R+r}$

где $R$ — сопротивление нагрузки (лампочки); $r$ — сопротивление проводника, играющего роль внутреннего сопротивления источника тока (сопротивлением соединяющих проводников пренебрегаем).

С другой стороны, ту же ЭДС индукции можно получить, используя основной закон электромагнитной индукции $ε_i=-{∆Ф}/{∆t}$ и формулу $Ф=B_{n}S$:

$ε_i=-{∆Ф}/{∆t}={BSsinα}/{∆t}$

В данном случае изменение потока осуществляется не за счет изменения индукции поля, а за счет изменения площади контура, равного $∆S=-lυ∆t$. В результате получим:

$ε_i=υBlsinα$

Правило Ленца

Правило Ленца (закон Ленца) было установлено Э. X. Ленцем в 1834 г. Оно уточняет закон электромагнитной индукции, открытый в 1831 г. М. Фарадеем. Правило Ленца определяет направление индукционного тока в замкнутом контуре при его движении во внешнем магнитном поле.

Направление индукционного тока всегда таково, что испытываемые им со стороны магнитного поля силы противодействуют движению контура, а создаваемый этим током магнитный поток $Ф_1$ стремится компенсировать изменения внешнего магнитного потока $Ф_e$.

Закон Ленца является выражением закона сохранения энергии для электромагнитных явлений. Действительно, при движении замкнутого контура в магнитном поле за счет внешних сил необходимо выполнить некоторую работу против сил, возникающих в результате взаимодействия индуцированного тока с магнитным полем и направленных в сторону, противоположную движению.

Правило Ленца иллюстрируют рисунок. Если постоянный магнит вдвигать в катушку, замкнутую на гальванометр, индукционный ток в катушке будет иметь такое направление, которое создаст магнитное поле с вектором $В’$, направленным противоположно вектору индукции поля магнита $В$, т. е. будет выталкивать магнит из катушки или препятствовать его движению. При вытягивании магнита из катушки, наоборот, поле, создаваемое индукционным током, будет притягивать катушку, т. е опять препятствовать его движению.

Для применения правила Ленца с целью определения направления индукционного тока $I_е$ в контуре необходимо следовать таким рекомендациям.

  1. Установить направление линий магнитной индукции $В↖{→}$ внешнего магнитного поля.
  2. Выяснить, увеличивается ли поток магнитной индукции этого поля через поверхность, ограниченную контуром ($∆Ф > 0$), или уменьшается ($∆Ф < 0$).
  3. Установить направление линий магнитной индукции $В’↖{→}$ магнитного поля индукционного тока $I_i$. Эти линии должны быть направлены, согласно правилу Ленца, противоположно линиям $В↖{→}$, если $∆Ф > 0$,и иметь одинаковое с ними направление, если $∆Ф < 0$.
  4. Зная направление линий магнитной индукции $В’↖{→}$, определить направление индукционного тока $I_i$, пользуясь правилом буравчика.

Индуктивные электродвижущая сила (ЭДС)

Ε = Φ / t

Ε — электродвижущая сила
Φ — магнитный поток
t — время



Найти

  • Ε
  • Φ
  • t


  Известно, что:


=
  



Вычислить ‘Ε

Индуктивные электродвижущая сила (ЭДС)

Ε = Φ *N / t

Ε — электродвижущая сила
Φ — магнитный поток
N — число витков
t — время



Найти

  • Ε
  • Φ
  • N
  • t


  Известно, что:


=
  



Вычислить ‘Ε

Индуктивные электродвижущая сила (ЭДС) в прямолинейном проводнике, движущемся в поле

Ε = v B l sin(a)

Ε — электродвижущая сила
v — скорость
B — магнитная индукция
l — длина роводника
α — угол



Найти

  • Ε
  • v
  • B
  • l
  • a


  Известно, что:


=
  



Вычислить ‘Ε

Магнитный поток и индуктивность

Φ = L * I

Φ — магнитный поток
L — индуктивность
I — сила тока



Найти

  • Φ
  • L
  • I


  Известно, что:


=
  



Вычислить ‘Φ

Электродвижущая сила самоиндукции

Ε = L * I / t

Ε — электродвижущая сила
L — индуктивность
I — сила тока
t — время



Найти

  • Ε
  • L
  • I
  • t


  Известно, что:


=
  



Вычислить ‘Ε

Индуктивность соленоида

L = μ * μ0 * S * N^2 / l

L — индуктивность
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
S — площадь поперечного сечения
N — число витков
l — длина соленоида



Найти

  • L
  • μ
  • μ0
  • S
  • N
  • l


  Известно, что:


=
  



Вычислить ‘L

Индуктивность соленоида

L = μ * μ0 * n^2 * S * l

L — индуктивность
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
n — число витков на единицу длины
S — площадь поперечн
l — длина соленоида



Найти

  • L
  • μ
  • μ0
  • n
  • S
  • l


  Известно, что:


=
  



Вычислить ‘L

Индуктивность соленоида

L = μ * μ0 * n^2 * V

L — индуктивность
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
n — число витков на единицу длины
V — объём



Найти

  • L
  • μ
  • μ0
  • n
  • V


  Известно, что:


=
  



Вычислить ‘L

Энергия магнитного поля соленоида

W = L * I^2 / 2

W — энергия магнитного поля
L — индуктивность
I — сила тока



Найти

  • W
  • L
  • I


  Известно, что:


=
  



Вычислить ‘W

Энергия магнитного поля соленоида

W = μ * μ0 * S * N^2 * l^2 / (2 * l)

W — энергия магнитного поля
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
S — площадь поперечного сечения
N — число витков
l — длина соленоида
I — сила тока



Найти

  • W
  • μ
  • μ0
  • S
  • N
  • l


  Известно, что:


=
  



Вычислить ‘W

Энергия магнитного поля соленоида

W = μ * μ0 * n^2 * l^2 * V / 2

W — энергия магнитного поля
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
n — число витков на единицу длины
I — сила тока
V — объём



Найти

  • W
  • μ
  • μ0
  • n
  • l
  • V


  Известно, что:


=
  



Вычислить ‘W

Энергия магнитного поля соленоида

W = μ * μ0 * H^2 * S * l / 2

W — энергия магнитного поля
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
H — напряжённость магнитного поля
S — площадь поперечного сечения
l — длина соленоида



Найти

  • W
  • μ
  • μ0
  • H
  • S
  • l


  Известно, что:


=
  



Вычислить ‘W

Энергия магнитного поля соленоида

W = μ * μ0 * H^2 * V / 2

W — энергия магнитного поля
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
H — напряжённость магнитного поля
V — объём



Найти

  • W
  • μ
  • μ0
  • H
  • V


  Известно, что:


=
  



Вычислить ‘W

Энергия магнитного поля соленоида

W = B^2 * V / (2 * μ * μ0)

W — энергия магнитного поля
B — магнитная индукция
V — объём
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная



Найти

  • W
  • B
  • V
  • μ
  • μ0


  Известно, что:


=
  



Вычислить ‘W

Энергия магнитного поля соленоида

W = B*H*V / 2

W — энергия магнитного поля
B — магнитная индукция
H — напряжённость магнитного поля
V — объём



Найти

  • W
  • B
  • H
  • V


  Известно, что:


=
  



Вычислить ‘W

Объемная плотность электромагнитной энергии

W = ε0 * ε * E^2 / 2 + B^2 / (2 * μ * μ0)

W — объемная плотность электромагнитной энергии
ε0 — электрическая постоянная
ε — диэлектрическая постоянная (проницаемость)
E — электрическое поле
B — магнитная индукция
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная



Найти

  • W
  • ε0
  • ε
  • E
  • B
  • μ
  • μ0


  Известно, что:


=
  



Вычислить ‘W

Понравилась статья? Поделить с друзьями:
  • Как найти в куче текста слово
  • Как найти по торрент файлу ссылку
  • Как в телеграм найти бота на музыку
  • Как найти пепельный сундук
  • Как найти волшебную палочку в paint