Как найти фазу гармонических колебаний материальной точки

Механические колебания и волны

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Содержание

    • Виды волн
  • Гармонические колебания
  • Амплитуда и фаза колебаний
  • Период колебаний
  • Частота колебаний
  • Свободные колебания (математический и пружинный маятники)
  • Вынужденные колебания
  • Резонанс
  • Длина волны
  • Звук
  • Основные формулы по теме «Механические колебания и волны»

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​( x )​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​( A )​ – амплитуда колебаний; ​( omega t+varphi_0 )​ – фаза колебаний; ​( omega )​ – циклическая частота; ​( varphi_0 )​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​( v )​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​( a )​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​( F )​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​( W_k )​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
( varphi_0 )​ – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​( T )​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​( nu )​, единицы времени – с-1 или Гц (Герц).

1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:

Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​( omega )​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​( h )​, определяется по формуле:

где ​( l )​ – длина нити, ​( alpha )​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

Условие резонанса:

( v_0 )​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​( lambda )​, единицы измерения – м.

Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.

Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​( nu )​ < 16 Гц);
  • звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
  • ультразвук (( nu ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

  • от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Основные формулы по теме «Механические колебания и волны»

Механические колебания и волны

3 (59.17%) 145 votes

Видеоурок: Гармонические колебания — Физика в опытах и экспериментах

Лекция: Гармонические колебания. Амплитуда и фаза колебаний

Гармонические колебания

Во время колебаний все состояния системы повторяются с некоторой периодичностью. 

Если данную периодичность можно описать законами синуса или косинуса, то такие колебания называются гармоническими.

Уравнения гармонических колебаний имеют следующий вид:

Данная зависимость позволит определить положение тела или состояние системы относительно начального состояния в любой момент времени.

Характеристика гармонических колебаний

1. Амплитуда — максимальное отклонение от начального положения. Обозначается [Хмак] = 1м.

2. Период — ФВ, характеризующая время одного полного колебания. Основная единица измерений — секунда (с).

t — все время движения

N — количество колебаний

В СИ период колебаний выражается в секундах [T]=c

3.  Частота — ФВ, определяющая количество колебаний, совершенных в единицу времени. Основной единицей измерения являются Герцы (Гц).

v — частота — число колебаний за 1 сек.

t — все время движения

N — количество колебаний
[v] = [Гц]

Частота и период связаны друг с другом обратной зависимостью.

4. Фаза — ФВ, определяющая временные рамки, на протяжении которых рассматриваются колебания системы. В уравнении колебаний фаза — аргумент функции. Измеряется в радианах (рад). Начальная фаза — это положение переменных величин в начальный момент времени.

ф — фаза колебаний
w — циклическая частота

5. Циклическая частота — это количество колебаний тела за 2п секунд. Измеряется в рад/с. В уравнении колебаний находится в аргументе функции перед временем.

Находится по формуле:

6. Скорость и ускорение колебаний. Так как скорость — первая производная от координаты, а ускорение — вторая производная, то, чтобы определить скорость и ускорение в любой момент времени следует воспользоваться следующей функцией:

7. Сила, приводящая к гармоническим колебаниям:

Превращение энергии гармонических колебаний

Во время совершения гармонических колебаний справедлив

закон сохранения энергии

.

Вся механическая энергия, сумма потенциальной и кинетической энергии, во время гармонических колебаний остается неизменной.

В самой нижней точке, в начальном положении математического маятника, кинетическая энергия достигает своего максимума, так как в этой точке значение скорости максимальное.

В точке, где маятник достигает максимальной амплитуды, тело достигает максимальное значение потенциальной энергии.

В промежуточных значениях механическая энергия состоит из суммы кинетической и потенциальной энергии.

Е = Ек + Еп = Ек.мах = Еп.мах.

Эти же правила справедливы и для пружинного маятника.

§
6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
Основные
формулы

• Уравнение
гармонических колебаний

где х
смещение
колеблющейся точки от положения
равновесия;
t
— время; А,
ω,
φ—
соответственно амплитуда, угловая
частота,
начальная фаза колебаний;

фаза колебаний в момент t.

• Угловая частота
колебаний


, или
,

где ν
и
Т — частота и период колебаний.

• Скорость точки,
совершающей гармонические колебания,

• Ускорение при
гармоническом колебании

• Амплитуда
А
результирующего
колебания, полученного при сложении
двух колебаний с одинаковыми частотами,
происходящих по одной прямой, определяется
по формуле

где
a1
и
А2
амплитуды
составляющих колебаний; φ1
и
φ2
их
начальные фазы.


Начальная фаза φ
результирующего колебания может быть
найдена
из формулы


Частота биений,
возникающих при сложении двух колебаний,
происходящих
по одной прямой с различными, но близкими
по зна­чению
частотами ν1
и
ν2,


Уравнение траектории
точки, участвующей в двух взаимно
перпендикулярных
колебаниях с амплитудами A1
и A2
и начальны­ми
фазами φ1
и φ2,

Если
начальные фазы φ1
и
φ2
составляющих колебаний одинако­вы,
то уравнение траектории принимает вид

т. е. точка движется
по прямой.

В том
случае, если разность фаз
,
уравнение
принимает вид

т. е. точка движется
по эллипсу.

• Дифференциальное
уравнение гармонических колебаний
ма­териальной точки


, или
,
где
m

масса точки; k

коэффициент
квазиупругой силы (k=тω2).


Полная энергия
материальной точки, совершающей
гармони­ческие
колебания,

• Период
колебаний тела, подвешенного на пружине
(пружин­ный
маятник),

где
m

масса тела; k

жесткость
пружины.
Формула справедлива для упругих
колебаний в пределах, в ко­торых
выполняется закон Гука (при малой массе
пружины в срав­нении
с массой тела).

Период колебаний
математического маятника

где
l
— длина маятника; g

ускорение
свободного падения. Период
колебаний физического маятника

где J
— момент инерции колеблющегося тела
относительно оси

колебаний;
а
— расстояние центра масс маятника от
оси колебаний;


— приведенная
длина физического маятника.

Приведенные
формулы являются точными для случая
бесконеч­но малых амплитуд. При
конечных амплитудах эти формулы дают
лишь приближенные результаты. При
амплитудах не более
ошибка в значении периода не превышает
1 %.

Период
крутильных колебаний тела, подвешенного
на упругой нити,

где J

момент
инерции тела относительно оси, совпадающей
с упругой нитью; k

жесткость
упругой нити, равная отношению упругого
момента, возникающего при закручивании
нити, к углу, на который нить закручивается.

• Дифференциальное
уравнение затухающих колебаний

, или
,

где r
— коэффициент сопротивления; δ
коэффициент
затухания:

; ω0
собственная угловая частота колебаний
*

• Уравнение
затухающих колебаний

где A
(t)

амплитуда
затухающих колебаний в момент t;
ω
— их угловая частота.

• Угловая частота
затухающих колебаний

О Зависимость
амплитуды затухающих колебаний от
времени


I

где
А0
амплитуда
колебаний в момент t=0.

• Логарифмический
декремент колебаний

где
A
(t)
и
A
(t+T)

амплитуды
двух последовательных колеба­ний,
отстоящих по времени друг от друга на
период.

• Дифференциальное
уравнение вынужденных колебаний


, или


,

где


внешняя периодическая сила, действующая
на
колеблющуюся
материальную точку и вызывающая
вынужденные
колебания;
F0

ее
амплитудное значение;


Амплитуда вынужденных
колебаний


Резонансная частота
и резонансная амплитуда

и

Примеры решения
задач

Пример
1.
Точка
совершает колебания по закону
x(t)= ,
где
А=2
см.
Определить начальную фазу φ,
если

x(0)= см
и х,(0)<0.
Построить векторную диаграмму для
мо-­
мента t=0.

Решение.
Воспользуемся уравнением движения и
выразим смещение в момент t=0
через начальную фазу:

Отсюда
найдем начальную фазу:

*
В приведенных ранее формулах
гармонических колебаний та же
величина
обозначалась просто ω
(без индекса 0).

Подставим
в это выражение заданные значения x(0)
и А:
φ=
= .
Значению аргумента

удовлетворяют
два
значения угла:

Для
того чтобы решить, какое из этих значений
угла φ
удовлет-­
воряет
еще и условию
,
найдем сначала
:

Подставив
в это выражение значение t=0
и поочередно значения
начальных
фаз
и
,
найдем

Так
как всегда A>0
и ω>0,
то условию удовлетворяет
толь­
ко
первое значение начальной фазы.
Таким
образом, искомая начальная
фаза

По
найденному значению φ
постро-­
им
векторную диаграмму (рис. 6.1).
Пример
2.
Материальная
точка
массой т=5
г совершает гармоничес-­
кие колебания
с частотой ν
=0,5 Гц.
Амплитуда
колебаний A=3
см. Оп-­
ределить: 1) скорость υ
точки
в мо-­
мент времени, когда смещение
х=
=
1,5 см; 2) максимальную силу
Fmax,
действующую
на точку; 3)
Рис.
6.1 полную
энергию Е
колеблющейся
точ­
ки.

Решение.
1. Уравнение гармонического колебания
имеет вид

(1)

а
формулу скорости получим, взяв первую
производную по времени от смещения:

(2)

Чтобы
выразить скорость через смещение, надо
исключить из формул (1) и (2) время. Для
этого возведем оба уравнения в квад­рат,
разделим первое на А2,
второе
на A2
ω
2

и сложим:


, или

Решив
последнее уравнение относительно υ,
найдем

Выполнив вычисления
по этой формуле, получим


см/с.

Знак
плюс соответствует случаю, когда
направление скорости совпадает
с положительным направлением оси х,
знак
минус — ког­да
направление скорости совпадает с
отрицательным направлением оси
х.

Смещение при
гармоническом колебании кроме уравнения
(1) может быть определено также уравнением

Повторив
с этим уравнением такое же решение,
получим тот же ответ.

2.
Силу действующую на точку, найдем по
второму закону Нью­тона:

(3)

где а
ускорение
точки, которое получим, взяв производную
по времени
от скорости:


, или

Подставив выражение
ускорения в формулу (3), получим

Отсюда максимальное
значение силы

Подставив
в это уравнение значения величин π,
ν,
т
и
A,
найдем

3.
Полная энергия колеблющейся точки есть
сумма кинетической и
потенциальной энергий, вычисленных для
любого момента вре­мени.

Проще
всего вычислить полную энергию в момент,
когда кинети­ческая
энергия достигает максимального
значения. В этот момент потенциальная
энергия равна нулю. Поэтому полная
энергия E
колеблющейся точки равна максимальной
кинетической энергии

Tmax:

(4)

Максимальную
скорость определим из формулы (2),
положив

:
.
Подставив выражение скорости в фор­-
мулу
(4), найдем

Подставив
значения величин в эту формулу и произведя
вычис­ления, получим

или

мкДж.

Пример
3.

На концах тонкого стержня длиной l
=
1 м и массой m3=400
г
укреплены шарики малых размеров массами
m1=200
г
и
m2=300г.
Стержень
колеблется около горизонтальной оси,
перпен-

дикулярной
стержню и проходящей через его середину
(точка О на рис. 6.2). Определить период Т
колебаний,
совершаемых стержнем.

Решение.
Период колебаний физического маятника,
каким является стержень с шариками,
определяется соотношением


(1)

где
J

момент
инерции маятника относительно оси
колебаний; т
его
масса; lС
расстояние
от центра масс ма­ятника
до оси.

Момент
инерции данного маятника равен сумме
моментов
инерции шариков J1
и
J2
и
стержня J3:


(2)

Принимая
шарики за материальные точки, вы­разим
моменты их инерции:

Так
как ось проходит через середину стержня,
то
его
момент инерции относительно этой оси
J3=
= .
Подставив
полученные выражения
J1
,
J2
и

J3
в формулу (2), найдем общий момент инерции
фи-­
зического маятника:

Произведя
вычисления по этой формуле, найдем

Рис.
6.2 Масса маятника состоит из масс шариков
и массы
стержня:

Расстояние
lС
центра
масс маятника от оси колебаний найдем,
исходя
из следующих соображений. Если ось х
направить
вдоль стержня
и начало координат совместить с точкой
О,
то
искомое рас­стояние
l
равно координате центра масс маятника,
т. е.


, или

Подставив
значения величин m1,
m2,
m,
l
и произведя вычисле­ния,
найдем


см.

Произведя
расчеты по формуле (1), получим период
колебаний физического
маятника:

Пример
4.
Физический
маятник представляет собой стержень
длиной
l=
1 м и массой 3т1
с
прикрепленным
к одному из его концов
обручем
диаметром
и
массой т1.
Горизонтальная
ось Oz

маятника
проходит через середину стержня
перпендикулярно ему (рис. 6.3). Определить
период Т
колебаний
такого маятника.

Решение.
Период
колебаний физического маятника
опреде­ляется
по формуле


(1)

где
J

момент
инерции маятника относительно оси
колебаний; т
его
масса; lC
расстояние
от центра масс
маятника до оси колебаний.

Момент
инерции маятника равен сумме мо­ментов
инерции стержня J1
и
обруча J2:


(2).

Момент
инерции стержня относительно
оси,
перпендикулярной
стержню и проходящей
через
его центр масс, определяется по форму-­
ле
.
В данном случае т=3т1
и

Момент
инерции обруча найдем, восполь-­
зовавшись
теоремой Штейнера
,
где
J

момент
инерции относительно про-­
извольной
оси;
J0

момент
инерции отно-­
сительно
оси, проходящей через центр масс
параллельно
заданной оси; а
расстояние
между
указанными осями. Применив эту фор-­
мулу
к обручу, получим

Рис. 6.3

Подставив
выражения J1
и
J2
в форму­лу
(2), найдем момент инерции маятника
относительно оси вра­щения:

Расстояние
lС
от
оси маятника до его центра масс равно

Подставив
в формулу (1) выражения J,
lс
и массы маятника

, найдем период его колебаний:

После
вычисления по этой формуле получим
T=2,17
с.

Пример
5.
Складываются
два колебания одинакового направле-­
ния,
выражаемых уравнениями
;
х2=
=,
где А1=1
см,
A2=2
см,

с,

с, ω
=
=.
1. Определить начальные фазы φ1
и φ
2

составляющих коле-

баний.
2. Найти амплитуду А
и
начальную фазу φ
результирующего колебания.
Написать уравнение результирующего
колебания.

Решение.
1. Уравнение гармонического колебания
имеет вид


(1)

Преобразуем
уравнения, заданные в условии задачи,
к такому же
виду:


(2)

Из
сравнения выражений (2) с равенством (1)
находим начальные фазы
первого и второго колебаний:


рад и

рад.

2.
Для определения амплитуды А
результирую­щего
колебания удобно воспользоваться
векторной диаграммой,
представленной на рис.
6.4.
Согласно теореме косинусов, получим


(3)

где

— разность фаз составляющих колебаний.
Так
как
,
то, подставляя найденные
значения
φ2
и φ1
получим

рад.

Рис. 6.4

Подставим
значения А1
,
А
2
и

в формулу (3)
и
произведем вычисления:

A=2,65
см.

Тангенс
начальной фазы φ
результирующего колебания опреде-­
лим
непосредственно из рис. 6.4:

, отку-­
да
начальная фаза

Подставим
значения А1,
А2,
φ
1
,
φ
2

и произведем вычисления:


= рад.

Так
как угловые частоты складываемых
колебаний одинаковы,
то
результирующее колебание будет иметь
ту же частоту ω.
Это
позволяет
написать уравнение результирующего
колебания в виде

, где A=2,65
см,
,

рад.

Пример
6.
Материальная
точка участвует одновременно в двух
взаимно перпендикулярных гармонических
колебаниях, уравне­ния
которых


(1).


(2)

где
a1=1
см,
A2=2
см,
.
Найти уравнение траектории точ-­
ки.
Построить траекторию с соблюдением
масштаба и указать
направление
движения точки.

Решение.
Чтобы
найти уравнение траектории точки,
ис­ключим
время t
из
заданных уравнений (1) и (2). Для этого
восполь-

зуемся
формулой
.
В данном случае

, поэтому

Так
как согласно формуле (1)
,
то уравнение траекто-­
рии


(3)

Полученное
выражение представляет собой уравнение
параболы, ось которой совпадает с осью
Ох.
Из
уравнений (1) и (2) следует, что смещение
точки по осям координат ограничено и
заключено в пределах от —1 до +1 см по
оси Ох
и
от —2 до +2 см по оси Оу.

Для
построения траектории найдем по уравнению
(3) значения у,
соответствующие
ряду значений х,
удовлетворяющих
условию

см, и составим таблицу:

X
,
СМ

-1

—0,75

—0,5

0

+0,5

+ 1

у,
см

0

±0,707

±1

±1,41

±1,73

±2

Начертив
координатные оси и выбрав масштаб,
нанесем на пло­скость
хОу
найденные
точки. Соединив их плавной кривой,
получим траекторию точки, совершающей
колеба­ния
в соответствии с уравнениями движе­ния
(1) и (2) (рис. 6.5).

Рис. 6.5

Для
того чтобы указать направление движения
точки, проследим за тем, как из­меняется
ее положение с течением времени. В
начальный момент t=0
координаты точ­ки
равны x(0)=1
см и y(0)=2
см. В по­следующий
момент времени, например при t1=l
с,
координаты точек изменятся и ста­нут
равными х
(1)=
—1
см, y(t)=0.
Зная
положения
точек в начальный и последую­щий
(близкий) моменты времени, можно указать
направление движения точки по траектории.
На рис. 6.5 это направление движения
указано стрелкой (от точки А
к
началу
координат). После того как в мо­мент
t2
= 2 с колеблющаяся точка достиг­нет
точки D,
она
будет двигаться в обратном направлении.

Задачи

Кинематика
гармонических колебаний

6.1.
Уравнение колебаний точки имеет вид
,
где
ω=π
с-1,
τ=0,2
с. Определить период Т
и
начальную фазу φ
колебаний.

6.2.
Определить
период Т,
частоту
v
и
начальную фазу φ
коле­баний,
заданных уравнением
,
где ω=2,5π
с-1,
τ=0,4
с.

6.3.
Точка
совершает колебания по закону
,
где
A=4
см. Определить начальную фазу φ,
если: 1) х(0)=2
см
и

;
2)
х(0)
=см
и
;
3) х(0)=2см
и
;
4)
х(0)=
и
.
Построить векторную диаграмму
для
момента
t=0.

6.4.
Точка
совершает колебания .по закону
,
где
A=4
см. Определить начальную фазу φ,
если: 1) х(0)=2
см
и

; 2) x(0)=
см и
;
3) х(0)=
см и
;
4)
x(0)=см
и
.
Построить векторную диаграмму для
момента
t=0.

Начальная фаза в физике, теория и онлайн калькуляторы

Начальная фаза

Рассмотрим гармонические колебания некоторого параметра $xi $. Гармонические колебания описываются уравнением:

[xi =A{cos ({omega }_0t+varphi ) } left(1right),]

где $A={xi }_{max}$ — амплитуда колебаний; ${omega }_0$ — циклическая (круговая) частота колебаний. Параметр $xi $ лежит в пределах $-Ale xi le $+A.

Определение начальной фазы колебаний

Определение

Весь аргумент периодической функции (в данном случае косинуса:$ ({omega }_0t+varphi )$),
описывающей колебательный процесс, называют фазой колебаний.

Весь аргумент периодической функции (в данном случае косинуса:$ ({omega }_0t+varphi )$), описывающей колебательный процесс, называют фазой колебаний. Величина фазы колебаний в начальный момент времени, то есть при $t=0$, ($varphi $)- носит название начальной фазы. Устоявшегося обозначения фазы нет, у нас начальная фаза обозначена $varphi $. Иногда, чтобы подчеркнуть, что начальная фаза относится к моменту времени $t=0$ к букве, обозначающей начальную фазу, добавляют индекс 0, пишут, например, ${varphi }_0.$

Единицей измерения начальной фазы является единица измерения угла — радиан (рад) или градус.

Зная амплитуду колебаний и фазу, используя уравнение (1), определяют механическое состояние системы. В начальный момент времени состояние системы определяют амплитуда колебаний и начальная фаза.

Значения амплитуды и начальной фазы задаются в начальных условиях, это означает, что они зависят от способа возбуждения колебаний.

Фазы колеблющейся величины, ее скорости и ускорения

Возьмем первую производную от параметра $xi $, совершающего гармонические колебания:

[frac{dxi }{dt}=frac{d}{dt}left[A{cos left({omega }_0t+varphi right) }right]=-A{omega }_0{sin left({omega }_0t+varphi right)= }A{omega }_0{cos left({omega }_0t+varphi +frac{pi }{2}right)left(2right). }]

Тогда вторая производная от $xi $ задается функцией:

[frac{d^2xi }{dt^2}=-A{{omega }_0}^2{cos left({omega }_0t+varphi right)=-{{omega }_0}^2xi =A{{omega }_0}^2cosleft({omega }_0t+varphi +pi right)left(3right). }]

Уравнения (2) и (3) показывают, что скорость и ускорение $xi $ совершают гармонические колебания с циклической частотой ${omega }_0$. Амплитуды данных колебаний равны:

[{left(frac{dxi }{dt}right)}_{max}=A{omega }_0;; {left(frac{d^2xi }{dt^2}right)}_{max}=A{{omega }_0}^2left(4right).]

Фаза скорости (${omega }_0t+varphi +frac{pi }{2}$) отличается от фазы ускорения (${omega }_0t+varphi +pi $) на величину равную $frac{pi }{2}$. Фаза ускорения отлична от фазы колеблющейся величины на $pi $. Это значит, что в тот момент времени, когда $xi =0$ скорость ее изменения ($frac{dxi }{dt}$) становится максимальной. При $xi $ равной наибольшему значению меньшему нуля, ее ускорение превращается в максимальное положительное.

Метод векторных диаграмм

Гармонические колебания можно изобразить при помощи графического ( метод векторных диаграмм). Для этого из произвольно избранной точки О на оси X под углом, равным начальной фазе ($varphi )$, откладывается вектор $overline{A}$. Модуль которого равен амплитуде ($A$) колебаний. Если этот вектор приводить во вращение с угловой скоростью ${omega }_0$, то проекция конца этого вектора перемещается по оси X и принимает значения от $-A$ до $A$. Законом колебаний, будет уравнение (1).

И так, гармонические колебания можно изобразить с помощью проекции на некоторую ось вектора амплитуды $overline{A}$, который отложен из произвольной точки этой оси под углом $varphi $, вращающимся с угловой скоростью ${omega }_0$ вокруг избранной точки.

Начальная фаза, рисунок 1

Сложение колебаний и начальная фаза

Тело, совершающее колебания, может участвовать в нескольких колебательных процессах. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.

Допустим, что два колебания с одинаковыми частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:

[xi ={xi }_1+{xi }_2=A{cos left({omega }_0t+varphi right), }]

тогда амплитуда результирующего колебания равна:

[A=sqrt{A^2_1+A^2_2+2A_1A_2{cos left({varphi }_2-{varphi }_1right) }left(5right),}]

где $A_1$; $A_2$ — амплитуды складывающихся колебаний; ${varphi }_2;;{varphi }_1$ — начальные фазы суммирующихся колебаний. При этом начальную фазу полученного колебания ($varphi $) вычисляют, применяя формулу:

[tg varphi =frac{A_1{sin {varphi }_1+A_2{sin {varphi }_2 } }}{A_1{cos {varphi }_1+A_2{cos {varphi }_2 } }}left(6right).]

Уравнение траектории точки, которая принимает участие в двух взаимно перпендикулярных колебаниях с амплитудами $A_1$и $A_2$ и начальными фазами ${varphi }_2и{varphi }_1$ имеет вид:

[frac{x^2}{A^2_1}+frac{y^2}{A^2_2}-frac{2xy}{A_1A_2}{cos left({varphi }_2-{varphi }_1right) }={sin}^2left({varphi }_2-{varphi }_1right)left(7right).]

В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:

[y=frac{A_2}{A_1}x или y=-frac{A_2}{A_1}x left(8right),]

что говорит о движении точки по прямой линии.

Если разность начальных фаз складываемых колебаний составляет $Delta varphi ={varphi }_2-{varphi }_1=frac{pi }{2},$ уравнением траектории становится формула:

[frac{x^2}{A^2_1}+frac{y^2}{A^2_2}=1left(9right),]

что означает, траектория движения эллипс.

Примеры задач с решением

Пример 1

Задание. Материальная точка движется по закону: $x=A{cos left[omega (t+tau )right] }$, где $omega =pi frac{1}{с}$, $tau =0,1 с.$ Какова начальная фаза колебаний?

Решение. Для того чтобы найти начальную фазу вспомним форму записи закона, по которому происходят гармонические колебания, если гармонически изменяется параметр $x$, то запишем:

[x=A{cos ({omega }_0t+varphi ) } left(1.1right),]

где $varphi $ — искомая начальная фаза колебаний. Сравним выражение (1.1) с законом колебаний, который приведен в условии задачи:

[x=A{cos left[omega (t+tau )right] } left(1.2right).]

Используем известные параметры колебаний: $omega =pi frac{1}{с}$, $tau =0,1 с$, выражение (1.2) преобразуем к виду:

[x=A{cos left[pi left(t+0,1right)right]=A{cos left(180{}^circ t+0,1cdot 180right)= } }A{cos left(180{}^circ t+18{}^circ right)left(1.3right). }]

Из выражения (1.3), следует, что начальная фаза равна $varphi =18{}^circ $.

Ответ. $varphi =18{}^circ $

Пример 2

Задание. Каково уравнение траектории движения точки, если она участвует в двух взаимно перпендикулярных колебаниях, которые заданы уравнениями:

[left{ begin{array}{c}
x=2{sin pi t (см);; } \
y={cos left[pi left(t+0,5right)right]left(смright). } end{array}
right.]

Траекторию изобразите.

Решение. Рассмотрим заданные уравнения колебаний:

[left{ begin{array}{c}
x=2{sin pi t left(смright);; } \
y={cos left[pi left(t+0,5right)right]left(смright) } end{array}
left(2.1right).right.]

Из первого уравнения системы мы видим, что начальная фаза первого колебания равна нулю (${varphi }_1=0$)

Второе уравнение системы преобразуем к виду:

[y={cos left[pi left(t+0,5right)right]= }{cos left(pi t+pi cdot 0,5right)={cos left(pi t+frac{pi }{2}right)=-{sin left(pi tright)=-frac{1}{2} } }xleft(2.2right). }]

Начальная фаза колебаний ${varphi }_2=pi $.

Из уравнения (2.2) видим, что уравнение:

[y=-frac{1}{2}x]

это уравнение прямой, проходящей через начало координат (рис.2):

Начальная фаза, пример 1

Ответ. $y=-frac{1}{2}x$. При разности начальных фаз перпендикулярных
колебаний ${varphi }_2-{varphi }_1=pm pi $ результирующее движение представляет собой
гармоническое колебания вдоль прямой $y=-frac{A_2}{A_1}x$

Читать дальше: определение работы в физике.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Автор статьи

Алексей . Малеев

Эксперт по предмету «Физика»

Задать вопрос автору статьи

При расчетах, связанных с циклическими явлениями (например, при описании колебаний математического маятника) важно уметь находить состояние системы, с которого начался отсчет процесса — начальную фазу.

Фаза представляет собой угловую координату, описываемую формулой

$varphi = ω_0 cdot t$,

где $ω_0$ — угловая скорость, $t$ — прошедшее время.

Выбрав в качестве единицы измерения углов радианы, формулу можно переписать как

$varphi = 2 cdot pi cdot frac{t}{T}$,

где $2 cdot pi$ — количество радиан в полном цикле, $T$ — период одного колебания. Отношение $frac{t}{T}$ показывает, сколько колебаний (полных и неполных) выполнила система.

Фазы циклических процессов с одинаковыми угловыми скоростями и длящиеся одинаковое время, могут отличаться в связи с тем, что они в момент начала наблюдений находились в разных состояниях. Такая разница называется сдвигом фаз. Например, углы отклонения от вертикали двух идентичных маятников, колеблющиеся с одинаковой частотой, могут различаться. Это зависит от того, на какой начальный угол каждый из них был отклонен в момент начала отсчета времени. Сдвиг фаз может быть обусловлен тем, что маятники были запущены в разное время (до начала отсчета), или одному из них при меньшем начальном отклонении от вертикали было придано дополнительное угловое ускорение за счет удара и т.п.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Циклический процесс, в отличие от движения по незамкнутой траектории, характеризуется повторяемостью некоторой характеристики (например, напряжения в сети переменного тока), что можно описать с помощью функций синуса или косинуса:

$x = A cdot cos(ω_0 cdot t + varphi)$,

$x = A cdot sin(ω_0 cdot t + varphi)$.

где $A$ — амплитуда (максимальный размах) колебаний, $varphi$ — начальная фаза.

Функцией синуса удобнее пользоваться, когда угловая координата тела в момент начала наблюдений равна нулю, функцией косинуса — когда имеет место сдвиг фаз. Так, «косинус фи» — устойчивое понятие, применяемое в электротехнике при описании переменного тока.

Пример 1

Найти начальную фазу колебаний с амплитудой $A = 0,2 м$, если в момент начала измерений $t_0$ смещение циклического параметра $x$ составляло $-0,2 м$.

Подставим в уравнение числовые значения:

$x = A cdot sin(omega_0 cdot t + varphi)$

$-0,2 = 0,2 cdot sin(omega_0 cdot 0 + varphi) implies -0,2 = 0,2 cdot sin(varphi)$

$sin(varphi) = frac{-0,2}{0,2}$

$varphi = arcsin(frac{-0,2}{0,2}) = frac{3 pi}{2}$

Ответ: колебания начались с фазы $1frac{1}{2} pi$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как найти оригинальные кроссовки на вайлдберриз
  • Почему западает кнопка в сливном бачке унитаза как исправить
  • Как найти коэффициент одночлена 7 класс
  • Как найти волонтерский проект
  • Пример того как найти счастье