Как найти фенотип 2 поколения

Фенотип относится к внешне видимым особенностям любого организма без строгого учета генетической структуры.

Фенотип также диктуется генотипом организма, исходя из генного состава. Однако фенотип не различает гомогенные или гетерогенные гены, если их нельзя наблюдать невооруженным глазом.

Что касается того, как найти фенотипическое соотношение дигибридного или тригибридного скрещивания, наиболее часто используемым методом является квадрат Пеннета, но по мере того, как он становится более сложным, вместо него используются другие методы, такие как метод вилки или вероятностный метод.

Фенотип — это набор наблюдаемых характеристик человека, таких как рост, цвет глаз и группа крови. Генотип – это генетический вклад в фенотип. На некоторые качества сильно влияет генотип, тогда как на другие сильно влияют условия окружающей среды.

В результате в большинстве случаев скрещивания разнородных генотипов соотношение фенотипов оказывается более простым и иным, чем соотношение фенотипов. генотипическое соотношение.

Изображение, показывающее классификацию групп крови как по фенотипу, так и по генотипу.
Изображение: Википедия

Как найти фенотипическое соотношение дигибридного скрещивания?

Дигибридное скрещивание предполагает наследование двух неродственных генов, каждый из которых находится рядом с одним и тем же локусом или положением в гене.

Эксперимент по скрещиванию двух животных, являющихся идентично гибридными по двум признакам, называется дигибридным скрещиванием. Гетерозиготный организм обладает двумя различными аллелями в одном и том же генетическом месте или локусе.

Когда включены оба гетерозиготных родителя, выполняется первичное скрещивание. Мы будем использовать Цвет Цветка и Положение Цветка, чтобы показать.

Особенность доминирующий Рецессивный
Цвет Фиолетовый WW белый вв
Позиция Осевой АА Терминал аа
Таблица, показывающая аллели, используемые для определения дигибридного скрещивания, и то, как наследуются гены.

Следовательно, доминантный родительский организм обозначается как «WWAA», а рецессивный гомогенный родительский организм обозначается как «wwaa».

В первом поколении при скрещивании этих родителей мы получаем только один единственный тип генотипа, гибридный организм, представленный как «WwAa». Поколение F2 получается путем скрещивания гибридных генотипов, полученных нами в поколении F1.

как найти фенотипическое соотношение
Как формируется гетерозигота в поколении F1
Изображение: Википедия

Пересечение WwAa X WwAa производит 4 различных зиготических комбинации, а именно:

  • WA
  • Wa
  • wA
  • wa

На следующем квадрате Пеннета показаны различные генотипы, полученные в поколении F2.

  F2   WA   Wa   wA   wa
  WA   ВВАА   WWAa   WwAA   WwAa
  Wa   WWAa   WWaa   WwAa   Вваа
  wA   WwAA   WwAa   wwAA   wwAa
  wa   WWAa   Вваа   wwAa   вваа
Квадрат Пеннета, показывающий генотипы растений, полученных в поколении F2 при дигибридном скрещивании.

Дигибридное скрещивание имеет сложное соотношение генотипов, состоящее из 9 различных генотипов.

  • ВВАА: 1 (Фиолетовый и аксиально-однородный)
  • WWAa: 2 (фиолетовый и осевой гибрид 1)
  • WВаа: 1 (фиолетовый и терминальный гибрид 2)
  • WwAa: 4 (фиолетовый и осевой гибрид 3)
  • Вваа: 2 (фиолетовый и терминальный гибрид 4)
  • ВВАА: 2 (фиолетовый и осевой гибрид 5)
  • ввАА: 1 (белый и осевой гибрид 6)
  • wwAa: 2 (белый и осевой гибрид 7)
  • вваа: 1 (Пока и терминально-однородные)

Однако фенотипическое соотношение поколения F2 дигибридного скрещивания гораздо проще.

  • Фиолетовый и осевой цветокс 9
  • Фиолетовые и конечные цветы 3 год
  • Белые и осевые цветки 3 год
  • Белый и конечный цветок является 1

Следовательно, фенотипическое соотношение поколения F2 дигибридного скрещивания равно 9: 3: 3: 1 независимо от их генетической конституции.

Изображение, показывающее, как сегрегация и независимый ассортимент дают разные генотипы в дигибридном скрещивании.
Изображение: Википедия

Как найти фенотипическое соотношение тригибридного скрещивания?

Точно так же, как дигибридное скрещивание, как следует из названия, тригибридное скрещивание показывает, как три неродственных гена, обнаруженные в одном и том же локусе, наследуются от одного поколения к другому.

Изображение, показывающее все особенности гороха, которые можно использовать в менделевских экспериментах.
Изображение: Википедия

Это скрещивание двух особей одного и того же вида для изучения наследования трех наборов компонентов или аллелей из трех отдельных генов. Каждый родитель может создать восемь различных типов гамет с тремя неродственными генами, что приводит к 64 генотипическим комбинациям.

Давайте возьмем 3 различных признака в качестве маркеров для этого скрещивания, включая высоту растения, форму семян и цвет семян.

  Особенности   Доминантный ген     рецессивный ген
  Высота растения   Высокий (Т)   Гном (т)
  Форма семян   Круглый ( клавиша R)   Морщинистый (г)
  Цвет семян   Желтый (Y)   Зеленый (у)
Таблица, показывающая аллели, определяющие наследование генов при тригибридном скрещивании

Следовательно, доминантный гомогенный родитель представлен как «TTRRYY», а гомозиготный рецессивный родитель представлен как «ttrryy». Когда мы проводим скрещивание между этими двумя родителями, мы получаем один генотип и фенотип, который представляет собой гибрид, представленный как «TtRrYy».

Во втором поколении, или F2, мы скрещиваем двух родителей-гибридов, имеющих одинаковый генотип TtRrYy, и получаем всего 8 различных зиготических комбинаций:

  • TRY
  • Пытаться
  • Пытаться
  • Пытаться
  • пытаться
  • пытаться
  • пытаться
  • стараться

При создании квадрата Пеннета для поколения F2 мы получаем:

поколение F2 TRY Пытаться Пытаться Пытаться пытаться пытаться пытаться стараться
TRY ТРРИЙ TTRRYy ТТРрЫГ ТТРрЫй TtRRYY ТтРРЙу TtRrYY ТтррЙу
Пытаться TTRRYy ТТРРый ТТРрЫй ТТРрый TtRRyy TtRRyy ТтррЙу ТтРрый
Пытаться ТТРрЫГ ТТРрЫй TTrYY TTrrYy TtRrYY ТтррЙу TtrrYY TtrrYy
Пытаться ТТРрЫй ТТРрый TTrrYy TTryy ТтррЙу ТтРрый TtrrYy Тррый
пытаться TtRRYY ТтРРЙу TtRrYY ТтррЙу ttRRYY ttRRYy ttRrYY ttRrYy
пытаться ТтРРЙу TtRRyy ТтррЙу ТтРрый ttRRYy ttRRyy ttRrYy ttRryy
пытаться TtRrYY ТтррЙу TtrrYY TtrrYy ttRrYY ttRrYy ttrrYY ttrrYy
стараться ТтррЙу ТтРрый TtrrYy Тррый ttRrYy ttRryy ttrrYy ттрий
Квадрат Пеннета, показывающий генотип, полученный во втором поколении тригибридного скрещивания.

Хотя в поколении F27 тригибридного скрещивания образуется 2 различных генотипов, фенотипов всего 8, включая:

  1. Высокое растение, круглые и желтые семена-27
  2. Высокое растение Круглые и зеленые семена-9
  3. Высокое растение, морщинистые и желтые семена-9
  4. Карликовое растение, круглые и желтые семена-9
  5. Высокое растение, морщинистые и зеленые семена-3
  6. Карликовое растение, круглые и зеленые семена -3
  7. Карликовое растение, морщинистые и желтые семена -3
  8. Карликовое растение, морщинистые и зеленые семена -1

Соотношение фенотипов поколения F2 тригибридного скрещивания равно 27:9:9:9:3:3:3:1.

Отсюда мы можем видеть, что во всех случаях, хотя фенотип зависит от генотипа, фенотипическое соотношение и генотипическое соотношение не совпадают ни в одном из опытов, проведенных Менделем.

В предыдущей статье мы познакомились с фундаментальными понятиями и методами генетики. Настало время их применить при изучении нового раздела — Менделевской генетики, основанной на законах, открытых
Грегором Менделем.

Мендель следовал некоторым принципам в своих исследованиях, которые привели его работы к успеху:

  • Использовал гибридологический метод генетики, подвергая скрещиванию растения гороха с четко различающимися
    признаками: желтый — зеленый цвет семян, гладкая — морщинистая форма семян
  • Желтый и зеленый горох

  • Учитывал при скрещивании не всю совокупность признаков, а отдельные альтернативные признаки (желтый — зеленый цвет семян)
  • Вел количественный учет потомков в ряду поколений, анализировал потомство каждой особи
  • При размножении использовал чистые линии — группы растений, которые генетически однородны (гомозиготы AA, aa) и потомки
    которых не имеют разнообразия по изучаемому признаку
  • Чистая линия

.

Введем несколько новых терминов, которые нам пригодятся. Скрещивание может быть:

  • Моногибридным — в случае если скрещиваемые особи отличаются только по одному исследуемому признаку (цвет семян)
  • Дигибридным — если скрещиваемые особи отличаются по двум различным признакам (цвет и форма семян)

В схеме решения генетическое задачи есть некоторые обозначения: ♀ — женский организм, ♂ — мужской организм, P — родительские
организмы, F1 — гибриды первого поколения, F2 — гибриды второго поколения. Вероятно, имеет смысл
сохранить картинку ниже себе на гаджет, если вы только приступаете к изучению генетики ;)

Символы в генетической задаче

Спешу сообщить вам, что браки между людьми (в отличие от насильственного скрещивания гороха) происходят только по любви
и взаимному согласию! Поэтому в задачах, где речь идет о людях, не следует ставить знак скрещивания «×» между родительскими
особями. В таком случае ставьте знак «→» — «стрелу Амура», чтобы привести в восхищение экзаменатора :)

Первый закон Менделя — закон единообразия

С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании
гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут
единообразны по данным признакам.

Первый закон Менделя

Этот закон основан на варианте взаимодействия между генами — полном доминировании. При таком варианте один ген
— доминантный, полностью подавляет другой ген — рецессивный. В эксперименте, который мы только что изучили, Мендель скрещивал чистые
линии гороха с желтыми (АА) и зелеными (aa) семенами, в результате все потомство имело желтый цвет семян (Aa) — было единообразно.

Анализирующее скрещивание

Часто генотип особи не изучен и представляет загадку. Как быть генетику в данном случае? Иногда проще всего применить
анализирующее скрещивание — скрещивание гибридной особи (у которой не известен генотип) с гомозиготой по рецессивному признаку.

Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.

Анализирующее скрещивание

В рассмотренном случае, если генотип изучаемой особи содержит два доминантных гена (AA) — то в потомстве не может проявиться
рецессивного признака, так как все потомство будет единообразно (Aa). Если изучаемая особь содержит рецессивный ген (Aа), то
половина потомства будет его иметь (aa). В результате становится известен генотип гибридной особи.

Неполное доминирование

Помимо полного доминирования, существует неполное доминирование, которое характерно для некоторых генов. Известным примером
неполного доминирования является наследование окраски лепестков у растения ночная красавица. В этом случае гены не полностью подавляют
друг друга — проявляется промежуточный признак.

Неполное доминирование

Обратите внимание, потомство F1 получилось также единообразным (возможен только один вариант — Aa), но фенотипически
у гетерозиготы признак будет проявляться как промежуточное состояние (AA — красный, aa — белый, Aa — розовый). Это можно сравнить
с палитрой художника: представьте, как смешиваются красный и белый цвета — получается розовый.

Второй закон Менделя — закон расщепления

«При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление
по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1″

Второй закон Менделя

Скрещивая между собой гибриды первого поколения (Aa) Мендель обнаружил, что в потомстве особей с доминантным признаком (AA, Aa — желтый
цвет семян) примерно в 3 раза больше, чем особей с рецессивным (aa).

Искренне желаю того, чтобы вы научились сами определять расщепление по генотипу и фенотипу. Это сделать несложно: когда речь идет о
генотипе, обращайте внимание только на гены (буквы), то есть, если перед вами особи AA, Aa, Aa, aa, — следует брать генотипы по очереди и
складывать количество одинаковых генотипов. Именно в результате таких действий соотношение по генотипу получается 1:2:1.

Если перед вами стоит задача посчитать соотношение по фенотипу, то вообще не смотрите на гены — это только запутает! Следует
учитывать лишь проявление признака. В потомстве получилось 3 растения с желтым цветом семян и 1 с зеленым,
следовательно, расщепление по фенотипу 3:1.

Третий закон Менделя — закон независимого наследования

В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма
семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb :) Важно заметить, что речь в данном
законе идет о генах, которые расположены в разных хромосомах.

Независимое наследование

Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков,
гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.

Комбинации генов отражаются в образовании гамет. В соответствии с правилом, изложенным выше, дигетерозигота AaBb образует 4 типа гамет:
AB, ab, Ab, aB. Повторюсь — это только если гены находятся в разных хромосомах. Если они находятся в одной, как при сцепленном наследовании,
то все протекает по-другому, но это уже предмет изучения следующей статьи.

Закон независимого наследования

Каждая особь AaBb образует 4 типа гамет, возможных гибридов второго поколения получается 16. При таком обилии гамет и большом количестве
потомков, разумнее использовать решетку Пеннета, в которой вдоль одной стороны квадрата расположены мужские гаметы, а вдоль другой — женские.
Это помогает более наглядно представить генотипы, получающиеся в результате скрещивания.

В результате скрещивания дигетерозигот среди 16 потомков получается 4 возможных фенотипа:

  • Желтые гладкие — 9
  • Желтые морщинистые — 3
  • Зеленые гладкие — 3
  • Зеленые морщинистые — 1

Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.

Пример решения генетической задачи №1

Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных
яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно
для потомства, если оба родителя страдают микрофтальмией?

Пример решения генетической задачи

Обратите внимание на то, что доминирование генов неполное: человек с генотипом Aa будет иметь промежуточное значение признака — микрофтальмию. Поскольку доминирование неполное, то расщепление по генотипу и фенотипу совпадает, что типично для неполного доминирования.

В данной задаче только ¼ потомства (25%) будет иметь нормальные глазные яблоки. ½ часть потомства (50%) будет иметь глазное яблоко
малых размеров — микрофтальмию, и оставшаяся ¼ (25%) будут слепыми с почти полным отсутствием глазных яблок (анофтальмией).

Не забывайте, что генетика, по сути, теория вероятности. Очевидно, что в жизни в такой семье может быть рождено 4 подряд
здоровых ребенка с нормальными глазными яблоками, или же наоборот — 4 слепых ребенка. Может быть как угодно, но мы с вами
должны научиться говорить о «наибольшей вероятности», в соответствии с которой с вероятностью 50% в этой семье будет рожден
ребенок с микрофтальмией.

Пример решения генетической задачи №2

Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие
этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье,
где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.

Я хочу сразу навести вас на мысль о III законе Менделя (закон независимого наследования), который скрыт в фразе » Гены …
расположены в разных парах гомологичных хромосом». Вы увидите в дальнейшем, насколько ценна эта информация. Также заметьте,
что речь в этой задаче идет о аутосомных генах (расположенных вне половых хромосом). Аутосомно-доминантный тип наследования означает, что болезнь проявляется, если ген в доминантном
состоянии: AA, Aa — болен.

Пример решения генетической задачи

В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве
буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме
одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.

Пример решения генетической задачи №3

У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый
мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости
(D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?

Пример решения генетической задачи

Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна
(Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или
гетерозиготен (Dd) по гену кареглазости.

Разрешение наших сомнений лежит в генотипе потомка, про которого нам рассказали: «голубоглазый мальчик с нормальным зрением» с генотипом aadd.
Одну хромосому ребенок всегда получает от матери, а другу от отца. Выходит, что такого генотипа не могло бы сформироваться, если бы не было гена
a — от матери, и гена d — от отца. Следовательно, отец и мать гетерозиготны.

Пример решения генетической задачи

Теперь мы можем точно сказать, что вероятность рождения в этой семье нормального кареглазого ребенка составляет ¼ или 25%, его генотип — Ddaa.

Аутосомно-доминантный тип наследования

Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =)
Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об
аутосомно-доминантном, с которым мы столкнулись в задачах выше.

Аутосомно-доминантный тип наследования можно узнать по следующим признакам:

  • Болезнь проявляется в каждом поколении семьи (передача по вертикали)
  • Здоровые дети больных родителей имеют здоровых детей
  • Мальчики и девочки болеют одинаково часто
  • Соотношение больных и здоровых 1:1

Аутосомно-доминантный тип наследования

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Алгоритм
решения задач по генетике (задание 28)

1.  
Внимательно читаем условие задачи (2
раза).

2.  
Записываем его, выделяя доминантные и
рецессивные признаки и используем генетическую символику (фенотипы
записывать обязательно!).
Вначале записываем, что дано (признаки
родительских форм
), а затем то, что нужно найти (признаки потомков).

v Родительские
организмы
 обозначаем буквой Р, на
первом месте ставим женский пол — ♀, на втором – мужской ♂.

v  Потомство
от скрещивания (гибриды) обозначаем буквой
F,
цифрой обозначаем порядок поколения, например
F1,F2,
……

v Доминантный
признак
обозначаем произвольно (если в условии
задачи не дается определенное обозначение признака) любой заглавной буквой
латинского алфавита, а рецессивный признак (аллельный) – той же
строчной буквой, например. А-а,
B-b, C-c.

3.  
Вносим в условие известные гены: если
проявляется доминантный признак – один ген (А_), а если рецессивный – оба (аа).
Выясняем, сколько пар генов кодируют перечисленные в задаче признаки, число
фенотипических классов в потомстве и их количественное соотношение. Кроме
этого, учитываем, связано ли наследование признака с половыми хромосомами,
сцепленное оно или независимое, а также какие гены взаимодействуют  при
наследовании –аллельные или неаллельные.

4.  
 Уточняем генотипы родительских форм и
потомков и приступаем к решению задачи, соблюдая определенную
последовательность. Сначала составляем цитологическую схему скрещивания
родительских форм (обязательно указываем фенотипы!).

5.  
Зная генотипы родителей, определяем, какие
гаметы они дают. При записи гамет нужно помнить, что

v   каждая
гамета получает гаплоидный (одинарный) набор хромосом (генов);

v  все
гены имеются в гаметах;

v  в
каждую гамету попадает только одна гомологичная хромосома из каждой пары, то
есть только один ген из каждой аллели;

v  потомок
получает только одну гомологичную хромосому (один аллельный ген) от отца, а
другой аллельный ген – от матери;

v  гетерозиготные
организмы при полном доминировании всегда проявляют доминантный признак, а организмы
с рецессивным признаком всегда гомозиготны;

v  буквенные
обозначения того или иного типа гамет записываем под обозначениями генотипов,
на основе которых они образуются.

6.  
Заполняем решетку Пеннета, находим в ней
интересующие нас генотипы и фенотипы потомков и вычисляем вероятность их
проявления. В решетке Пеннета по горизонтали располагаем женские гаметы, а по
вертикали – мужские. В ячейках решетки вписываем образующиеся сочетания гамет –
зиготы. Затем записываем фенотипы потомства.

7.  
Даем ответы на все вопросы задачи.

Основные правила, помогающие в решении
генетических задач

Правило

Если ….

То….

1

при
скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается
расщепление признаков  в соотношении 3:1,

эти
особи гетерозиготны (моногибридное скрещивание, полное доминирование)

2

при
скрещивании фенотипически одинаковых (по одной паре признаков) особей в
первом поколении гибридов происходит расщепление признака на три
фенотипические группы в соотношении 1:2:1,

эти
особи гетерозиготны (моногибридное скрещивание, неполное доминирование)

3

в
результате скрещивания особей, отличающихся друг от друга фенотипически по
одной паре признаков, получается потомство, у которого наблюдается
расщепление признаков в соотношении 1:1,

одна
из родительских особей была гетерозиготна, а другая – гомозиготна по
рецессивному признаку (моногибридное анализирующее скрещивание).

4

при
скрещивании двух фенотипически одинаковых особей в потомстве происходит
расщепление признаков в соотношении 9:3:3:1

родительские
особи были дигетерозиготными (дигибридное скрещивание).

5

в
результате скрещивания особей, отличающихся друг от друга фенотипически по
двум парам признаков, получается потомство, у которого наблюдается
расщепление признаков в соотношении 1:1:1:1,

одна
из родительских особей была дигетерозиготна, а другая – дигомозиготна по
рецессивному признаку (дигибридное анализирующее скрещивание).

6

в
результате скрещивания особей, отличающихся друг от друга фенотипически по
двум парам признаков, получается потомство, у которого наблюдается
расщепление признаков в соотношении 1:1,

одна
из родительских особей была дигетерозиготна, а другая – дигомозиготна по
рецессивному признаку (дигибридное анализирующее скрещивание, проявляется
закон Т. Моргана — закон сцепленного наследования).

7

в
результате скрещивания особей, отличающихся друг от друга фенотипически по
двум парам признаков, получается потомство, у которого наблюдается
расщепление признаков, при чем  особей с признаками родительских форм
появляется значительно больше, чем особей с перекомбинированными признаками, 

одна
из родительских особей была дигетерозиготна, а другая – дигомозиготна по
рецессивному признаку (дигибридное анализирующее скрещивание, проявляется
закон Т. Моргана — закон сцепленного наследования, нарушение сцепления генов 
в результате кроссинговера).

8

при
скрещивании двух фенотипически одинаковых особей в потомстве происходит
расщепление признаков в соотношении 9:3:4; 9:6:1; 9:7,

это
свидетельствует о комплементарном  взаимодействии неалельных генов.

9

при
скрещивании двух фенотипически одинаковых особей в потомстве происходит
расщепление признаков в соотношении 12:3:1; 13:3; 9:3:4,

это
свидетельствует об эпистатическом  взаимодействии неалельных генов.

10

при
скрещивании двух фенотипически одинаковых особей в потомстве происходит расщепление
признаков в соотношении 15:1; 1:4:6:4:1,

это
свидетельствует о полимерном взаимодействии неалельных генов.

11

признаки
от матери передаются сыновьям, а от отца – к дочерям («крисс-кросс» —
наследование),

гены,
отвечающие за развитие этих признаков, находятся в половых хромосомах (в
Х-хромосоме) и наследуются сцеплено с полом.

12

признак
наследуется только по линии отца,

ген
находится в
Y-хромосоме
и наследуется сцеплено с полом, имеющим –
Y— хромосому (голандрический
признак).

Задача
1.
У человека ген длинных ресниц доминирует
над геном кротких, а широкие пушистые брови – над нормальными. Женщина с
длинными ресницами и широкими пушистыми бровями, у отца которой были короткие
ресницы и нормальные брови, вышла замуж за мужчину с доминантыми признаками,
гомозиготного по обеим аллелям. Составьте хему решения задачи. Определите
генотипы родителей, фенотипы и генотипы возможного потомтва. Объясните
полученные результаты.

1.      Записываем
условие задачи

Признак, фенотип

Ген, генотип

Длинные
ресницы

Короткие
ресницы

Широкие
пушистые брови

Нормальные
брови

Р:
♀ длинные ресницы и широкие пушистые брови

   
♂ длинные ресницы и широкие пушистые брови

F1 :?

А

а

В

b

А_В_

ААВВ

?

Т.к. в условии задачи не даны буквы для обозначения
генов, используем произвольное обозначение.

2. Составляем схему скрещивания.  Обязательно
записываем фенотипы родителей, строго под ними генотипы, а затем гаметы.

Р:
♀ длинные ресницы и широкие пушистые брови

Х


длинные ресницы и широкие пушистые брови

АаВb

ААВВ

G: АВ, Аb, аВ,   ab

AB

3.Заполняем
решетку Пеннета:

F1              

♂               

АВ

Аb

аВ

Ab

АВ

ААВВ

длинные ресницы и широкие пушистые брови

ААВb

длинные ресницы и широкие пушистые брови

AaBB

длинные ресницы и широкие пушистые брови

AaBb

длинные ресницы и широкие пушистые брови

4.Объяснеям
решение задачи:
Скрещивание дигибридное (расматривается наследование двух
пар признаков – длина ресниц и форма бровей), гены расположены в разных
хромосомах (наследование признаков по законам Г.Менделя). По условию задачи
женщина, и мужчина имеют фенотипическое проявление доминантных признаков, но
отец женщины имел рецессивные признаки, поэтому генотипы родителей будут
следующими: у женщины (дигетерозиготная) – АаВ
b,
а у мужчины (дигомозиготный по условию задачи) – ААВВ. У женщины обраузется 4
типа гамет (АВ,   А
b,   аВ,   ab),
у ее мужа – 1 тип (АВ). В этой семье могут родиться дети  только с доминантыми
признаками, но с различными генотипами.

5.
Записываем ответ.

1) генотипы
родителей: ♀ (длинные ресницы и широкие пушистые брови) – АаВ
b
(гаметы АВ,А
b,аВ,ab),
♂ (длинные ресницы и широкие пушистые брови) – ААВВ (гаметы АВ);

2) фенотипы
потомков – 100 % длинными ресницами и широкими пушистыми бровями;

3) генотипы
потомков- ААВВ, АаВВ, ААВ
b, АаВb.

Задача
2.
У человека ген курчавых волос (А) не
полностью доминирует над геном прямых волос, а оттопыренные уши (
b)
являются рецессивным признаком. Обе пары генов находятся в разных хромосомах. В
семье, где родители имели нормальные уши и один – курчавые волос, а другой –
прямые, родился ребенок с оттопыренными ушами и волнистыми волосами. Их второй
ребенок имел нормальные уши. Составьте схему решения задачи. Определите
генотипы родителей, их родившихся детей и вероятность дальнейшего появления
детей с оттопыренными ушами и волнистыми волосами.

1.      Записываем
условие задачи

Признак, фенотип

Ген, генотип

Курчавые
волосы

Прямые
волосы

Волнистые
волосы

Нормальные
уши

Оттопыренные
уши

Р:
♀ курчавые волосы, нормальные уши

   
♂ прямые волосы, оттопыренные уши

F1:волнистые
волосы, оттопыренные уши

   
? волосы, нормальные уши

А

а

Аа

B

b

ААВ_

ааВ_

?

?

При записи условия для обозначения генов
используем буквы, данные в условияи задачи.

2.      Составляем
схему скрещивания.
 Обязательно записываем фенотипы
родителей, строго под ними генотипы, а затем гаметы.

Р:
♀ курчавые волосы, нормальные уши

Х


прямые волосы, нормальные уши

ААВb

aаВb

G: АВ, Аb

аB, аb

3.Заполняем
решетку Пеннета:

F1              

♂               

АВ

Аb

aB

AaBB

волнистые
волосы, нормальные уши

AaBb

волнистые
волосы, нормальные уши

ab

AaBb

волнистые
волосы, нормальные уши

Aabb

волнистые
волосы, оттопыренные уши

4.Объяснеям
решение задачи: Дигибридное скрещивание (расматривается наследование двух пар
признаков – структура волос и форма ушей), гены расположены в разных хромосомах,
доминирование признака структура волос неполная. Так как в семье появвился
ребенок с оттопыренными ушами, то родители по этой аллели гетерозиготные и их
генотипы: ♀ ААВ
b, ♂ ааВb.
Признак курчавые волосы доминирует не полностью, поэтому у всех  детей в этой
семье могут быть только волнистые волосы. Вероятность появления в дальнейшем
детей с волнистыми волосами и оттопыренными ушами – 25% (1/4).

5.Записываем
ответ.

1)
генотипы родителей:
♀ (курчавые волосы,
нормальные уши) – ААВ
b (гаметы АВ,Аb),
♂ (прямые волосы, нормальные уши) – ааВ
b
(гаметы
aВ,
ab);

2)
генотипы и фенотипы родившихся детей –
750
% (3/4)волнистын волосы, нормальные уши (АаВ_) 25% (1/4) волнистые волосы,
оттопыренные уши Аа
bb;

3)
вероятность рождения детей с волнистыми волосами и
оттопыренными ушами – 25% (1/4).

Задача 3. У
кукурузы гены коричневой окраски (А)и гладкой формы (В)семян сцеплены друг с
другом и находятся в одной хромосоме, а рецессивные гены белой окраски и
морщинистой формы семян также сцеплены. При скрещивании двух растений с
коричневыми гладкими семенами и белыми морщинистыми семенами было получено 400
растений с коричневыми гладкими семенами и 398 растений с белыми морщинистыми
семенами. Составьте схему решения задачи. Определеите генотипы родительских
форм и потоства. Обоснуйте результаты скрещивания, укажите какой закон
наследственности действует в данном случае.

1.  
Записываем условие задачи

Признак, фенотип

Ген, генотип

Коричневая
окраска семян

Белая
окраска семян

Гладкая
форма семян

Морщинистая
форма семян

Р:
♀ коричневы гладкие семена 

   
♂ белые морщинистые семена

F1:коричневые
гладкие семена (400 растений)

    
Белые морщинистые семена (398 растений)

А

а

В

b

А_В_

aаbb

?

?

При записи условия для обозначения генов
используем буквы, данные в условияи задачи.

2.Составляем
схему скрещивания.
Обязательно записываем фенотипы
родителей, строго под ними генотипы, а затем гаметы.

Р:
♀ коричневые гладкие семена

Х


белые морщинистые семена

АаВb

А   В

a   b

ааbb

a   b

a  
b

G:          
АВ,
  ab

,

аb

В
данном случае решетка Пеннета не нужна.

3.Объясняем
решение задачи.
Дигибридное скрещивание (рассматривается
наследовани двух пар признаков – окраска семян и их форма), гены сцеплены.
(находятся в одной хромосоме). Так как по условию задачи гены находятся в одной
хромосоме и сцеплены, а при скрещивании появилось потомство в соотношении:
(400:398) с признаками, характерными для родительских форм, то один из
родителей был дигетерозиготен, а другой- дигомозиготен по двум парам признаков.
Гены сцеплены, следовательно, между ними процесс кроссинговера не происходит
(поэтому у родительской формы с генотипом АаВ
b 
образуется два типа гамет, а не четыре.

4.
Записываем ответ:

1) генотипы родителей: ♀(коричневые
гладкие семена) – АаВ
b (гаметы АВ, аb),
♂ (белые морщинистые семена) – аа
bb
(гаметы
ab);

2) фенотипы потомков – коричневые гладкие
семена (400 растений), белые морщинистые семена (398 растений); генотипы
потомков – АаВи (коричневые гладкие семена) : аа
bb
(белые морщинистые семена);

3) проявляется действие закона сцепленного
наследования признаком (закон Т. Моргана)

Задача
4.
У кошек и котов ген черной окраски шерсти
(А) и рыжей окраски (В) локализованы в Х-хромосоме и при сочетании дают
неполное доминирование – черепаховую окраску (АВ). От черной кошки родились
черепаховый и два черных котенка. Определите генотип кошки, фенотип и генотип
кота, а также пол черепахового и черных котят. Составьте схему решения задачи.
Обоснуйте результаты скрещивания.

1.Записываем
условие задачи

Признак, фенотип

Ген, генотип

Черная
окраска шерсти

Рыжая
окраска шерсти

Черепаховая
окраска шерсти

Р:
♀ черная  

   
♂ ?

F1:черепаховый

    
2 черных 

ХА

ХВ

ХАХВ

Х?Х?

Х?Y

?

?

При записи условия для обозначения генов
используем буквы, данные в условияи задачи.

2.Составляем
схему скрещивания.
Обязательно записываем фенотипы
родителей, строго под ними генотипы, а затем гаметы.

Р:
♀ черная

Х

♂ рыжий

ХА ХА

ХВY

G: ХА

ХВ,Y

F11
черепаховый : 2 черных

         
♀ ХА ХВ               ♂ ХА
Y

В
данном случае решетка Пеннета не нужна.

3.Объяснеям
решение задачи
. Признаки наследуются сцеплено с
полом. У кошек пол определяется так же, как у человека, т.е. самка
гомогаметная, а самец –гетерогеметный. Генотип черной кошки – ХАХА.
среди котят один имеет черпаховую окраску, а это возможно только при сочетании
двух генов в генотипе: гена черной окраски (ХА) и гена рыжей окраски
В), следовательно, черепаховый котенок – кошечка с генотипом – ХАХВ.
Так как в потомстве появился котенок с черепаховой окраской, то кот имел рыжую
окраску, его генотип — ХВ
Y.
Черные котята – это котики с генотипом ХА
Y.

4.Записываем
ответ.

1)    
Генотип кошки: ♀ (черная) — ХА
ХА (гаметы ХА);

2)    
Геноти и фенотип кота: ♂ (рыжий) — ХВY
(гаметы ХВ ,
Y);

3)    
Фенотипы, генотипы и пол котят: ♀ ХА
ХВ— черепахова кошка, ♂ ХВ
Y
черные коты.

Задача
5.
Группа крови и резус –фактор –
аутосомные, несцепленныые признаки. Группа крови контролируется тремя аллелями
одного гена –
I0,IA,IB.
Аллели
IAи
IBдоминируют
надаллелем
I0.
Первую группу (0) определяют рецессивные гены
I0,
вторую группу (А) определяет доминантный аллель
IA,
третью группу (В) – доминантный аллель IB,
а четвертую (АВ) – оба аллеля
IAIB.
Положительный резус — фактор (
R)
доминирует над отрицательным (r). Женщина со второй резус – положительной
кровью, имеющая сына с первой резус-отрицательной кровью, подала заявление  в
суд на мужчину с третьей резус –положительной кровью для установления
отцовства. Составьте схему решения задачи. Определеите генотипы родителей и
ребенка. Может ли этот мужчина быть отцом ребенка? Объясните механизм
наследования признаков группы крови и резус фактор.

1.Записываем
условие задачи

Признак, фенотип

Ген, генотип

I
(0)

II
(A)

III
(B)

IV
(AB)

Положительный
резус — фактор

Отрицательный
резус -фактор

Р:
II (А)
полож. (+)

   
III (B
полож. (+)

F1:I группа
крови, отрицательный резус-фактор

 Установить
отцовство

     
Механизм наследования признаков

I0

IA

IB

IAIB

R

r

?

?

?

?

?

При записи условия для обозначения генов
используем буквы, данные в условияи задачи.

2.Составляем
схему скрещивания.
Обязательно записываем фенотипы
родителей, строго под ними генотипы, а затем гаметы.

Р:              
II (А)
полож. (+) 

Х

          
III (B
полож. (+)

IA
I
0Rr

IВI0Rr

G:               
IAR, IAr, I0R, I0r

IВR, IВr,I0R,I0r

3.Заполняем
решетку Пеннета:

F1       ♀

♂               

IAR

IAr

I0R

I0r

IВR

IAIВRR

IV (AB)

полож (+)

IAIВRr

IV (AB)

полож (+)

IВI0RR

III (B)

полож (+)

IВI0Rr

III (B)

полож (+)

IВr

IAIВRr

IV (AB)

полож (+)

IAIВrr

IV (AB)

отр. ()

IВI0Rr

III (B)

полож (+)

IBI0rr

III (B)

отр. ()

I0R

IAI0RR

II (A)

полож (+)

IAI0Rr

II (A)

полож (+)

I0I0RR

I (0)

полож (+)

I0I0Rr

I (0)

полож (+)

I0r

IAI0Rr

II (A)

полож (+)

IAI0rr

II (A)

отр. ()

I0I0RR

I (0)

полож (+)

I0I0rr

I (0)

отр. ()

4.Объясняем
решение задачи
. Дигибридное скрещивание (рассматривается наследование двух
пар признаков – группа крови и резус-фактор), гены находятся в разных
хромосомах. Сын этой женщины имеет
I
(0) группу кровт, отрицательный резус-фактор, его генотип 
I0I0rr.
Это возможно, если родители гетерозиготны по обеим парам признаков и имеют
следующие генотипы: ♀
IAI0Rr
(
II
(А) полож. (+)), ♂
IВI0Rr
(
III
(
B)
полож.(+)). Мужчину могут признать отцом этого ребенка в том случае, если
женщина и мужчина гетерозиготрны по обеим парам признаков. Группа крови по
система АВ0 наследуется по принципу кодоминирования, а резус-фактор-полного
доминирования.

5.
Записываем ответ.

1) генотипы
родителей: ♀
II (А)
полож.
(+)-IA
I0Rr (
гаметы IAR, IAr,
I0R, I0r), ♂ III (B) 
полож. (+)-IВI0Rr (гаметы IВR, IВr,I0R,I0r).

2) генотип сына: ♂I0I0rr (I группа
крови, отрицательный резус-фактор); мужчину могут признать отцом этого ребенка
в том случае, если женщина и мужчина гетерозиготрны по обеим парам признаков.

3) группа крови по
система АВ0 наследуется по принципу кодоминирования, а резус-фактор-полного
доминирования.

Задача 6. На
основании родословной установите характер наследования признака (доминантый или
рецессивный, сцеплен или не сцеплен с полом), генотипы детей в первом и втором
поколении.

Составьте
схему решения задачи. Ответ поясните.

1.Записываем
условие задачи

Признак, фенотип

Ген, генотип

Норма

Патология

Р:
♀больна

   
♂ здоров

F1: 2 ♀
здоровы, 1♂ болен

F2.
♀больна, ♀ здорова, ♂болен, ♂ здоров

ХА

Ха

ХаХа

ХаY

?

?

Т.к. в условии
задачи не даны буквы для обозначения генов, используем произвольное
обозначение.

2.Составляем
схему скрещивания.
Обязательно записываем фенотипы
родителей, строго под ними генотипы, а затем гаметы.

Р:              
♀ больна

Х

          
♂ здоров

ХаХа

ХАY

G:               
Ха

ХА,Y

F1: ♀ ХАХа       
:       ♀ ХАХа        :♂ Ха
Y

         
здорова              здорова                   болен

носители
гена паталогии

F2: ♀ ХаХа:
♂Ха
Y:♂ ХАY:♀ ХАХа

больнаболенздоров       
здорова, носитель гена паталогии

3.Объясняем
решение задачи.
Анализ родословной позволяет сделать следующий вывод:
признак рецессивный, сцеплен с полом, так как признак передается от матери
сыну, а дочери оказались здоровыми.Девочки (первое поколение) в этой семье
являются носителями гена исследуемого признака, мальчик болен. Во втором
поколении: двое детей (сын и дочь) больны, двое (сын и дочь) – здоровы, но
девочка является носителем гена исследуемого признака.

4.
Записываем ответ:

1) признак
рецессивный , сцеплен с полом;

2) генотипы детей
первого поколения: девочки –носители гена паталогии (генотип ХАХа),
мальчик болен (генотип — Ха
Y);

3) генотипы детей
второго поколения: девочки – ХАХа (здорова, носитель гена
паталогии), ХаХа (больна); мальчики — ХА
Y (здоров),
Ха
Y— болен.

По какой формуле определяют число фенотипов в потомстве при расщеплении?

Для определения используется формула 2n, в которой n — количество пар аллельных генов.

Если происходит моногибридное скрещивание, «родители», наделенные отличием в одной паре признаков (Мендель экспериментировал с горошинами желтыми и зелеными), во втором поколении дают два фенотипа (21). При дигибридном скрещивании они имеют различия по двум парам признаков и, соответственно, во втором поколении производят четыре фенотипа (22).

Точно таким же образом подсчитывается количество фенотипов, получившихся во втором поколении методом тригибридного скрещивания — появится восемь фенотипов (23).

По какой формуле определяют число различных видов гамет у гетерозигот?

Это число высчитывают также по формуле (2n). Однако n в этом случае — количество пар генов в гетерозиготном состоянии. На использовании этой формулы построены задачи в ЕГЭ по биологии и внутреннем экзамене МГУ.

По какой формуле определяют число генотипов в потомстве при расщеплении?

Здесь применяется формула 3n, где n — количество пар аллельных генов. Если скрещивание моногибридное, расщепление по генотипу в F2 происходит в соотношении 1:2:1, то есть образуются три различающихся генотипа (31). 

При дигибридном скрещивании возникают 9 генотипов (32), при тригибридном — 27 генотипов (33). 

Хочешь сдать экзамен на отлично? Жми сюда — подготовка к ОГЭ по биологии онлайн

21

Моногибридное скрещивание.

Р

АА

Х

аа

Жёлтые

Зелёные

Гаметы

А

а

F1 расщепление

Аа

по генотипу

Фенотипы

Жёлтые

Второй закон, или правило расщепления.

Мендель сформулировал второй закон на основании изучения закономерностей расщепления гибридов второго поколения при моногибридном скрещивании. При скрещивании между собой гибридов первого поколения (F1), гетерозиготных по аллелям одного гена, каждый из них образует в равных количествах гаметы двух типов, а среди гибридов второго поколения (F2) появляются особи с генотипами и фенотипами родителей и гибридов первого поколения в строго определенных соотношениях 1:2:1 — по генотипу и 3:1 — по фенотипу.

Моногибридное скрещивание. Расщепление признаков.

Р

Аа

Х

Aa

Жёлтые

Жёлтые

Гаметы

А, а

A, а

F1 расщепление

АА

2Аа

аа

по генотипу

Фенотипы

Жёлтые

Зелёные

Расщепление по

3

1

фенотипу

Или

А

а

А

АА

Аа

Жёлтые

Жёлтые

а

Аа

аа

Жёлтые

Зелёные

Особи, имеющие одинаковый фенотип, образуют фенотипический класс, а особи с одинаковым генотипом — генотипический класс. Во

22

втором поколении происходит расщепление на два фенотипических класса в соотношении 3А_ (жёлтые) : 1 аа (зелёные) и три генотипических класса в соотношении 1 АА : 2 Аа : 1 аа.

Количество генотипических и фенотипических классов при скрещивании гетерозиготных организмов, отличающихся по n признакам, можно выразить формулой:

количество классов генотипов: 3n количество классов фенотипов: 2n

Явление расщепления объясняется с помощью одной из закономерностей генетики, которая получила название правила «чистоты гамет». Согласно этому правилу в процессе созревания половых клеток (мейоза) в каждую гамету попадает только один из пары аллелей данного гена.

При решении задач по генетике необходимо правильно определить и записать типы гамет, которые образуются при данном скрещивании. Чтобы подсчитать, сколько типов гамет будет давать организм с заданным генотипом, нужно подсчитать и перемножить количество типов гамет по каждой паре генов. Например, организм с генотипом АаBbCсDDEe будет давать 16 типов гамет.

Третий закон Менделя, или закон независимого наследования.

При дигибридном скрещивании изучают наследование двух пар альтернативных наследственных признаков. Мендель учитывал форму семян гороха (гладкая/морщинистая) и цвет (жёлтый/зелёный) (рис. 2-3). При скрещивании гладких жёлтых семян гороха (ААВВ) с зелёными морщинистыми (ааbb) во втором поколении образуются четыре фенотипических класса в соотношении 9:3:3:1 и девять генотипических классов с расщеплением — 1:2:1:2:4:2:1:2:1. В каждой паре аллелей двух генов особи распределялись по фенотипу в соотношении 3:1, а по генотипу — 1:2:1. При этом во втором поколении появляются новые комбинации признаков, которые отсутствовали у родителей.

Таким образом, Мендель установил, что при скрещивании дигетерозиготных особей во втором поколении по каждой паре признаков происходит независимое расщепление. Признаки передаются по наследству независимо друг от друга, комбинируясь во всевозможных сочетаниях.

23

Независимое наследование признаков

Р

ААВВ

Х

аabb

Жёлтые

Зелёные

Гладкие

Морщинистые

Гаметы

АВ

ab

F1

AaBb

Жёлтые

Гладкие

Р

АаВb

Х

АаВb

Жёлтые

Жёлтые

Гладкие

Гладкие

Гаметы

АB, Ab, aB, аb

АB, Ab, aB, ab

F2

AB

Ab

aB

ab

АВ

AABB

AABb

AaBB

AaBb

Жёлтые

Жёлтые

Жёлтые

Жёлтые

Гладкие

Гладкие

Гладкие

Гладкие

Ab

AABb

AAbb

AaBb

Aabb

Жёлтые

Жёлтые

Жёлтые

Жёлтые

Гладкие

Морщинистые

Гладкие

Морщинистые

аВ

AaBB

AaBb

aaBB

aaBb

Жёлтые

Жёлтые

Зелёные

Зелёные

Гладкие

Гладкие

Гладкие

Гладкие

аb

AaBb

Aabb

aaBb

аabb

Жёлтые

Жёлтые

Зелёные

Зелёные

Гладкие

Морщинистые

Гладкие

Морщинистые

Расщеп-

9 A_B_

3 A_bb

3 aaB_

1 aabb

ление по

генотипу

Расщеп-

Жёлтые

Жёлтые

Зелёные

Зелёные

ление по

Гладкие

Морщи-

Гладкие

Морщи-

фенотипу

нистые

нистые

Количество

фенотипических

4

классов

24

Если применить формулу расщепления по фенотипу из второго закона Менделя (3:1), то получим те же четыре фенотипических класса: (3A_: 1 aa) x (3B_: 1bb) = 9 A_B_ : 3 A_bb : 3 aaB_ : 1aabb

Если применить формулу расщепления по генотипу из второго закона Менделя (1:2:1), то получим девять генотипических классов: (1AA : 2 Aa : 1aa) х (1BB : 2Bb : 1bb) = 1AABB : 2AABb : 1AAbb : 2AaBB : 4 AaBb : 2Aabb : 1aaBB : 2aaBb : 1aabb

Независимое наследование признаков объясняется тем, что гены, отвечающие за развитие данных признаков, расположены в негомологичных парах хромосом. Цитологическое объяснение данного явления заключается в мейотическом делении половых клеток с образованием гаплоидных гамет, в которых признаки могут комбинироваться в различных сочетаниях.

При полигибридном скрещивании в основе расщепления признаков лежат те же цитологические закономерности, что и при дигибридном скрещивании. Количество классов и расщепление во втором поколении при скрещивании гетерозиготных организмов, отличающихся по n признакам, рассчитывают по формуле:

количество фенотипических классов — 2n количество генотипических классов — 3n расщепление по фенотипу — (3 : 1)n расщепление по генотипу — (1 : 2 : 1)n

Решите ситуационные задачи, основываясь на опытах Менделя

1. Жёлтая окраска (А) семян гороха доминирует над зелёной (а). Определите фенотип семян, полученных в результате скрещиваний:

а) АА × аа б) Аа × Аа в) Аа × аа

2.У гороха гладкая форма семян (В) доминирует над морщинистой

(в). Определите фенотип и тип гамет у растений с генотипом BB, Bb, bb.

3.У гороха жёлтая окраска семян доминантный признак (А), а зелёная — рецессивный (а). Гладкая форма семян — домининантный признак (В), а морщинистая — рецессивный (b). Определите тип гамет и фенотип растений с генотипом ААbb; АAВВ; Ааbb; АаВВ. Определите фенотип семян гороха в потомстве, полученном в результате скрещивания: ААbb х ааВВ; ААВВ х ааbb; ААbb х ааbb; ААВb х АаВb; ааВВ х АаВb; ааВb х АаВb.

25

Рис. 2-3. Опыт Грегора Менделя (1865 г) по изучению наследования при дигибридном скрещивании [из: http://medbiol.ru].

26

2. МИКРОПРЕПАРАТЫ. ФЕНОТИПИЧЕСКИЕ ПРИЗНАКИ У ПЛОДОВОЙ МУШКИ ДРОЗОФИЛЫ

Удобным модельным объектом для проведения генетических исследований является плодовая мушка дрозофила. Эксперименты чаще проводят на плодовых мушках D. melanogaster, D. simulans, D. mercatorum. Преимуществами дрозофилы являются быстрая смена поколения, большое количество потомства, большое разнообразие видимых фенотипических проявлений мутаций; кариотип содержит всего 8 хромосом.

Плодовую мушку D. melanogaster (рис. 2-4) широко используют в научных экспериментах, начиная с работ Т. Моргана по генетике пола и хромосомной теории наследственности. В настоящее время D. melanogaster — один из наиболее изученных видов живых организмов, который является удобной биологической моделью для исследований взаимодействия генов, генетики развития, изучения действия медицинских препаратов и поллютантов.

Рис. 2-4. Самка (справа) и самец (слева) дрозофилы и их хромосомные наборы [из: http://www.cellbiol.ru].

27

Геном D. melanogaster содержит 4 пары хромосом: половые X/Y или X/X пара и три аутосомы, маркируемые как 2, 3 и 4. Четвёртая хромосома точковидная и в ряде исследований её не принимают во внимание. X (или первая), 2 и 3-я хромосомы — метацентрические. В настоящий момент геном дрозофилы полностью отсеквенирован и состоит приблизительно из 132 миллионов пар оснований и 13 767 генов.

Изучение генома и мутаций у дрозофилы имеет важное медицинское значение, так как около 61% известных заболеваний человека имеют узнаваемое соответствие в генетическом коде плодовой мушки. С помощью дрозофилы получены генетические модели болезни Паркинсона, Хантингтона и Альцгеймера. Плодовую мушку часто используют в экспериментах для изучения механизмов, лежащих в основе иммунитета, диабета, рака и наркотической зависимости.

1.Фенотип «жёлтое тело» (рис. 2-5, А). Цвет D. melanogaster определяют три пигмента: жёлтый, коричневый и чёрный. Дикий тип имеет коричневый цвет тела и крыльев. Ген жёлтого пигмента локализуется в Х-хромосоме, наследуется по рецессивному типу.

Задание:

1.Зарисуйте и опишите фенотип плодовой мушки.

2.Запишите генотип мушки и типы образуемых ею гамет.

2.Фенотип «вильчатые щетинки» (рис. 2-5, Б). Щетинки дрозофил являются сенсорными органами, состоят из пучков актиновых филаментов и содержат чувствительные нервные окончания. Дикий тип имеет прямые, длинные, слегка изогнутые щетинки. В результате нарушения формирования пучков актиновых филаментов в эмбриогенезе образуются короткие, сильно изогнутые щетинки с раздвоенными концами. Наследуется по рецессивному типу.

Задание:

1.Зарисуйте и опишите фенотип плодовой мушки.

2.Запишите генотип мушки и типы образуемых ею гамет.

3.Фенотип «зазубренные крылья» (рис. 2-5, В). В норме крыло дрозофилы имеет пять продольных и две поперечные жилки. При данном фенотипечисло и длина жилокне меняется, но по краю крыла между продольными жилками образуются выемки. Наследуется по рецессивному типу.

Задание:

1.Зарисуйте и опишите фенотип плодовой мушки.

2.Запишите генотип мушки и типы образуемых ею гамет.

28

Рис. 2-5. Фенотипы плодовой мушки дрозофилы. А — дикий тип имеет коричневый цвет тела и крыльев. По рецессивному типунаследуется жёлтая окраска; Б — у дикого типа щетинки прямые и длинные. По рецессивному типу наследуется короткие и изогнутые щетинки. В — дикий тип имеет крыло с ровным плавно изогнутым краем. По рецессивному типу наследуется крыло с вырезками между продольными жилками [из: http://www.cellbiol.ru и http://www.bios.niu.edu]

29

ТИПОВЫЕ СИТУАЦИОННЫЕ ЗАДАЧИ С ОТВЕТАМИ И ПОЯСНЕНИЯМИ

Задача на определение типов гамет

Задача 1. Определите, какие гаметы и в каком соотношении образует организм с генотипомAaBBсcDd, если известно, что все гены наследуются независимо друг от друга.

Решение: Организм с данным генотипом гомозиготен по генам В и с, гетерозиготен по генам A и D. Таким образом, число генов, по которым организм гетерозиготен, равно двум. Подставив число 2 в формулу для определения количества сортов гамет, получаем 22 = 4 сорта гамет. Теперь определим сорта гамет: генотип AaBBccDd формирует гаметы ABcDABcd aBcD aBcd. При независимом комбинировании генов образование любого сорта гамет равновероятно, поэтому в данном случае все гаметы образуются с частотой 25%.

Ответ: данный организм образует 4 сорта гамет: 25% —ABcD, 25% — ABcd, 25% — aBcD, 25% — aBcd.

Задача на аллельное исключение

Задача 2. При скрещивании между собой чистопородных белых кур потомство оказывается белым, при скрещивании черных кур — чёрным. Все потомство от скрещивания белой и черной куриц — имеет пёструю окраску. Какое оперение будут иметь а) потомки белого петуха и пестрой курицы, б) двух пёстрых родителей?

Решение: Ни чёрные и ни белые куры при скрещивании между собой не дают расщепления, следовательно, они гомозиготны. Т.к. потомство от скрещивания белой и черной куриц имеет промежуточную (пёструю) окраску, то можно предположить явление аллельного исключения (при неполном доминировании гибриды должны иметь равномерно серое оперение). Обозначим генотип черных кур — АА, белых — аа, пестрых — Аа.

Запишем схемы требуемых скрещиваний.

30

Ответ: а) потомки имеют родительские признаки в примерно равном соотношении (анализирующее скрещивание); б) появляются особи, имеющие все три типа окраски, в соотношении: 1 часть чёрных, 2 части пёстрых, 1 часть белых.

Задача на неполное доминирование

Задача 3. У львиного зева цветки бывают нормальной формы (двугубые) и пилорические (без выраженной губоцветости), а по окраске – красные, розовые и белые. Оба признака определяются несцепленными парами генов. Нормальная форма цветка доминирует над пилорической, а розовый цвет получается от скрещивания красных и белых особей. 1) Какое потомство получится от скрещивания двух гетерозиготных по обеим парам признаков растений? 2) Какое потомство получится от скрещивания двух растений, имеющих розовые пилорические цветки?

Решение: Запишем генотипы родительских форм: 1)

Р

АаВb

Х

АаВb

Розовые,

Розовые,

нормальная форма

нормальная форма

Гаметы

АB, Ab, aB, ab

АB, Ab, aB, ab

Соседние файлы в папке генетика

  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как составить смету для клиента
  • Как найти работу онлайн за рубежом
  • Как найти свой пароль устройства
  • Прямоугольный треугольник как найти катеты зная гипотенузу
  • Как найти положение ползунка реостата