Как найти фигуру с двумя углам

Двуугольник

Полезное

Смотреть что такое «Двуугольник» в других словарях:

  • двуугольник — двуугольник …   Орфографический словарь-справочник

  • Двуугольник — (мат.). Каждые два большие круга на шаре разделяют всю поверхность шара на 4 части; каждая из этих частей называется двуугольником …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ДВУУГОЛЬНИК — сферический фигура, образованная двумя полуокружностями больших кругов сферы, исходящими из диаметрально противоположных точек. См. Сферическая геометрия …   Математическая энциклопедия

  • двуугольник — (2 м); мн. двууго/льники, Р. двууго/льников …   Орфографический словарь русского языка

  • двуугольник — двууго/льник, а …   Слитно. Раздельно. Через дефис.

  • Сферический двуугольник — фигура, образованная двумя полуокружностями больших кругов сферы, исходящими из диаметрально противоположных точек. Ссылки Математическая энциклопедия, М, «СЭ», 1979, том 2. (двуугольник) …   Википедия

  • Сферическая геометрия —         математическая дисциплина, изучающая геометрические образы, находящиеся на сфере, подобно тому как планиметрия изучает геометрические образы, находящиеся на плоскости.          Всякая плоскость, пересекающая сферу, даёт в сечении… …   Большая советская энциклопедия

  • МНОГОУГОЛЬНИК — 1) Замкнутая ломаная линия, именно: если различные точки, никакие последовательные три из к рых не лежат на одной прямой, то совокупность отрезков наз. многоугольником (см. рис. 1). М. могут быть пространственными или плоскими (ниже… …   Математическая энциклопедия

  • РИМАНОВА ПОВЕРХНОСТЬ — а н а л и т и ч е с к ой ф у н к ц и и w=f(z) к о м п л е к с н о г о п е р ем е н н о г о z поверхность R такая, что данная полная аналитическая функция w=f(z), вообще говоря многозначная, может рассматриваться как однозначная аналитич. ция… …   Математическая энциклопедия

  • СФЕРИЧЕСКАЯ ГЕОМЕТРИЯ — математич. дисциплина, изучающая геометрич. образы, находящиеся на сфере, подобно тому как планиметрия изучает геометрич. образы, находящиеся на плоскости. Всякая плоскость, пересекающая сферу, дает в сечении нек рую окружность; если секущая… …   Математическая энциклопедия

План урока:

Понятие двугранного угла и угла между плоскостями

Перпендикулярность плоскостей

Прямоугольный параллелепипед

Трехгранный угол

Многогранный угол

Типичные задачи на углы между плоскостями

Понятие двугранного угла и угла между плоскостями

Напомним, что в планиметрии углом называют фигуру, состоящую из точки и двух лучей, выходящих из нее. Сама точка именуется вершиной угла, а лучи – сторонами угла.

По аналогии в стереометрии рассматривается схожая фигура – двугранный угол. Он состоит из двух полуплоскостей, которые исходят из одной прямой. Каждая из этих полуплоскостей именуется гранью двугранного угла, а их общая прямая – это ребро двугранного угла.

1 dvugrannii ugol

Для обозначения двугранного угла достаточно указать две точки на его ребре, а также ещё по одной точке на каждой грани. Например, на следующем рисунке показан угол САВD:

2 dvugrannii ugol

Двугранные углы часто встречаются в обычной жизни. Например, его образуют двухскатные крыши домов. В стереометрии двугранные угла можно найти в любом многограннике.

Двугранные углы можно измерять. Для этого надо выбрать произвольную точку на ребре угла и на каждой грани построить перпендикуляр, проходящий через эту точку. Через эти два перпендикуляра можно построить единственную плоскость. Угол между двумя перпендикулярами и принимается за величину двугранного угла.

3 dvugrannii ugol

Отдельно отметим, что плоскость, проходящая через перпендикуляры (на рисунке выше это γ) перпендикулярна ребру угла АВ. Это вытекает из признака перпендикулярности прямой и плоскости. Действительно, АВ⊥ВС и АВ⊥BD, поэтому и АВ⊥γ. Построенный угол ∠СBD называют линейным углом двугранного угла.

Понятно, что в каждом двугранном угле можно построить сколько угодно линейных углов:

4 dvugrannii ugol

Здесь помимо ∠ВСD построены линейные углы ∠В’С’D’ и ∠В’’С’’D’’. Однако все эти углы имеют одинаковую градусную меру. Сравним, например, ∠ВСD и ∠В’С’D’. Так как BD⊥AB и B’D’⊥АВ, то BD||B’D’. Аналогично можно прийти к выводу, что ВС||B’C’. Получаем, что стороны углов ∠ВСD и ∠В’С’D’ – это сонаправленные лучи, а потому ∠ВСD и ∠В’С’D’ одинаковы.

Двугранные углы, как и обычные углы, можно разделить на острые (их градусная мера меньше 90°), прямые (они в точности равны 90°) и тупые (которые больше 90°).

5 dvugrannii ugol

Если две плоскости пересекаются, то они образуют сразу 4 двугранных угла. Если среди них есть острый угол, то его величина считается углом между плоскостями. Если же все образуется 4 прямых двугранных угла, то угол между плоскостями принимается равным 90°.

6 dvugrannii ugol

Перпендикулярность плоскостей

В частном случае, когда угол составляет 90°, говорят, что пересекающиеся плоскости перпендикулярны.

7 dvugrannii ugol

Перпендикулярны друг другу пол и стены в доме, смежные грани кубика, стенки коробки. Существует особый признак перпендикулярности плоскостей.

8 dvugrannii ugol

Действительно, пусть плоскости α и β пересекаются по линии n, и в β есть такая прямая m, что m⊥α. Тогда m и n должны пересекаться в какой-нибудь точке К. Проведем в плоскости α через К прямую р, перпендикулярную n. Ясно, что m⊥р, ведь m⊥α. Получается, угол между m и р как раз и является углом между плоскостями α и β, ведь m⊥n и р⊥n. И этот угол равен 90°, ведь m⊥p, ч т. д.

Из доказанного признака вытекает следующее утверждение:

9 dvugrannii ugol

Прямоугольный параллелепипед

Ранее мы уже узнали про параллелепипед. Это фигура с 6 гранями, каждая из которых представляет собой параллелограмм. Особый интерес представляет его частный случай – прямоугольный параллелепипед.

10 dvugrannii ugol

Такую форму имеют многие шкафы, другие предметы мебели, коробки для обуви, небоскребы. Изображают прямоугольный параллелепипед так:

11 dvugrannii ugol

Для обозначения вершин параллелепипеда применяют латинские буквы. Очень часто для вершин одной грани используют 4 буквы без индекса (на рисунке выше это А, В, С, D), а другие 4 вершины обозначают такими же буквами, но с нижним индексом 1: А1, B1, C1 и D1. При этом одноименные вершины (например, А и А1) находятся на одном ребре, которое располагается на рисунке вертикально.

Докажем некоторые свойства прямоугольного параллелепипеда.

12 dvugrannii ugol

Например, ребро АD пересекается с гранями АВВ1А1 и CDD1C1. Значит, оно перпендикулярно этим граням (точнее говоря, оно перпендикулярно плоскостям, проходящим через эти грани). Действительно, AD⊥DC, ведь ∠ADC является углом в прямоугольнике АВСD и потому он прямой. Аналогично и AD⊥DD1, ведь и ADD1A1 – прямоугольник. Получается, что ребро AD перпендикулярно 2 прямым в грани CDD1C1 (которые при этом пересекаются), и потому оно перпендикулярно и всей грани. То же самое можно продемонстрировать для любого ребра прямоугольного параллелепипеда и любой грани, которую она пересекает.

13 dvugrannii ugol

13 2 u prjamougolnogo parallelepipeda

Эти грани пересекаются по ребру А1D1. Этому ребру в свою очередь перпендикулярны ребра АА1 и А1В1, лежащие в гранях ADD1A1 и A1D1C1B1. Значит, ∠АА1В1 и будет углом между этими гранями. Но он составляет 90°, то есть грани перпендикулярны, ч. т. д.

Хотя у прямоугольного параллелепипеда есть 12 граней, многие из них имеют одинаковую длину. Поэтому для описания размеров этой фигуры достаточно указать только три параметра. Обычно их называют длиной, шириной и высотой:

14 dvugrannii ugol

Эти параметры также называют измерениями прямоугольного параллелепипеда. Зная их, можно вычислить длину диагонали прямоугольного параллелепипеда. Для этого используется следующая теорема:

15 dvugrannii ugol

Действительно, пусть есть прямоугольный параллелепипед АВСDA1B1C1D1. Назовем ребро AD его длиной, АВ – шириной, а ВВ1 – высотой. Пусть необходимо найти длину диагонали В1D:

16 dvugrannii ugol

Сначала построим отрезок BD и рассмотрим ∆ABD. Он прямоугольный, и потому для него верна теорема Пифагора:

17 dvugrannii ugol

Теперь перейдем к ∆В1ВD. Так как ребро BB1 перпендикулярно грани ABCD, то ∠В1ВD – прямой. Тогда и ∆В1ВD – прямоугольный, а потому и для него можно записать теорему Пифагора:

18 dvugrannii ugol

Дополнительно отметим уже известный нам факт, что тот прямоугольный параллелепипед, у которого все стороны одинаковы, именуется кубом. Можно дать и такое определение куба:

19 dvugrannii ugol

Трехгранный угол

Выберем в пространстве произвольную точку K. Далее из нее проведем три луча КА, КВ и КС так, чтобы они не находились в одной плоскости:

20 dvugrannii ugol

В результате мы получили фигуру, которую именуют трехгранным углом. Она состоит их трех плоских углов: ∠АКС, ∠АКВ и ∠ВКС. Эти углы так и называются – плоские углы трехгранного угла. Сам же трехгранный угол обозначают четырьмя буквами: КАВС. Обратите внимание, что через каждую пару лучей КА, КВ и КС можно провести плоскость. Таким образом, название «трехгранный» угол показывает, что в точке К сходятся три грани. Чаще всего в стереометрии такой угол возникает при рассмотрении вершин тетраэдра, в котором есть сразу четыре трехгранных угла:

21 dvugrannii ugol

Доказательство. Пусть в пространстве из точки D выходят лучи AD, BD и CD. Важно понимать, что мы можем свободно «передвигать» точки А, В и С по лучам, и величина плоских углов при этом меняться не будет. Если среди плоских углов нет наибольшего, то теорема очевидно выполняется. Поэтому надо рассмотреть лишь случай, когда один из углов – наибольший. Пусть им будет ∠BDC:

22 dvugrannii ugol

Это возможно сделать, ведь ∠BDC > AD, поэтому внутри ∠BDC можно провести луч DK. Далее «сместим» точку А на луче АD так, чтобы DK = AD. Естественно, что при этом плоские углы трехгранного угла никак не изменятся, также как останется верным равенство

23 dvugrannii ugol

Сравним ∆ADC и ∆DKC. У них есть общая сторона DC, одинаковы стороны DK и AD, а также совпадают углы между ними. Значит, эти треугольники равны, и тогда можно записать, что:

24 dvugrannii ugol

Теперь сравним ∆ABD и ∆DBK. У них BD – общая сторона, а DK = AD. При этом BK < AB. В таком случае против меньшей стороны будет лежать меньший угол (смотри примечание после доказательства), то есть

25 dvugrannii ugol

Именно это неравенство и необходимо было доказать.

Примечание. В ходе доказательства было использовано утверждение, что если у двух треугольников две стороны одинаковы, в третьи стороны отличаются, то против меньшей третьей стороны будет располагаться меньший угол:

26 dvugrannii ugol

Это утверждение часто не рассматривается в курсе планиметрии, поэтому есть смысл доказать его отдельно. Действительно, пусть есть ∆АВС и ∆А’B’C’, АС = А’C’ и АВ = A’B’, а СВ < C’B’. Надо показать, что ∠А <∠A’. Для этого выразим стороны СВ и C’B’ (а точнее говоря, их квадраты) с помощью теоремы косинусов:

27 dvugrannii ugol

Из последнего неравенства на основе определения косинуса для углов из интервала от 0° до 180° вытекает, что и

28 dvugrannii ugol

Многогранный угол

Возможен случай, когда из одной точки в пространстве выходят не три, а большее количество лучей, причем образуемые ими углы не располагаются в единой плоскости. Такая фигура именуется многогранным углом. Трехгранный угол можно считать его частным случаем. Также его частными случаями будут четырехгранный угол, пятигранный угол, шестигранный угол и т. д.

Более наглядна следующая демонстрация многогранного угла. Построим на плоскости α произвольный многоугольник. Далее выберем какую-нибудь точку вне плоскости α и соединим ее с вершинами многоугольника с помощью лучей. При этом у нас как раз получится многогранный угол. Если, например, в качестве многоугольника мы использовали пятиугольник, то и получим мы пятигранный угол:

29 dvugrannii ugol

Важно отметить, что в данном случае состоит многогранный угол именно из лучей КА1, КА2, КА3…, а не из одноименных отрезков. То есть многогранный угол – это ни в коем случае не многогранник КА1А2А3А4А5, у него есть только одна вершина – точка К. Многогранник КА1А2А3А4А5 – это пирамида, такая фигура изучается в курсе стереометрии чуть позже. Многоугольник А1А2А3А4А5 – это сечение многогранного угла. Углы ∠А1КА2, ∠А2КА3, ∠А3КА4… – это плоские углы многогранного угла.

Заметим, что на исходный многоугольник на плоскости может быть как выпуклым, так и невыпуклым. Соответственно и многогранный угол может быть как выпуклым, так и невыпуклым:

30 dvugrannii ugol

Так как любой треугольник – это выпуклый многоугольник, то и любой трехгранный угол является выпуклым. В выпуклом угле все его точки лежат по одну сторону от любой плоскости, проходящей, через какие-нибудь два смежных луча угла. Вообще любое сечение многогранного угла представляет собой выпуклый многоугольник.

Докажем важное утверждение:

31 dvugrannii ugol

Для доказательства возьмем произвольный многогранный угол и проведем в нем сечение А1А2А3…Аn, которое будет являться выпуклым многоугольником:

32 dvugrannii ugol

32 2 postroenie piramidy edited

33 dvugrannii ugol

В последнем равенстве в каждой скобке стоят по два плоских угла в тех трехгранных углах, вершины которых совпадают с вершинами многоугольника А1А2А3…Аn. В предыдущей теореме мы выяснили, что эта сумма меньше третьего плоского угла, то есть

34 dvugrannii ugol

В правой части в скобках стоит сумма углов выпуклого n-угольника А1А2А3…Аn. Она, как мы знаем, составляет 180°•(n – 2), то есть

35 dvugrannii ugol

Последнее неравенство и необходимо было доказать.

Типичные задачи на углы между плоскостями

В школьной практике почти не встречаются задачи с многогранными углами, поэтому достаточно понимания и двугранного угла.

Задание. У тетраэдра ABCD все ребра одинаковы. Найдите величину двугранного угла между плоскостями АВС и АСD.

Решение. Отметим на ребре АС точку М, которая является его серединой:

36 dvugrannii ugol

Заметим, что плоскости АВС и АСD пересекаются по прямой АС. Раз все ребра тетраэдра одинаковы, то ∆АВС и ∆АСD – равносторонние. DM и BM – это медианы в ∆АВС и ∆АСD соответственно, ведь M – середина АС. Но раз треугольники равносторонние, то они одновременно являются и высотами, то есть BM⊥AC и DM⊥АС. Тогда ∠DMB как раз и представляет собой линейный угол двугранного угла BАСD. То есть именно его значение нам и надо вычислить (если, конечно, он окажется не больше 90°).

Пусть ребра тетраэдра имеют длину а. Тогда АМ вдвое короче. Найдем из прямоугольного ∆АМD длину MD:

37 dvugrannii ugol

38 dvugrannii ugol

Задание. Двугранный угол равен φ, меньший 90°. На одной из его граней отмечена точка К, которая находится на расстоянии d от другой грани. Каково расстояние между точкой К и ребром двугранного угла?

Решение. Пусть угол образован плоскостями α и β. Опустим из K два перпендикуляра – один на плоскость β в точку Н, а другой на линию пересечения плоскостей в точку Р:

39 dvugrannii ugol

По условию задачи ∠НРК = φ, а HK = d. Нам же надо найти РК. Это можно сделать, применив определение синуса к ∆РНК:

40 dvugrannii ugol

Задание. Верно ли, что плоскость, пересекающая две параллельные плоскости, образует с ними одинаковые углы?

Решение. Пусть есть параллельные друг другу плоскости α и β, а пересекает их плоскость γ. Линию пересечения α и γ обозначим как n, и такую же линию для β и γ обозначим как m:

41 dvugrannii ugol

Заметим, что m и n располагаются в одной плоскости γ и при этом не пересекаются, в противном случае у α и β нашлась бы общая точка, которой быть не должно. Значит, m||n.

Далее проведем в γ прямую р, перпендикулярную n. Раз m||n и р⊥n, то и р⊥m. То есть р – общий перпендикуляр для m и n.

Далее в α через точку пересечения n и p проведем прямую k, перпендикулярную n. Ясно, что k||β. После уже через точку пересечения m и p построим такую прямую k’, что k||k’:

42 dvugrannii ugol

Так как k||β и k||k’, то прямая k’ будет принадлежать плоскости β (по теореме 6 из этого урока). Так как k||k’, m||n и n⊥k, то по теореме о сонаправленных лучах можно утверждать, что и m⊥k’. Тогда углы, отмеченные на рисунке синим цветом – это и есть линейные углы двугранных углов. Они одинаковы, так как являются соответственными при секущей р и параллельных прямых k и k’. Если же двугранные углы равны, то одинаковы и углы между плоскостями, ч. т. д.

Примечание. Доказанный факт можно сформулировать в виде теоремы:

43 dvugrannii ugol

Она может быть использована при решении некоторых сложных задач.

Задание. В прямоугольном ∆АВС АВ и АС – катеты с длиной 7 и 24 соответственно. Через гипотенузу проведена плоскость β, образующая с плоскостью АВС угол 30°. Каково расстояние между точкой А и плоскостью β?

Решение.

44 dvugrannii ugol

Опустим из А перпендикуляр АН на β. Это и будет искомое нами расстояние. Также в ∆АВС построим высоту AD. Заметим, что раз АН⊥β, то по определению и АН⊥HD. Можно сказать, что HD – это проекция AD на β. Раз прямая ВС перпендикулярна наклонной AD, то она одновременно будет перпендикулярна и наклонной HD по обратной теореме о трех перпендикулярах.

Плоскости АВС и β пересекаются по прямой ВС, АD⊥ВС и HD⊥BC. Получается, что ADH – это как раз угол между АВС и β, и по условию он составляет 30°.

По теореме Пифагора вычислим гипотенузу ВС:

45 dvugrannii ugol

Теперь перейдем к ∆AHD. Он также прямоугольный (∠Н = 90°). Используем для него тригонометрию:

46 dvugrannii ugol

Задание. Известны измерения прямоугольного параллелепипеда. Его длина составляет 90 см, ширина – 20 см, а высота – 60 см. Какова длина диагонали такого параллелепипеда?

Решение. Обозначим измерения буквами а, b, с, а диагональ буквой d. Достаточно просто воспользоваться формулой:

47 dvugrannii ugol

Далее рассмотрим несколько задач, в которых надо найти угол между плоскостями, находящимися в кубе с ребром, чья длина составляет единицу.

Задание. Вычислите угол между гранью ADHЕ и сечением АBGН:

48 dvugrannii ugol

Решение. Заметим, что сечение АВGH содержит прямую АВ. Но АВ – это перпендикуляр к АЕНD. Если АВGH содержит перпендикуляр к ADH, то эти две плоскости перпендикулярны, и угол между ними составляет 90°.

Ответ: 90°.

Задание. Определите угол между гранью ADHE и сечением ADGF:

49 dvugrannii ugol

Решение. Две рассматриваемые плоскости пересекаются по ребру AD. Ребра DH и AD перпендикулярны как стороны квадрата. Так как AD – это перпендикуляр к грани СDHG, то AD⊥DG. Получается, что ∠HDG – это и есть искомый угол. Его величина равна 45°, ведь это угол между диагональю квадрата и его стороной.

Ответ: 45°.

Задание. Вычислите угол между сечениями АВGH и EFCD:

50 dvugrannii ugol

Решение. Пересекаются эти две плоскости по прямой KP, где K и P – точки пересечения диагоналей квадратов BFGH и AEHD. Докажем, что отрезки KG и KC перпендикулярны KP.

Действительно, рассмотрим четырехугольник АВGH. Ребра АВ и GH перпендикулярны граням AEHD и BFGH, поэтому все углы в АВGH – прямые, то есть это прямоугольник и BG||AH. Теперь рассмотрим четырехугольник АВKP. Стороны BK и AP параллельны и равны как половины равных отрезков BG и AH. Значит, BKAP – параллелограмм. Но в нем есть прямые углы ∠В и ∠А, поэтому BKAP – прямоугольник. Аналогично можно показать, что и KGHP – прямоугольник. Это и приводит к выводу о том, что KG⊥KP и PH⊥KP. Поэтому ∠СKG и является искомым углом между сечениями. Он является углом между диагоналями квадрата, то есть равен 90°.

Ответ: 90°.

Задание. Найдите угол между сечением AFH и гранью AEHD:

51 dvugrannii ugol

Решение. Обозначим середину диагонали AH буквой K. Докажем ∠EKF – искомый нами угол:

52 dvugrannii ugol

Действительно, плоскости AHD и AFH пересекаются по прямой AH. EK – медиана в равнобедренном ∆AEH с основанием AH, поэтому она также является и высотой, то есть EK⊥AH. AF и FH – диагонали в равных квадратах ABFE и EFGH, поэтому эти диагонали одинаковы. Значит, ∆AFH – равнобедренный, и поэтому его медиана FK также перпендикулярна основанию AH. Получается, что ∠EKF и является искомым. Вычислить его можно из ∆EKF.

Сначала найдем длину EK. В прямоугольном ∆AEK ∠KAE составляет 45° (угол между диагональю и стороной квадрата), поэтому

53 dvugrannii ugol

Задание. Вычислите угол между гранью BCGF и сечением AFH:

54 dvugrannii ugol

Решение. Вспомним, что в предыдущей задаче мы уже вычислили угол между гранью АЕHD и тем же сечением АFH. Но грани AEHD и BCFG параллельны, поэтому АFH должна пересекаться их под одним и тем же углом. Поэтому ответ этой задачи совпадает с ответом к предыдущей задаче.

Ответ: ≈ 54,74°.

Задание. Чему равен угол между сечениями АСH и AFGH?

55 dvugrannii ugol

Решение. Пусть диагонали СН и DG пересекаются в точке К. Точка K будет принадлежать обоим сечениям, как и точка А. Значит, сечения пересекаются по линии АК. Проведем в сечении AFGH через точку K прямую, перпендикулярны АК и пересекающую FG в какой-то точке Р (позже мы убедимся, что прямая действительно должна пересекать отрезок FG):

56 dvugrannii ugol

Докажем, что ∠CPK и является углом между сечениями. Мы специально провели РК так, что РК⊥АК. Теперь посмотрим на ∆АСН. Он равносторонний, ведь его стороны АС, СН и DH – это диагонали равных квадратов (граней куба). Прямая АК – медиана, ведь K – точка пересечения диагоналей квадрата СDHG, которая делит диагонали пополам. Но раз ∆АСН равносторонний, то его медиана – это ещё и высота, то есть АК⊥РК. Итак, АК⊥СК и АК⊥РК, поэтому ∠CPK – это угол между сечениями. Для его вычисления необходимо найти все стороны в ∆РСК и далее применить теорему косинусов.

Проще всего найти СК. ∆СKD – прямоугольный (∠К = 90°), а ∠СDK составляет 45° (угол между стороной и диагональю в квадрате). Тогда можно записать, что

57 dvugrannii ugol

Отдельно отметим, что отрезки GK и KD имеют такую же длину, ведь диагонали в квадрате (а значит и их половины) одинаковы.

Для нахождения РК покажем отдельно плоскость AFG, то есть красное сечение:

58 dvugrannii ugol

Обозначим ∠KAD как φ. Тогда ∠АКD будет составлять 90 – φ. Углы ∠АКD, ∠АKP и ∠PKG в сумме дают 180°, что позволяет найти ∠PKG:

59 dvugrannii ugol

Получилось, что у ∆АКD и ∆PKG есть по два одинаковых угла (φ и 90°). Значит, они подобны. Составим такую пропорцию:

60 dvugrannii ugol

Теперь можно вернуться ко всему кубу и найти отрезок РС. Здесь снова можно применить теорему Пифагора, но уже к ∆PCG:

61 dvugrannii ugol

Теперь для ∆PCK мы можем записать теорему косинусов

62 dvugrannii ugol

Неожиданно мы доказали, что два построенных сечения перпендикулярны друг другу. Прийти к этому выводу можно было и иначе. Достаточно было бы показать, что прямая CH – это перпендикуляр к сечению AFGD. Попробуйте сделать это самостоятельно.

Ответ: 90°.

Задание. Вычислите угол между сечениями BDHF и ADGF:

63 dvugrannii ugol

Решение. У сечений общими являются точки F и D. Значит, именно по прямой FD они пересекаются.

Опустим в синей сечении BDHF перпендикуляр на FD, который упадет в некоторую точку K:

64 dvugrannii ugol

Докажем, что отрезок GK также перпендикулярен FD. Действительно, BK – это высота в ∆BDF. Но ∆BDF и ∆GDF равны, ведь они одинаковы все три стороны (FD – общая сторона, BF и FG – ребра куба, BD и DG – диагонали на гранях куба). В равных треугольниках высоты должны делить стороны на равные отрезки, поэтому высота, опущенная из G на FD, также разделит FD на отрезки FK и KD. То есть она просто упадет в точку K. Это и значит, что KG – высота. Получается, что нам надо вычислить ∠BKG.

Сначала найдем длину диагоналей BD и BG. Можно применить теорему Пифагора для ∆BFG:

65 dvugrannii ugol

KG имеет ту же длину, ведь KG и BK – одинаковые высоты в равных треугольниках ∆BDF и ∆GDF.

Теперь используем теорему косинусов для ∆BKG:

66 dvugrannii ugol

Мы вычислили двугранный угол, но он оказался больше 90°. Это значит, угол между плоскостями равен не 120°, а 180° – 120°, то есть 60°.

Ответ: 60°.

Сегодня мы познакомились с понятием двугранного угла, научились вычислять углы между плоскостями. В частном случае вместо вычисления угла можно просто доказать перпендикулярность плоскостей.

Что такое двугранный угол

Двугранным углом называют геометрическую фигуру, которая сформирована парой полуплоскостей, выходящие из общей прямой.

Заметим, что угол, измеряемый в градусах, разделяющий пару плоскостей, является минимальным из количества двугранных углов, которые сформированы в результате пересечения плоскостей.

Примечание 1

Важно отметить, что по модели двугранный угол может быть острым и тупым. При этом угол, разделяющий две плоскости, является острым. Это необходимо учитывать в решении задач, чтобы избежать путаницы.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

угол

Источник: ru.wikipedia.org

Как найти

В поиске ответов на различные примеры из геометрии следует руководствоваться основными понятиями. Введем несколько обозначений для элементов двугранного угла.

Грани двугранного угла представляют собой полуплоскости, которые образовали данный угол.

Ребро двугранного угла является единой прямой для рассматриваемых полуплоскостей.

В процессе измерения двугранных углов используют величины линейных углов, то есть тех, что образованы при пересечении двугранного угла и плоскости, расположенной под прямым углом к ребру рассматриваемого угла. В результате для поиска величины двугранного угла рекомендуется следовать следующему алгоритму действий:

  • следует определить какую-либо точку на его ребре;
  • далее под прямым углом к ребру нужно опустить из определенной ранее точки лучи ко всем граням;
  • угол, который разделяет изображенные лучи, соответствует величине искомого двугранного угла.

Запишем в табличной форме значения двугранных углов, характерные для правильных многогранников:

таблица 

В данном случае следует считать (phi) равным (frac{1+sqrt{5}}{2}), то есть золотым сечением.

Виды двугранных углов

Тупой двугранный угол представляет собой такой угол, градусная величина которого превышает значение в 90°.

Тупой двугранный угол:

тупой

Источник: rusinfo.info

Прямой двугранный угол является таким двугранным углом, градусная мера которого соответствует 90°.

Прямой двугранный угол:

прямой 

Источник: rusinfo.info

Острым двугранным углом называют двугранный угол с градусной мерой, равной 90°.

Острый двугранный угол:

острый

Источник: rusinfo.info

Задачи

Задача 1

Имеется геометрическая фигура в виде пирамиды с четырьмя углами и равными между собой ребрами. При этом в основании фигуры расположен квадрат. Требуется определить, чему равен (6cos alpha) , если за (alpha) обозначен угол, разделяющий смежные боковые грани.

Решение

Предположим, что искомая пирамида имеет следующее название SABCD. Пусть S играет роль вершины геометрической фигуры, а ее ребра соответствуют а. Тогда, согласно условию задания, требуется найти угол, разделяющий грани SAD и SCD.

задача

Источник: shkolkovo.net

Построим (CHperp SD). Заметим, что:

(triangle SAD=triangle SCD)

В этом случае AH также играет роль высоты в (triangle SAD). Таким образом, исходя из определения:

(angle AHC=alpha)

Заметим, что (alpha) является линейным углом, разделяющим грани SAD и SCD. При условии квадратного основания в пирамиде запишем следующее:

(AC=asqrt2)

Кроме того, имеет место такое равенство:

CH=AH

Высота AH находится в треугольнике с одинаковыми сторонами, равными а. Таким образом:

(CH=AH=frac{sqrt3}2a)

Воспользуемся теоремой косинусов применительно к (triangle AHC):

(cos alpha=dfrac{CH^2+AH^2-AC^2}{2CHcdot AH} =-dfrac13 quadRightarrowquad 6cosalpha=-2.)

Ответ: -2.

Задача 2

На рисунке изображено пересечение плоскостей, обозначенных за (pi_1) и (pi_2). В результате образуется общая прямая l с точками M и N. Полученные отрезки MA и MB расположены перпендикулярно по отношению к прямой l, а также принадлежат плоскостям за (pi_1) и ( pi_2) соответственно. При этом справедливы следующие равенства: MN = 15; AN = 39; BN = 17; AB = 40. Необходимо вычислить (3cosalpha) , где (alpha) является углом, разделяющим плоскости  (pi_1) и (pi_2) .

Решение

задача 2

Источник: shkolkovo.net

Заметим, что треугольник AMN обладает прямым углом, тогда:

(AN^2 = AM^2 + MN^2)

В результате:

(AM^2 = 39^2 — 15^2 = 36^2)

Прямоугольным также является треугольник BMN. В таком случае:

(BN^2 = BM^2 + MN^2)

Исходя из этого, получим:

(BM^2 = 17^2 — 15^2 = 8^2)

Воспользуемся теоремой косинусов применительно к треугольнику AMB:

(AB^2 = AM^2 + MB^2 — 2cdot AMcdot MBcdotcosangle AMB)

Таким образом:

(40^2 = 36^2 + 8^2 — 2cdot 36cdot 8cdotcosangle AMBqquadLeftrightarrowqquad cosangle AMB = -dfrac{5}{12})

Исходя из того, что угол (alpha), разделяющий плоскости, является острым, а угол (angle AMB) определяется как тупой, получим следующее равенство:

(cosalpha=dfrac5{12})

(3cosalpha = dfrac54=1,25)

Ответ: 1,25.

Задача 3

На рисунке изображен квадрат ABCD. В точке О пересекаются диагонали. Точка S расположена за пределами квадратной плоскости, а (SO perp ABC). Требуется вычислить угол, разделяющий плоскости ASD и ABC, при условии, что SO = 5, а AB = 10.

Решение

задача 3

Источник: shkolkovo.net

Геометрические фигуры в виде треугольников с прямыми углами (triangle SAO) и (triangle SDO) являются идентичными, согласно паре сторон и углу, который их разделяет:

(SO perp ABC Rightarrow angle SOA = angle SOD = 90^circ)

AO = DO

Записанные выше равенства являются справедливыми, так как в точке O пересекаются диагонали квадрата, а SO служит общей стороной.

(Rightarrow AS = SD Rightarrow triangle ASD)

(triangle ASD) является равнобедренным. Точка K делит пополам AD. В таком случае SK представляет собой высоту в треугольнике (triangle ASD), а OK обозначает высоту в треугольнике AOD. Таким образом, плоскость SOK расположена под прямым углом к плоскостям ASD и ABC. Можно сделать вывод о том, что (angle SKO)  является линейным углом, который соответствует искомому двугранному углу.

задача 4

Источник: shkolkovo.net

Рассмотрим треугольник (triangle SKO):

(OK = frac{1}{2}cdot AB = frac{1}{2}cdot 10 = 5 = SO)

Таким образом, (triangle SOK) является равнобедренным прямоугольным треугольником. Тогда:

(angle SKO = 45^circ.)

Ответ: (45^circ.)

У кубоида 12 граней, но многие из них одинаковой длины. Поэтому для описания размеров этой формы достаточно всего трех параметров. Обычно их называют длиной, шириной и высотой:

ЭМГеометрия

Фигура, в которой не все точки находятся в плоскости, Фигура, в которой не все точки лежат в плоскости, называется пространственной.

В дополнение к геометрическим твердым телам, пространственные формы также включают в себя двугранные и многогранные углы и другие наборы точек, линий и поверхностей. Основными элементами, составляющими пространственные формы, являются точки и линии, плоскости. Каждая фигура может свободно перемещаться в пространстве, не изменяя своего размера или формы.

Две фигуры считаются одинаковыми, если они могут быть выровнены по всем точкам.

Стереометрия изучает свойства пространственных форм. Две линии в пространстве могут находиться в одном и том же плоскости, и затем либо пересекаются, либо параллельны.

Считается, что две прямые пересекаются, если одна из них не входит ни в одно из бесконечных множеств плоскостей, через другую линию.

Изображение (рисунок или эскиз) пространственной фигуры на плоскости выполнена в соответствии с правилами параллельного проецирования, которые мы также должны знать при чтении чертежа.

(α) Если прямые в пространстве параллельны, то их проекции на чертеже параллельны или одновременны; если прямые на чертеже параллельны, то соответствующие прямые на пространственной фигуре параллельны.

(b) Если линии на чертеже пересекаются, то соответствующие линии в пространстве пересекаются или скрещиваются. При переходе от плоского рисунка пространственной фигуры к ее модели (физической или воображаемой) необходимо научиться уверенно различать пересекающиеся и пересекаемые линии. Без этого невозможно научиться стереометрии.

c) Отношение отрезков параллельных прямых (или прямой) в пространственной фигуре равно отношению их соответствующих отрезков на чертеже. Из этого следует, что в одной группе параллельных сегментов каждый сегмент сокращается один раз при переходе от пространственной фигуры к рисунку, а в другой группе параллельных сегментов другое (но фиксированное для этой группы) количество раз.

г) Углы пространственной фигуры на рисунке обычно меняют свою величину, например, прямой угол пространственной фигуры может быть представлен как острый или тупой. углом.

Невидимые линии пространственной формы представлены на рисунке пунктирными линиями.

Основные свойства плоскости Следующие математические утверждения могут быть выражены следующим образом.

Если две точки лежат на прямой на плоскости, тогда все точки на этой прямой на плоскости.

Если три точки, не лежащие на одной прямой, имеют общую точку. плоскость, притом только одну.

Если две плоскости имеют общую точку, то они имеют общую прямую, проходящую через эту точку, т.е. пересекаются.

Через эту точку и точку, не лежащую на этой прямой, можно провести прямую. плоскость, притом только одну.

Две пересекающиеся линии могут быть проведены с помощью плоскость и только одну.

Две параллельные прямые можно провести через плоскость, притом только одну.

Сегодня мы познакомились с концепцией двугранного угла, мы научились вычислять углы между плоскостями. В качестве особого случая, вместо вычисления угла мы можем просто доказать, что перпендикулярндикулярность плоскостей.

Двугранные углы. Углы между плоскостями. Перпендикулярность плоскостей

Двугранный угол грани двугранного угла ребро двугранного угла

Полуплоскости a и b, которые разграничивают двугранный углы называются гранями двугранного угла и их общее ребро AB называется ребром двугранного угла .

Двугранные углы называют равными двугранными углами, если они могут быть соединены.

На пересечении двух плоскостей образуются четыре двугранных угла (Рисунок 2). Меньший из этих двух углов обычно и называют углом между плоскостями .

Двугранные углы образованные при пересечении двух плоскостей

Двугранные углы образованные при пересечении двух плоскостей

Если на пересечении двух плоскостей формируется из 4 равных двугранных угла, то такие двугранные углы называют прямыми двугранными углами, а сами плоскости называются перпендикулярами. плоскостями (рис. 3).

Прямые двугранные углы перпендикулярные плоскости

Прямые двугранные углы перпендикулярные плоскости

Выберем любую точку C на ребре AB двугранного угла и проведите через него перпендикуляры CD и CE с каждого конца. двугранного угла. Угол DCE, образованный перпендикулярами CD и CE, называется линейным. углом двугранного угла (рис. 4).

Линейный угол двугранного угла

Линейный угол двугранного угла

Линейный угол двугранного угла

На рисунке 4 угол φ является линейным углом двугранного угла с ребрами a и b и ребром AB .

Линейные углы двугранных углов используются, в частности, для измерения двугранные углы. Например, если линейный угол двугранного угла составляет 30° ( или ), тогда и двугранный угол равен 30° (радиус). Аналогично, если право двугранный угол равен 90° (радиус).

У перпендикулярных плоскостей есть очень интересная особенность: все углы, которые возникли из них, они равны между и равны 90° градусов.

Двугранный угол

shutterstock_1103233229.jpg

Двугранный угол — это часть пространства, которая между двумя полуплоскостями, которые имеют общую границу.

Kakts_teor2.png

Если в пространстве есть пересечения две плоскости, получаются четыре двугранных угла (аналогично пересечению двух линий, четыре угла). Рассмотрим один из них.

Kakts_teor.png

Выберем любую точку (a) двугранного угла любую точку (C) и проведите две пересекающиеся прямые AC &below; a и BC &below; a, и через эти прямые проведите — плоскость c под прямым углом к краю (a).

Kakts_teor1.png

Проведите биссектрису пересекающихся линий (AC) и (BC).плоскостей α и β с плоскостью γ образовывать угол ∡ ACB. Этот угол называется линейным углом углом двугранного угла. Величина линейного угла не зависит от выбора точки (C) на ребре (a).

Если на перекрестке плоскостей один из двугранных углов (90°), то остальные три — это угла — тоже (90°). Эти плоскости называются прямоугольными.

1. если один из двух плоскостей проходит через линию, которая перпендикулярна другой линии плоскости, то такие плоскости перпендикулярны.

2. плоскость, перпендикулярная прямой, на которой пересекаются две прямые. две плоскости, перпендикулярно каждому из них. плоскостей.

3. Если две плоскости перпендикулярны и в одном из них прямая перпендикулярна линии пересечения плоскостей, тогда эта линия перпендикулярна второй линии плоскости.

Мы хотим представить несколько лучей в пространстве с общим началом координат. Они также могут быть представлены как часть пересекающихся линий. плоскостей — три, четыре или больше — и мы называем их гранями многогранника. угла.

У перпендикулярных плоскостей есть очень интересная особенность: все углы, которые возникли из них, они равны между и равны 90° градусов.

Если в плоскости Постройте две пересекающиеся прямые AK и BN в точке M, то плоскость Разделите их на 4 региона, сформировав 4 «плоских» региона. » угла.

Аналогично, две пересекающиеся прямые являются плоскости c и b от линии AB, разделите пространство на 4 области, образуя 4 двугранных угла.

Определение. Двугранный угол — это фигура, образованная линией AB и двумя полуокружностями, которые не принадлежат друг другу.плоскостями с общей границей AB, которые не принадлежат к плоскости.

Полуплоскости, образующие двугранный углы называются площадями. двугранного угла .

Линия AB (граница половинного угла) является общей для всех поверхностей.плоскостей) называется ребром двугранного угла .

Обозначение: KABL, где K и L — позиции, принадлежащие разным поверхностям, а AB — ребро. двугранного угла.

  • стена комнаты с полом или потолком;
  • двускатная крыша;
  • полураскрытая книга;
  • открытка со сгибом.

krysha

otkrytka

Измерение двугранных углов ограничивается измерением линейного углов. Определение. Линейный углом двугранного угла это плоский угол, образованный двумя лучами, перпендикулярными к граням данной точки. двугранного угла и перпендикулярно его краю.

Все линейные углы данного двугранного угла равны между собой.

За величину двугранного угла Он принимает значение своего линейного угла. Выражение двугранный угол, равный ᵠ, означает, что значение соответствующего линейного угла равна ᵠ .

Плоский угол называется прямым (острым, тупым), если он равен 90° (меньше 90°, больше 90°).

Выберем любую точку (a) двугранного угла любую точку (C) и проведите две пересекающиеся прямые AC &below; a и BC &below; a, и через эти прямые проведите — плоскость c под прямым углом к краю (a).

Как найти двугранный угол

Угол с двумя поверхностями — это участок пространства, образованный между двумя полуплоскостями, которые имеют общую границу.

Полуплоскости и, образующие двугранный Углы называются гранями (рис. 3.6.1). Общая линия этих граней называется ребром. двугранного угла. Возьмем точки и на ребре. двугранного угла. Плоский угол обозначается двумя буквами: Угол Иногда двугранный обозначается четырьмя буквами, из которых две средние буквы обозначают точки на краях, а две крайние — точки на гранях. Пусть, (рис. 3.6.1), тогда двугранный обозначается следующим образом: Угол Выберем произвольную точку на краю двугранного угла произвольной точки и по нее плоскость перпендикулярно к краю (рис. 3.6.2). Плоскость пересекает края двугранного угла из линий и, образующих угол. Этот угол называется линейным углом. углом двугранного угла. Легко показать, что значение линейного угла угла не зависит от выбора точки края. На краю возьмем точку, отличную от, и проведем через. нее плоскость. Пусть плоскость пересекает грани двугранного угла Поэтому, согласно теореме о следе, значения, приведенные в разд. углы равны. Величина двугранного угла равна значению линейного угла. Если – величина двугранного угла, то .

На пересечении двух плоскостей образуются четыре двугранных угла. величина меньшего из двух двугранных углов называется углом между этими плоскостями .

Если плоскости параллельны, угол между равны по определению. Если — величина угла между двумя плоскостями, то .

§ 14.Двугранные углы. Угол между двумя плоскостями

14.1. Двугранный угол и его измерение

Рассмотрим два полупространства, образованные непараллельными плоскостями. Пересечение этих полупространств назовём двугранным углом.

Прямую, по которой пересекаются плоскости — границы полупространств, называют ребром двугранного угла, а полуплоскости этих плоскостей, образующие двугранный угол, — гранями двугранного угла.

Двугранный угол с гранями α, β и ребром a обозначают αaβ. Можно использовать и такие обозначения двугранного угла, как K(AB)T; α(AB)β (рис. 94, 95).

Рис. 94

Рис. 95

Рис. 96

Замечание. Иногда говорят, что двугранный угол αaβ образован двумя полуплоскостями α и β, имеющими общую граничную прямую a.

Фигуры, образованные двумя страницами одной книги, двумя соседними гранями куба, — модели двугранного угла.

Для измерения двугранного угла введём понятие его линейного угла. На ребре a двугранного угла αaβ отметим произвольную точку O и в гранях α и β проведём из точки O соответственно лучи OA и OB, перпендикулярные ребру a (рис. 96, а). Угол AOB, образованный этими лучами, называется линейным углом двугранного угла αaβ.

Так как OAa и OBa, то плоскость AOB перпендикулярна прямой a. Это означает, что линейный угол двугранного угла есть пересечение данного двугранного угла и плоскости, перпендикулярной его ребру.

Вследствие произвольного выбора точки O на ребре двугранного угла заключаем, что двугранный угол имеет бесконечное множество линейных углов. Докажем, что все они равны. Действительно, рассмотрим два линейных угла AOB и A1O1B1 двугранного угла αaβ (рис. 96, б). Лучи OA и O1A1 лежат в одной грани α и перпендикулярны прямой a — ребру двугранного угла, поэтому они сонаправлены. Аналогично получаем, что сонаправлены лучи OB и O1B1. Тогда AOB = A1O1B1 (как углы с сонаправленными сторонами).

Таким образом, нами доказана теорема.

Теорема 27. Величина линейного угла не зависит от выбора его вершины на ребре двугранного угла.

Иначе говоря, все линейные углы данного двугранного угла равны между собой.

Это позволяет ввести следующее определение.

Определение. Величиной двугранного угла называется величина его линейного угла.

Рис. 97

Величина двугранного угла, измеренная в градусах, принадлежит промежутку (0°; 180°).

На рисунке 97 изображён двугранный угол, градусная мера (величина) которого равна 30°. В этом случае также говорят, что двугранный угол равен тридцати градусам.

Двугранный угол является острым (рис. 98, а), прямым (рис. 98, б) или тупым (рис. 98, в), если его линейный угол соответственно острый, прямой или тупой.

Рис. 98

Заметим, что аналогично тому, как и на плоскости, в пространстве определяются смежные (рис. 99, а) и вертикальные (рис. 99, б) двугранные углы. При этом справедливы и аналогичные теоремы о величинах этих углов.

Попробуйте доказать самостоятельно следующие два утверждения, важные для решения задач.

На гранях двугранного угла величины α взяты точки A и B; A1 и B1 — проекции этих точек на ребро двугранного угла; AA1= a; BB1 = b; A1B1 = h. Тогда

AB = .

Рис. 99

Если внутри двугранного угла величины α взята точка на расстояниях a и b от граней двугранного угла, то её расстояние от ребра двугранного угла равно .

14.2. Угол между двумя плоскостями

Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром (рис. 100). Если величина одного из них равна ϕ, то величины трёх остальных равны соответственно 180° – ϕ, ϕ, 180° – ϕ (почему?). Наименьшая из этих величин принимается за величину угла между данными пересекающимися плоскостями.

Определение. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных при их пересечении.

Угол между параллельными или совпадающими плоскостями полагается считать равным нулю.

Если величина угла между плоскостями α и β равна ϕ, то пишут: (α; β) = ϕ.

Рис. 100

Так как двугранный угол измеряется своим линейным углом, то из выше приведённого определения следует, что угол между пересекающимися плоскостями равен углу между пересекающимися прямыми, лежащими в этих плоскостях и перпендикулярными к линии их пересечения (см. рис. 100). Это означает, что величина угла между плоскостями принадлежит промежутку [0°; 90°].

Рис. 101

ЗАДаЧа. Отрезок DM длиной 3,2 перпендикулярен плоскости ромба ABCD (ADC — тупой). Диагонали ромба равны 12 и 16. Найти углы между плоскостями:

а) ABC и MBC; б) AMD и CMD.

Решение. а) Пусть DE — высота ромба ABCD (рис. 101). Тогда по теореме о трёх перпендикулярах MEBC и DEM = ϕ — линейный угол двугранного угла, образованного плоскостями ABC и MBC. Найдём величину этого угла.

По условию задачи DM (ABC), поэтому ⧌ MDE — прямоугольный, значит, tg ϕ = . Так как DE — высота ромба ABCD, то DE = , где S — площадь этого ромба. Сторона BC ромба является гипотенузой прямоугольного треугольника BOC, катеты OB и OC которого равны 6 и 8. Значит, BC =  =  = 10.

Учитывая, что S = ACBD = •12•16 = 96, находим: DE =  = 9,6. Тогда tg ϕ =  =  = , откуда ϕ = arctg .

б) Так как отрезок DM — перпендикуляр к плоскости ромба ABCD, то ADDM, CDDM, значит, ADC = ψ — линейный угол двугранного угла, образованного пересекающимися плоскостями ADM и CDM. Найдём этот угол.

В треугольнике ACD по теореме косинусов находим

cos ψ =  =  = – ,

откуда ψ = arccos .

Ответ: а) arctg ; б) arccos .

Понравилась статья? Поделить с друзьями:
  • Как найти книгу в pocketbook
  • Как найти свою торговую систему
  • Как нашли алмазы в сибири
  • Как найти каналы на телевизоре ксиаоми
  • Как найти нужный фильм вконтакте