Как найти физическую величину мощности

Содержание:

Мощность:

Одинаковую работу можно совершить за разные промежутки времени. Например, можно поднять груз за минуту, а можно поднимать этот же груз в течение часа.

Физическую величину, равную отношению совершенной работы Мощность в физике - виды, формулы и определение с примерами

Единицей мощности в SI является джоуль в секунду (Дж/с), или ватт (Вт), названный так в честь английского изобретателя Дж. Уатта. Один ватт — это такая мощность, при которой работу в 1 Дж совершают за 1 с. Итак, Мощность в физике - виды, формулы и определение с примерами

Человек может развивать мощность в сотни ватт. Чтобы оценить, насколько могущество человеческого разума, создавшего двигатели, больше «могущества» человеческих мускулов, приведем такие сравнения:

  • мощность легкового автомобиля примерно в тысячу раз больше средней мощности человека;
  • мощность авиалайнера примерно в тысячу раз больше мощности автомобиля;
  • мощность космического корабля примерно в тысячу раз больше мощности самолета.

Мощность

Механическая работа всегда связана с движением тел. А движение происходит во времени. Поэтому и выполнение работы, как и превращение механической энергии, всегда происходит на протяжении определенного времени.

Работа выполняемая на протяжении определенного времени:

Простейшие наблюдения показывают, что время выполнения работы может быть разным. Так, школьник может подняться по лестнице на пятый этаж за 1-2 мин, а пожилой человек — не меньше чем за 5 мин. Грузовой автомобиль КрАЗ может перевезти определенный груз на расстояние 50 км за 1 ч. Но если этот груз частями начнет перевозить легковой автомобиль с прицепом, то потратит на это не меньше 12 ч.

Для описания процесса выполнения работы, учитывая его скорость, используют физическую величину, которая называется мощностью.

Что такое мощность

Мощность — это физическая величина, которая показывает скорость выполнения работы и равна отношению работы ко времени, за которое эта работа выполняется.

Так как при выполнении работы происходит превращение энергии, то можно считать, что мощность характеризует скорость превращения энергии.

Как рассчитать мощность

Для расчета мощности нужно значение работы разделить на время, за которое эта работа была выполнена:

Мощность в физике - виды, формулы и определение с примерами

Если мощность обозначить латинской буквой Мощность в физике - виды, формулы и определение с примерами, то формула для расчета мощности будет такой

Мощность в физике - виды, формулы и определение с примерами

Единицы мощности

Для измерения мощности используется единица ватт (Вт). При мощности 1 Вт работа 1 Дж выполняется за 1 с:

Мощность в физике - виды, формулы и определение с примерами

Единица мощности названа в честь английского механика Джеймса Уатта, который внес значительный вклад в теорию и практику построения тепловых двигателей.

Мощность в физике - виды, формулы и определение с примерамиДжеймс Уатт (1736-1819) — английский физик и изобретатель. 

Главная заслуга Уатта в том, что он отделил водяной конденсатор от нагревателя и сконструировал насос для охлаждения конденсатора. Фактически он увеличил разность температур между нагревателем и конденсатором (холодильником), благодаря чему увеличил экономичность паровой машины. Позже теоретически это обоснует Сади Карно.

Он один из первых высказал предположение, что вода — это сложное вещество, состоящее из водорода и кислорода.

Как и для других физических величин, для единицы мощности существуют производные единицы:

Мощность в физике - виды, формулы и определение с примерами

Пример №1

Определить мощность подъемного крана, если работу 9 МДж он выполняет за 5 мин.

Дано:

Мощность в физике - виды, формулы и определение с примерами

Решение

По определению Мощность в физике - виды, формулы и определение с примерами поэтому

Мощность в физике - виды, формулы и определение с примерами

Ответ. Мощность крана 30 кВт.

Пример №2

Человек массой 60 кг поднимается на пятый этаж дома за 1 мин. Высота пяти этажей дома равна 16 м. Какую мощность развивает человек?

Дано:

Мощность в физике - виды, формулы и определение с примерами

Решение

По определению Мощность в физике - виды, формулы и определение с примерами

Работа определяется Мощность в физике - виды, формулы и определение с примерамиМощность в физике - виды, формулы и определение с примерами

Тогда Мощность в физике - виды, формулы и определение с примерами

Мощность в физике - виды, формулы и определение с примерами

Ответ. Человек развивает мощность 160 Вт.

Зная мощность и время, можно рассчитать работу:

Мощность в физике - виды, формулы и определение с примерами

Скорость движения зависит от мощности

Мощность связана со скоростью соотношением:

Мощность в физике - виды, формулы и определение с примерами

где Мощность в физике - виды, формулы и определение с примерами — сила, которая выполняет работу; Мощность в физике - виды, формулы и определение с примерами — скорость движения.

Если известны мощность двигателя и значения сил сопротивления, то можно рассчитать возможную скорость автомобиля или другой машины, которая выполняет работу:

Мощность в физике - виды, формулы и определение с примерами

Таким образом, из двух автомобилей при равных силах сопротивления большую скорость будет иметь тот, у которого мощность двигателя больше.

Каждый конструктор знает, что для увеличения скорости движения автомобиля, самолета или морского корабля нужно или увеличивать мощность двигателя, или уменьшать силы сопротивления. Поскольку увеличение мощности связано с увеличением потребления топлива, то средствам современного транспорта, как правило, придают специфическую обтекаемую форму, при которой сопротивление воздуха будет наименьшим, а все подвижные части изготавливают так, чтобы сила трения была минимальной.

Итоги:

  • Существуют два вида механической энергии: кинетическая и потенциальная.
  • Если тело перемещается или деформируется под действием силы, то выполняется механическая работа.
  • Простыми механизмами являются рычаги и блоки.
  • Ни один простой механизм не дает выигрыша в работе.
  • Качество механизма определяется коэффициентом полезного действия, который определяет часть полезной работы в общей выполненной работе.
  • Тело, при перемещении которого может быть выполнена работа, обладает энергией.
  • Взаимодействующие тела обладают потенциальной энергией.
  • Движущееся тело обладает кинетической энергией, которая зависит от скорости и массы тела.
  • Потенциальная и кинетическая энергии могут превращаться друг в друга. Такие превращения происходят в равной мере, если отсутствуют силы трения.
  • Сумму кинетической и потенциальной энергий называют полной механической энергией системы.
  • В замкнутой системе при отсутствии сил трения сумма кинетической и потенциальной энергий остается постоянной.
  • Закон сохранения и превращения энергии подтверждает невозможность существования вечного двигателя (perpetuum mobile).
  • Мощность характеризует скорость превращения одного вида энергии в другой.

Механическая работа и мощность

С помощью импульса невозможно описать все случаи взаимодействия. Поэтому в физике применяют еще и понятие механической работы.
В механике работа зависит от значения и направления силы, а также перемещения точки ее приложения. Из курса физики 8 класса вам известно, что

A = Fs,

где F — значение силы, действующей на тело; s — модуль перемещения тела.

Мощность в физике - виды, формулы и определение с примерами

Если сила F постоянна, а перемещение Мощность в физике - виды, формулы и определение с примерами прямолинейное (рис. 2.65), то работа Мощность в физике - виды, формулы и определение с примерами

где s = Мощность в физике - виды, формулы и определение с примерами — угол между направлением действия силы и перемещения.

Робота является величиной скалярной. Произведение Мощность в физике - виды, формулы и определение с примерами — проекция действующей силы на направление перемещения.

Легко заметить, что если Мощность в физике - виды, формулы и определение с примерами < 90°, то работа силы положительная, при Мощность в физике - виды, формулы и определение с примерами = 90° (сила перпендикулярна к перемещению) работа равна нулю, а при Мощность в физике - виды, формулы и определение с примерами — отрицательная.

Пример №3

Девочка тянет санки равномерно, прикладывая к веревке силу 50 Н. Веревка натягивается под углом 30° к горизонту (рис. 2.66). Какую работу выполнит девочка, переместив санки на 20 м?
Дано:

F = 50 Н,

s = 20 м, Мощность в физике - виды, формулы и определение с примерами = 30°.
А-?
 

Решение

По определению Мощность в физике - виды, формулы и определение с примерами

Соответственно Мощность в физике - виды, формулы и определение с примерами
Ответ: А = 870 Дж (работа силы положительная, поскольку cos 30° > 0).
Мощность в физике - виды, формулы и определение с примерами

  • Заказать решение задач по физике

Пример №4

Решим предыдущую задачу для случая, когда девочка удерживает санки, съехавшие с горки (рис. 2.67). В данном случае Мощность в физике - виды, формулы и определение с примерами = 150°.
Дано:

F = 50 Н, s = 20 м,

Мощность в физике - виды, формулы и определение с примерами = 150°.

А — ?
 

Решение

А = Fscosa;

А = 50 Н • 20 м • (-0,87) Мощность в физике - виды, формулы и определение с примерами -870 Дж.

Ответ: А = -870 Дж (работа силы отрицательная, поскольку cos 150° < 0).

Таким образом, в зависимости от направления действия силы по отношению к перемещению работа может иметь положительные и отрицательные значения.

Например, работа, которую выполняет двигатель автомобиля, будет положительной, поскольку направление силы тяги автомобиля совпадает с направлением его движения. Положительной будет и работа человека, поднимающего какой-либо груз с земли на определенную высоту. Силы трения, действующие на автомобиль, выполняют отрицательную работу, поскольку направлены в противоположном направлении к перемещению.

Возможны случаи, когда работа равна нулю, хотя перемещение тела происходит. Например, если Мощность в физике - виды, формулы и определение с примерами = 90°, то работа силы равна нулю, поскольку cos90° = 0. Сила тяжести, действующая на спутник Земли, который движется по круговой орбите, работы не выполняет.

Мощность — это физическая величина, характеризующая скорость совершения работы. Поскольку во время выполнения работы происходит превращение энергии, можно сделать вывод, что мощность показывает скорость превращения одного вида энергии в другой.

В механике мощность обозначают буквой N и рассчитывают по формуле

N= — =—,

t t

где Мощность в физике - виды, формулы и определение с примерами — изменение энергии; А — работа; t — время.

Если известны мощность и время, за которое совершена работа, то можно рассчитать и саму работу:
A = Nt.

Основная единица измерения мощности — ватт (Вт):
Мощность в физике - виды, формулы и определение с примерами

Всё о мощности

Одна и та же работа в разных случаях может быть выполнена за различные промежутки времени, т. е. она может совершаться неодинаково быстро. Например, при подъеме груза на определенную высоту подъемным краном (рис. 148) будет затрачено гораздо меньше времени, чем при использовании лебедки.

Для характеристики процесса выполнения работы важно знать не только ее численное значение, но и время, за которое она выполняется. Очевидно, что чем меньшее время требуется для выполнения данной работы, тем эффективнее работает машина, механизм и др.

Величина, характеризующая быстроту совершения работы, называется мощностью. Ее обычно обозначают буквой Р.

Если в течение промежутка времени Δt была совершена работа А, то средняя мощность равна отношению работы к этому промежутку времени:
Мощность в физике - виды, формулы и определение с примерами

Из определения видно, что мощность численно равна работе, совершаемой в единицу времени. Таким образом, единицей мощности является джоуль в секунду  Мощность в физике - виды, формулы и определение с примерами. Эта единица получила название ватт (Вт): 1 Вт = 1 Мощность в физике - виды, формулы и определение с примерами. Это название дано в честь английского ученого Джеймса Уатта — изобретателя универсального парового двигателя. Уаттом была впервые введена единица мощности, которая и до сих пор используется для характеристики мощности различных двигателей — 1 лошадиная сила (1 л. с. = 736 Вт).

Понятно, что во времена Уатта на заре технической революции мощность построенной паровой машины было естественно сравнить с мощностью лошади — единственным в то время «двигателем».

Может ли человек развивать мощность, равную 1 л. с.? Ответ на этот вопрос положительный. Рассмотрим разбег спортсмена на короткие дистанции. Хорошие спортсмены дистанцию в 100 м пробегают за 10 с, т. е. их средняя скорость 10 Мощность в физике - виды, формулы и определение с примерами. Разбег длится 3 с, а работа A, которую совершают мышцы спортсмена, не может быть меньше, чем кинетическая энергия Мощность в физике - виды, формулы и определение с примерами, приобретенная им за время разбега. Следовательно, средняя мощность не меньше, чем

Мощность в физике - виды, формулы и определение с примерами

Если предположить, что масса спортсмена т = 80 кг, то
Мощность в физике - виды, формулы и определение с примерами

Разумеется, развивать такую мощность длительное время не сможет даже очень тренированный человек.Если известна мощность, то работа выражается равенством:
A = P∆t.    (2)

Это позволяет ввести еще одну единицу работы (а значит, и энергии) следующим путем. За единицу работы можно принять работу, которая совершается некоторой силой в течение 1 с при мощности в 1 Вт. Она называется ватт-секундой. Понятно, что 1 Вт.c = 1 Дж. Часто используются более крупные внесистемные единицы работы и энергии: киловатт-час (кВт.ч) и мегаватт-час (МВт . ч):

1 кВт .ч= 1000кВт.3600 с = 3,6∙ 106 Дж;

1 МВт.ч= 1000кВт.3600 с = 3,6∙ 109 Дж.

При движении любого тела на него в общем случае действует несколько сил. Каждая сила совершает работу, и, следовательно, для каждой силы мы можем вычислить мощность.

Наиболее общее выражение для работы постоянной силы, направленной под углом Мощность в физике - виды, формулы и определение с примерами к направлению движения. А = F∆rcosМощность в физике - виды, формулы и определение с примерами. Поэтому средняя мощность этой силы:
Мощность в физике - виды, формулы и определение с примерами   (3)

так как Мощность в физике - виды, формулы и определение с примерами — модуль средней скорости тела.

Ясно, что если модуль силы в некоторой момент времени равен F и модуль мгновенной скорости υ, а угол между ними Мощность в физике - виды, формулы и определение с примерами, то мгновенное значение мощности этой силы:
P = FυcosМощность в физике - виды, формулы и определение с примерами.    (4)

Как следует из формулы (4), при заданной мощности мотора сила тяги тем меньше, чем больше скорость движения автомобиля. Вот почему водители при подъеме в гору, когда нужна наибольшая сила тяги, переключают двигатель на пониженную передачу. Для движения по горизонтальному участку с постоянной скоростью достаточно, чтобы сила тяги преодолевала силу сопротивления движению. Формула (4) позволяет объяснить, что быстроходные поезда, автомобили, корабли, самолеты нуждаются в двигателях большой мощности и конструкции, обеспечивающей как можно меньшую силу сопротивления.

Любой двигатель или механическое устройство предназначены для выполнения определенной механической работы. Эта работа называется полезной работой. Для двигателя автомобиля — это работа по его перемещению, для токарного станка — работа по вытачиванию детали и т. п.
В любой машине, в любом двигателе полезная работа всегда меньше той энергии, которая затрачивается для приведения их в действие, потому что всегда существуют силы трения, работа которых приводит к нагреванию каких-либо частей устройства. А нагревание нельзя считать полезным результатом действия машины.

Поэтому каждое устройство характеризуется особой величиной, которая показывает, насколько эффективно используется подводимая к нему энергия. Эта величина называется коэффициентом полезного действия (КПД) и обычно обозначается греческой буквой η (эта).

Коэффициентом полезного действия называется отношение полезной )аботы, совершенной машиной за некоторый промежуток времени, ко всей утраченной работе (подведенной энергии) за тот же промежуток времени:
Мощность в физике - виды, формулы и определение с примерами   (5)

Коэффициент полезного действия обычно выражается в процентах, поскольку и полезную, и затраченную работы можно представить как произведение мощности на промежуток времени, в течение которого работала машина, то коэффициент полезного действия можно определить следующим образом:
Мощность в физике - виды, формулы и определение с примерами
где Pn и Р3 — полезная мощность и затраченная мощность соответственно.

Главные выводы:

  1. Мощность численно равна работе, которую совершает сила в единицу времени.
  2. Мощность силы равна произведению силы на скорость тела и косинус угла между направлением силы и скорости в данный момент времени.
  3. Коэффициентом полезного действия называется отношение полезной работы, совершенной машиной за некоторый промежуток времени, ко всей затраченной работе (подведенной энергии) за тот же промежуток времени.
  • Взаимодействие тел
  • Механическая энергия и работа
  • Золотое правило механики
  • Потенциальная энергия
  • Криволинейное движение
  • Ускорение точки при ее движении по окружности
  • Инерциальные системы отсчета
  • Энергия в физике

Мощность как физическая величина, формула мощности

Значение, показывающее, как быстро происходят преобразование, трансляция или потребление энергии в какой-либо системе, – мощность. Для характеристик энергетических условий важно, насколько быстро выполняется процесс. Работа, реализуемая в единицу времени, именуется мощностью:

P = А/t,

где:

  • А – работа;
  • t – время.

Можно учитывать отдельно мощность в механике и электрическую мощность.

Чтобы получить ответ на вопрос: в чем измеряется механическая мощность, рассматривают действие силы на движущееся тело. Сила проделывает работу, мощность в таком случае определяется по формуле:

N = F*v,

где:

  • F – сила;
  • v – скорость.

При вращательном движении эту величину определяют с учётом момента силы и частоты вращения, «об./мин.».

Мощность

Мощность
N , P , W = d A d t >>
СИ Вт
СГС эрг·с −1

Мо́щность

— скалярная физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени [1] .

Зависимость между электрическим током и мощностью

Плотность тока — что это такое и в чем измеряется

В электротехнике работой будет U – напряжение, которое перемещает 1 кулон, количество перемещаемых в единицу времени кулонов – это ток (I). Мощность электротока или электрическую мощность P получают, умножив ток на напряжение:

P = U*I.

Это полная работа, выполненная за 1 секунду. Зависимость здесь прямая. Изменяя ток или напряжение, изменяют мощность, расходуемую устройством.

Одинакового значения Р добиваются, варьируя одну из двух величин.

Как измеряют мощность разных видов

Измерение разных мощностных видов происходит по формулам, выведенным с конца прошлого и позапрошлого столетия. Для каждой разновидности есть свое точное алгебраическое правило. Так, измерить механическую можно по первой формуле, а электрическую по второй. Что касается гидравлической, ее можно вычислить по третьему алгебраическому правилу.

Механическая

Механической мощностью является скалярный вид произведения силового вектора на скоростной вектор, при котором движется какой-то объект. Исходя из формулы для вычисления этого показателя, чтобы отыскать его, необходимо знать показатель вектора силы со скоростным вектором, а последний из них равен модулю силы, перемноженному на модуль скорости и векторный угол скорости с силой.

Что касается вычисления тела, которое совершает вращательные движения, можно отметить, что нужно иметь представление о показателе момента силы с угловой скоростью.

Вам это будет интересно Как устроен вольтметр, принцип действия и назначение прибора

Дополнительная информация! Если в задаче эти данные неизвестны, можно двукратное число Пи перемножить на частоту вращения в минуту на момент силы, а затем полученные сведения поделить на 60. Таким образом совершаются вычисления в механике, если нужно понять, какую силу имеет двигатель или прочий силовой агрегат.

Электрическая

Электрической мощностью называется величина, которая показывает, с какой скоростью или преобразованием двигается электрическая энергия. Для изучения мгновенной электрической мощностной характеристики на определенном участке цепи, необходимо знать значение тока и напряжения мгновенного тока и перемножить данные значения.

Чтобы понять, сколько составляет активный, полный, реактивный или мгновенный реактивный мощностный показатель, нужно знать точные цифры амплитуды тока, амплитуды напряжения, угла тока с напряжением, а также угловую скорость и время, поскольку все существующие физические формулы сводятся к этим параметрам. Также в формулах задействуется синус, косинус угла и значение 1/2.

Гидравлическая

Гидравлическим мощностным показателем в гидромашине или гидроцилиндре называется произведение машинного перепада давления на жидкостный расход. Как правило, это основная формулировка, взятая из единственной существующей формулы для вычисления.

Обратите внимание! Больше алгебраических и инженерных правил можно найти в прикладной науке о движениях жидкостей и газов, а именно в гидравлике.

Постоянного и переменного тока

Что касается мощности постоянного с переменным током, то чаще всего их причисляют к электрической разновидности. Конкретного понятия для двух разновидностей нет, однако их можно вычислить, исходя из имеющихся алгебраических установок. Так, мощностью постоянного тока является произведение силы тока и постоянного напряжения или же удвоенное значение силы тока на электрическое сопротивление, которое, в свою очередь, вычисляется делением двойного напряжения на обычное сопротивление.

Что касается переменного тока, это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Чтобы измерить эти показатели, можно воспользоваться как указанными выше приборами, так и фазометром. Этот прибор служит, чтобы вычислить реактивную разновидность по государственному эталону.

Вам это будет интересно Принцип действия и устройство магнитоуправляемого геркона

В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах. Приборами для ее вычисления выступает вольтметр, ваттметр. Основные формулы для самостоятельного расчета перечислены выше.

Определение единицы измерения мощности тока

Единица измерения мощности тока носит имя Джеймса Ватта, шотландского инженера-механика. 1 Вт – это мощность, которую вырабатывает ток 1 А при разности потенциалов 1 В.

кВа в кВт — как правильно перевести мощность

К примеру, источник при напряжении 3,5 В создаёт в цепи ток 0,2 А, тогда мощность тока получится:

P = U*I = 3,5*0,2 = 0,7 Вт.

Внимание! В механике мощность принято изображать буквой N, в электротехнике – буквой P. В чем измеряется n и P? Независимо от обозначения, это одна величина, и измеряется она в ваттах «Вт».

Мощность: определение, формула расчета, единица измерения.

Мощность — физическая величина, измеряемая отношением работы к промежутку времени, в течение которого она произведена.

Другими словами, мощность показывает, какая работа совершается за единицу времени (в СИ — за 1 с). Мощность определяется формулой:

.

где N — мощность, А — работа, совершенная за время М. Подставив в формулу вместо работы А ее выражение , получим:

Мощность равна произведению модулей векторов силы и скорости на косинус угла между этими векторами.

Мощность в системе СИ измеряется в ваттах (Вт). Один ватт (1 Вт) — это такая мощность, при которой за 1 с совершается работа 1 Дж: 1 Вт = 1 Дж/с.

Эта единица названа в часть английского изобретателя Дж. Ватта (Уатта), построившего пер­вую паровую машину. Сам Дж. Ватт (1736-1819) пользовался другой единицей мощности — ло­шадиной силой (л. с), которую он ввел для того, чтобы можно было сравнивать работоспособности паровой машины и лошади: 1 л. с. = 735,5 Вт.

В технике часто применяются более крупные единицы мощности — киловатт и мегаватт: 1 кВт = 1000 Вт, 1 МВт = 1000000 Вт.

Основные положения молекулярно-кинетической энергии и их опытные обоснования.

· Все тела состоят из частиц – атомов, молекул, ионов.

· Все частицы находятся в непрерывном хаотическом тепловом движении.

· Между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Таким образом, в молекулярно-кинетической теории объектом исследования является система, состоящая из большого количества частиц – макросистема. Для объяснения поведения такой системы законы механики не применимы. Поэтому основным методом исследования является статистический методизучения свойств вещества.

Для объяснения и предсказания явлений важно знатьосновные характеристики молекул:

Размеры

Оценка размера молекулы может быть сделана как размер кубика a в котором содержится одна молекула, исходя из плотности твердых или жидких веществ и массы одной молекулы:

Масса молекулОтношение массы вещества m к числу молекул N в данном веществе:

Относительная молекулярная массаОтношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:

Количество вещества

Количество вещества равно отношению числа частиц N в теле (атомов – в атомарном веществе, молекул – в молекулярном) к числу молекул в одном моле веществаNА:

Постоянная Авогадро

Количество молекул, содержащихся в 1 моль вещества.

Молярная масса

Молярной массой вещества называют массу вещества, взятого в количестве 1 моля.

В Международной системе единиц молярная масса вещества выражается в кг/моль.

Взаимодействие (количественно на основе опытов)

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях. С точки зрения МКТ агрегатные состояния различаются по значению среднего расстояния между молекулами и характеру движения молекул друг относительно друга.

Основные положения молекулярно-кинетической теории неоднократно подтверждались различными физическими экспериментами. Например, исследованием:

Диффу́зия — процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (вдоль вектора градиента концентрации).

Ватт и другие единицы измерения мощности

Говоря о том, в чем измеряется мощность, необходимо знать, о чём идёт речь. Ватт – это величина, соответствующая 1 Дж/с. Она принята в Международной Системе Единиц. В каких единицах ещё измеряется мощность? Раздел науки астрофизика работает с единицей под названием эрг/с. Эрг – очень маленькая величина, равная 10-7 Вт.

Формула механической мощности — средняя и мгновенная мощность

Ещё одна, поныне распространённая, единица из этого ряда – «лошадиная сила». В 1789 году Джеймс Ватт подсчитал, что груз весом 75 кг из шахты может вытащить одна лошадь и сделать это со скоростью 1 м/с. Исходя из подсчёта такой трудоёмкости, мощность двигателей допускается измерить этой величиной в соотношении:

1 л.с. = 0,74 кВт.

Интересно. Американцы и англичане считают, что 1 л.с. = 745.7 Вт, а русские – 735.5 Вт. Спорить, кто прав, а кто нет, не имеет смысла, так как мера эта внесистемная и не должна быть использована. Международная организация законодательной метрологии рекомендует изъять её из обращения.

В России при расчёте полиса КАСКО или ОСАГО используют эти данные силового агрегата автомобиля.

Единицы измерения

В Международной системе единиц (СИ) единицей измерения мощности является ватт (Вт), равный одному джоулю в секунду (Дж/с). В теоретической физике, астрофизике, в качестве единицы для мощности часто используют эрг в секунду (эрг/с).

Другой распространённой, но ныне устаревшей единицей измерения мощности, является лошадиная сила. В своих рекомендациях Международная организация законодательной метрологии (МОЗМ) относит лошадиную силу к числу единиц измерения, «которые должны быть изъяты из обращения как можно скорее там, где они используются в настоящее время, и которые не должны вводиться, если они не используются» [2] .

Соотношения между единицами мощности

Единицы Вт кВт МВт кгс·м/с эрг/с л. с.(мет.) л. с.(анг.)
1 ватт 1 10 −3 10 −6 0,102 10 7 1,36·10 −3 1,34·10 −3
1 киловатт 10 3 1 10 −3 102 10 10 1,36 1,34
1 мегаватт 10 6 10 3 1 102·10 3 10 13 1,36·10 3 1,34·10 3
1 килограмм-сила-метр в секунду 9,81 9,81·10 −3 9,81·10 −6 1 9,81·10 7 1,33·10 −2 1,31·10 −2
1 эрг в секунду 10 −7 10 −10 10 −13 1,02·10 −8 1 1,36·10 −10 1,34·10 −10
1 лошадиная сила (метрическая) 735,5 735,5·10 −3 735,5·10 −6 75 7,355·10 9 1 0,9863
1 лошадиная сила (английская) 745,7 745,7·10 −3 745,7·10 −6 76,04 7,457·10 9 1,014 1

Формула взаимосвязи между мощностью, напряжением и силой тока

В электротехнике работу рассматривают как некоторое количество энергии, отдаваемое источником питания на действие электроприбора в период времени. Поэтому электрическая мощность есть величина, описывающая быстроту трансформации или передачи электроэнергии. Её формула для постоянного тока выглядит так:

P = U*I,

где:

  • U – напряжение, В;
  • I – сила тока, А.

Для некоторых случаев, пользуясь формулой закона Ома, мощность можно вычислить, подставив значение сопротивления:

P = I*2*R, где:

  • I – сила тока, А;
  • R – сопротивление, Ом.

В случае расчётов мощности цепей переменного тока придётся столкнуться с тремя видами:

  • активная её формула: P = U*I*cos ϕ, где – коэффициент угла сдвига фаз;
  • реактивная рассчитывается: Q = U*I*sin ϕ ;
  • полная представлена в виде: S = √P2 + Q2, гдe P – aктивная, а Q2 – реактивная.

Расчёты для однофазной и трёхфазной цепей переменного тока выполняются по разным формулам.

Важно! Потребители электроэнергии на предприятиях в большинстве асинхронные двигатели, трансформаторы и другие индуктивные приёмники. При работе они используют реактивную мощность, а та, протекая по линиям электропередач, приводит ЛЭП к дополнительной нагрузке. Чтобы повысить качество энергии, используют компенсацию реактивной энергии в виде конденсаторных установок.

Формулы для измерения

Мощность — величина, которая непосредственным образом связана с другими показателями. Так, она прямым образом связана со временем, силой, скоростью, вектором силы и скоростью, модулем силы и скорости, моментом силы и частотой вращения. Нередко в формулах при вычислении электрической мощностной разновидности задействуется также число Пи, показатель сопротивления, мгновенный ток с напряжением на конкретном участке электрической сети, активная, полная и реактивная сила. Непосредственным участником в вычислении является амплитуда с угловой скоростью и начальной силой тока с напряжением.

Вам это будет интересно Расцветка шин по фазам

В расчетах гидравлической мощностной разновидности, принимает участие давление и расход жидкости. Нередко берется в расчеты показатель количества оборотов двигателя за конкретный промежуток времени.

Дополнительная информация! Чтобы рассчитать тягу, коэффициент полезного действия с другими рабочими параметрами устройства, изучается температура, сила трения и проводниковое сопротивление с реактивными нагрузками.

Приборы для измерения электрической мощности

Провести измерения мощности позволяет ваттметр. У него две обмотки. Одна включается в цепь последовательно, как амперметр, вторая параллельно, как вольтметр. В установках электроэнергетики ваттметры определяют значения в киловатт-час «кВт*час». В измерениях нуждается не только электрическая, а также лазерная энергия. Приборы, способные измерять этот показатель, изготавливаются как стационарного, так и переносного исполнения. С их помощью оценивают уровень лазерных излучений оборудования, применяющего этот вид энергии. Один из портативных измерителей – LP1, японского производителя. LP1 разрешает напрямую определять значения силы светового излучения, к примеру, в визуальном пятне оптических устройств проигрывателей DVD.

Электрическая мощность

Основная статья: Электрическая мощность

Электри́ческая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность P ( t ) {displaystyle P(t)} участка электрической цепи:

P ( t ) = I ( t ) ⋅ U ( t ) {displaystyle P(t)=I(t)cdot U(t),} где I ( t ) {displaystyle I(t)} — мгновенный ток через участок цепи; U ( t ) {displaystyle U(t)} — мгновенное напряжение на этом участке.

При изучении сетей переменного тока, помимо мгновенной мощности, соответствующей общефизическому определению, вводятся также понятия:

  • активной мощности, равной среднему за период значению мгновенной мощности, мгновенная активная мощность:

p ( t ) = 1 2 ⋅ U m ⋅ I m ⋅ cos ⁡ φ − 1 2 ⋅ U m ⋅ I m ⋅ cos ⁡ φ cos ⁡ ( 2 ω t ) . {displaystyle p(t)={1 over 2}cdot U_{m}cdot I_{m}cdot cos varphi -{1 over 2}cdot U_{m}cdot I_{m}cdot cos varphi cos(2omega t).}

  • реактивной мощности, которая соответствует энергии, циркулирующей без диссипации от источника к потребителю и обратно, мгновенная реактивная мощность:

при φ > 0 : {displaystyle varphi >0{:}} q ( t ) = 1 2 ⋅ U m ⋅ I m ⋅ sin ⁡ φ ⋅ cos ⁡ ( 2 ω t + π 2 ) , {displaystyle q(t)={frac {1}{2}}cdot U_{m}cdot I_{m}cdot sin varphi cdot cos {Bigl (}2omega t+{frac {pi }{2}}{Bigr )},} при φ < 0 : {displaystyle varphi <0{:}} q ( t ) = 1 2 ⋅ U m ⋅ I m ⋅ sin ⁡ φ ⋅ cos ⁡ ( 2 ω t − π 2 ) . {displaystyle q(t)={frac {1}{2}}cdot U_{m}cdot I_{m}cdot sin varphi cdot cos {Bigl (}2omega t-{frac {pi }{2}}{Bigr )}.}

  • полной мощности, вычисляемой как произведение действующих значений тока и напряжения без учёта сдвига фаз. мгновенная полная мощность:

s ( t ) = 1 2 ⋅ U m ⋅ I m ⋅ cos ⁡ φ − 1 2 ⋅ U m ⋅ I m ⋅ c o s ( 2 ω t − φ ) , {displaystyle s(t)={1 over 2}cdot U_{m}cdot I_{m}cdot cos varphi -{1 over 2}cdot U_{m}cdot I_{m}cdot cos{Bigl (}2omega t-varphi {Bigr )},} где I m {displaystyle I_{m}} — амплитуда тока; U m {displaystyle U_{m}} — амплитуда напряжения; φ {displaystyle varphi } — угол между начальным углом напряжения ψ u {displaystyle psi _{u}} и начальным углом силы тока ψ i {displaystyle psi _{i}} — ( φ = ψ u − ψ i ) ; {displaystyle (varphi =psi _{u}-psi _{i}){;}} ω {displaystyle omega } — угловая скорость; t {displaystyle t} — время.

Приборы для измерения электрической мощности и мощности излучения

Этот раздел не завершён.

Вы поможете проекту, исправив и дополнив его.

Аналоговый стрелочный ваттметр

  • Ваттметры (в том числе варметры) — измерительные приборы, предназначенные для определения мощности электрического тока или электромагнитного излучения.

По назначению и диапазону частот ваттметры можно разделить на три категории — низкочастотные (и постоянного тока), радиочастотные и оптические.

Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и её вывода оператору ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

Мощность в бытовых электрических приборах

Для нагрева металла нити накаливания лампочки, увеличения температуры рабочей поверхности утюга или иного бытового прибора, тратится определённое количество электроэнергии. Её величину, отбираемую нагрузкой за час, считают потребляемой мощностью этого аппарата.

Внимание! Если на лампочке написано «40 W, 230 V», это значит, что за 1 час она потребляет из сети переменного тока 40 Вт. Зная количество лампочек и параметры, подсчитывают, сколько энергии тратится на освещение комнат в месяц.

Мощность некоторых электрических приборов, Вт

Средние значения потребления электроэнергии бытовых устройств:

  • плиты – 110006000 Вт;
  • холодильники – 150-600 Вт;
  • стиральные машины – 1000-3000 Вт;
  • пылесосы – 1300-4000 Вт;
  • электрочайники – 2000-3000 Вт.

Параметры каждого бытового прибора указываются в паспорте, а также обозначаются на корпусе. Там определены точные значения для информации потребителя.

Мощность

Это величина, отображающая как быстро выполняется работа или как быстро энергия передается из одного места в другое или преображается из одного типа в другой.

В разных областях физики мощность принято обозначать разными символами, например в механике — NN, в электротехнике — PP, а также иногда WW.
Для нахождения величины мощности используют разные формулы:

P  =  △E△tP;=;frac{triangle E}{triangle t},

где PP мощность, ΔEΔE – изменение энергии, ΔtΔt – изменение времени. Или другая интерпретация:

P  =  Fvcos⁡αP;=;Fvcosalpha,

в случае, если на тело, движущееся со скоростью vv, действует определенная сила FF, то она совершает работу. Мощность будет равна скалярному произведению силы на скорость, на косинус угла между ними.

Стандартная единица мощности – это ватт, обозначенный Вт (или WW). Получила название в честь шотландского инженера-механика Джеймса Уатта.

Выходная мощность электрического оборудования, тостера или микроволновой печи, указывается в ваттах. Исходя из понятия мощности один ватт соответсвует одному джоулю работы, выполняемой за одну единицу времени.

Еще одна единица мощности, которая часто используется, особенно, в автомобильной индустрии: лошадиная сила.

Она обозначается сокращением л.с. и берет свое начало в XVII веке. С тех пор метрическая мощность была определена как мощность, необходимая для подъема массы 75 кг на расстояние 1 метр за 1 секунду.

Как измерить переменную мощность?

Использование электричества – один из примеров применения мощности, которая изменяется со временем.

Минимальные потребности электрической энергии наблюдаются в течение дня, но сопровождаются пиковыми скачками в вечернее время при приготовлении пищи, освещения и обогрева.

Существует три способа выражения мощности, которые здесь важны:

  1. мгновенная мощность PмгP_{мг};
  2. средняя мощность PсрP_{ср};
  3. пиковая PпикP_{пик}.
Мгновенная мощность

Это мощность сейчас, в данный момент времени.

Если мы рассмотрим уравнение для мощности P  =  △E△tP;=;frac{triangle E}{triangle t}, то это измерение, получается, когда ΔtΔt очень мало.

Средняя мощность

Это мощность, которую считают за очень длительное время, то есть, когда ΔtΔt в уравнении для мощности очень велико.

Пиковая мощность

Это максимальное значение, которое мгновенная мощность может иметь в конкретной системе в течение длительного периода.

Автомобильные двигатели и стереосистемы являются примером систем, способные выдавать пиковую мощность, которая намного выше их номинальной средней мощности. Тем не менее, как правило, это возможно только в течение короткого времени, чтобы избежать повреждений устройств.

Тест по теме «Мощность»

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

Работа силы

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:


Важно!

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Работа силы тяжести

Модуль силы тяжести: Fтяж = mg

Работа силы тяжести: A = mgs cosα

Работа силы трения скольжения

Модуль силы трения скольжения: Fтр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Работа силы упругости

Модуль силы упругости: Fупр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

s = x1 – x2

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0о, то cosα = 1.
  2. Если 0о < α < 90o, то cosα > 0.
  3. Если α = 90о, то cosα = 0.
  4. Если 90о < α < 180o, то cosα < 0.
  5. Если α = 180о, то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180о). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0о). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Геометрический смысл работы

Графическое определение

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

A = Sфиг

Мощность

Определение

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

A = Fтs

Fт — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

Определения:

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

A = Nt

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Устройство

Работа полезная и полная

КПД

Неподвижный блок, рычаг

Aполезн = mgh

Асоверш.

Наклонная плоскость

Aполезн = mgh

Асоверш. = Fl

l — совершенный путь (длина наклонной плоскости).

Пример №4. Определите полезную мощность двигателя, если его КПД равен 40%, а его мощность по паспорту равна 100 кВт.

В данном случае необязательно переводить единицы измерения в СИ. Но в таком случае ответ мы тоже получим в кВт. Из этой формулы выразим полезную мощность:

Задание EF17557

Какую мощность развивает сила тяги трактора, перемещая прицеп со скоростью 18 км/ч, если она составляет 16,5 кН?

Ответ:

а) 916 Вт

б) 3300 Вт

в) 82500 Вт

г) 297000 Вт


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Записать формулу для расчета мощности.

3.Выполнить общее решение задачи.

4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Сила тяги, перемещающая прицеп, равна: Fт = 16,5 кН.

 Скорость перемещения прицепа под действием силы тяги: v = 18 км/ч.

Переведем единицы измерения в СИ:

16,5 кН = 16,5∙103 Н

18 км/ч = 18000/3600 м/с = 5 м/с

Мощность равна отношению работы ко времени, в течение которого эта работа совершалась:

N=At

Но работа равна произведению силы, перемещения и косинуса угла между векторами силы и перемещения. В данном случае будем считать, что угол равен нулю, следовательно косинус — единице. Тогда работа равна:

A = Fs

Тогда мощность равна:

N=Fst=Fv=16,5·103·5=82500 (Вт)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17574

С вершины наклонной плоскости из состояния покоя скользит с ускорением лёгкая коробочка, в которой находится груз массой m (см. рисунок). Как изменятся время движения, ускорение и модуль работы силы трения, если с той же наклонной плоскости будет скользить та же коробочка с грузом массой m/2? Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Время движения

Ускорение

Модуль работы силы трения


Алгоритм решения

1.Установить наличие и характер зависимости кинематических характеристик движения от массы тела.

2.Вывести формулу для модуля работы силы трения.

3.Установить, как изменится модуль работы силы трения при уменьшении массы тела вдвое.

Решение

При скольжении с наклонной плоскости происходит равноускоренное движение. Положение тела в любой момент времени при таком движении можно определить с помощью кинематических уравнений:

x=xo+v0xt+axt22

y=yo+v0yt+ayt22

Из этих уравнений видно, что ускорение и время никак не зависят от массы тела. Следовательно, при уменьшении массы тела в 2 раза его время движения и ускорение не изменятся.

Чтобы выразить модуль работы силы трения, выберем такую систему отсчета, чтобы вектор силы трения был расположен вдоль оси Ox.Тогда сила трения будет равна:

Fтр = μmg

Известно, что работа определяется формулой:

A = Fs cosα

Тогда работа силы трения равна:

A = μmgs cosα

Вектор силы трения всегда направлен противоположно вектору перемещения. Поэтому косинус угла между ними равен –1. Но нас интересует только модуль работы. Поэтому будем считать, что он равен:

A = μmgs

Модуль работы силы трения и масса тела зависят прямо пропорционально. Следовательно, если массу тела уменьшить вдвое, то и модуль работы силы трения уменьшится вдвое.

Поэтому правильная последовательность цифр в ответе: 332.

Ответ: 332

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18646

В первой серии опытов брусок перемещают при помощи нити равномерно и прямолинейно вверх по наклонной плоскости. Во второй серии опытов на бруске закрепили груз, не меняя прочих условий.

Как изменятся при переходе от первой серии опытов ко второй сила натяжения нити и коэффициент трения между бруском и плоскостью?

Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Сила натяжения нити Коэффициент трения

Алгоритм решения

  1. Определить, какая величина изменилась во второй серии опытов.
  2. Определить, как зависит от этой величины сила натяжения нити.
  3. Определить, как зависит от этой величины коэффициент трения.

Решение

Когда к бруску подвесили груз, увеличилась масса. Когда тело на нити перемещается вверх прямолинейно и равномерно, сила натяжения нити определяется модулем силы тяжести:

T = mg

Эта формула показывает, что сила натяжения нити и масса тела зависят прямо пропорционально. Если, добавив к бруску груз, масса увеличится, то сила натяжения нити тоже увеличится.

Коэффициент трения — это величина, которая зависит только от материалов и типа поверхности. Поэтому увеличение массы тела на него никак не повлияют.

Верная последовательность цифр в ответе: 13.

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18271

Определите коэффициент полезного действия атомной электростанции, расходующей за неделю уран-235 23592U массой 1,4 кг, если её мощность равна 38 МВт. При делении одного ядра урана-235 выделяется энергия 200 МэВ.


Алгоритм решения

1.Записать исходные данные и перевести их в СИ.

2.Записать формулу для определения КПД атомной электростанции.

3.Решить задачу в общем виде.

4.Подставить известные данные и вычислить искомую величину.

5.Массовое число: A = 235.

6.Зарядовое число: Z = 92.

Решение

Запишем исходные данные:

 Энергия, выделяемая при делении одного ядра урана-235: Q0 = 200 МэВ.

 Масса урана-235: m = 1,4 кг.

 Время, в течение которого происходит деление: t = 1 неделя.

 Мощность атомной электростанции: N = 38 МВт.

Переведем все единицы измерения в СИ:

1 эВ = 1,6∙10–19 Дж

200 МэВ = 200∙106∙1,6∙10–19 Дж = 320∙10–13 Дж

1 неделя = 7∙24∙60∙60 с = 604,8∙103 с

38 МВт = 38∙106 Вт

КПД атомной электростанции есть отношение полезной работы к выделенной за это же время энергии:

η=AполезнQ100%

Полезную работу мы можем вычислить по формуле:

A=Nt

Выделенное количество теплоты мы можем рассчитать, вычислив количество атомов, содержащихся в 1,4 кг урана-235 и умножив их на энергию, выделяемую при делении одного такого атома.

Количество атомов равно произведению количество молей на постоянную Авогадро:

Nкол.атомов = νNA

Количество молей равно отношения массы вещества к его молярной массе, следовательно:

Молярная масса численно равна массовому числу в граммах на моль. Следовательно:

M = A (г/моль) = A∙10–3 (кг/моль)

Отсюда количество атомов равно:

Энергия, выделенная всеми атомами, равна:

Теперь можем вычислить КПД:

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 12.1k

Содержание:

  • Определение и формулы мощности
  • Единицы измерения мощности
  • Примеры решения задач

Определение и формулы мощности

Определение

Мощностью некоторой силы является скалярная физическая величина, которая характеризует скорость произведения работы данной силой. Мощность часто обозначают буквами: N, P.

$$P=frac{Delta A}{Delta t}(1)$$

В том случае, если за равные малые промежутки времени выполняется разная работа, то мощность является переменной во времени.
Тогда вводят мгновенное значение мощности:

$$P=lim _{Delta t rightarrow 0} frac{delta A}{Delta t}=frac{d A}{d t}$$

где $delta A$ – элементарная работа, которую выполняет сила,
$Delta t$ – отрезок времени в течение, которого данная работа была выполнена.
Если мгновенная мощность не является постоянной величиной, то выражение (1) определяет среднюю мощностьза время
$Delta t$.

Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:

$$P=bar{F} bar{v}=F_{tau} v$$

где $F_{tau}$ – проекция силы
$bar{F}$ на направление вектора скорости (
$bar{v}$).

При поступательном движении некоторого тела, имеющего массу m под воздействием силы
$bar{F}$ мощность можно вычислить, применяя формулу:

$$P=m v dot{v}(4)$$

В общем случае произвольного перемещения твердого тела суммарная мощность есть алгебраическая сумма мощностей всех сил,
которые действуют на тело:

$$P=sum_{i=1}^{k} bar{F}_{i} cdot bar{v}_{i}(5)$$

где $bar{v}_{i}$ – скорость перемещения точки, к которой приложена сила
$bar{F}_{i}$.

В случае поступательного движения твердого тела со скоростью $bar{v}$ мощность можно определить при помощи формулы:

$$P=overline{F v}(6)$$

где $bar{F}$ – главный вектор внешних сил.

Если твердое тело совершает вращение вокруг точки О или вокруг неподвижной оси, которая проходит через точку О, то формулой для счет мощности можно считать выражение:

$$P=bar{M} bar{omega}(7)$$

где $bar{M}$ – главный момент внешних сил по отношению к точке О,
$bar{omega}$ – мгновенная угловая скорость вращения тела.

Единицы измерения мощности

Основной единицей измерения мощности силы в системе СИ является: [P]=вт (ватт)

В СГС: [P]=эрг/с.

1 вт=107 эрг/( с).

Примеры решения задач

Пример

Задание. Какова мощность (P(t)), развиваемая силой, если она действует на тело, которое имеет массу m и
под воздействием приложенной силы движется поступательно. Сила описывается законом:
$F(t)=2 t cdot bar{i}+3 t^{2} bar{j}$

Решение. В качестве основы для решения задачи используем формулу для мощности вида:

$$P=F cdot v(1.1)$$

Из второго закона Ньютона мы имеем:

$$F=m a rightarrow a=frac{F}{m} ; v=int a d t=int frac{F}{m} d t=frac{1}{m} int F d t(1.2)$$

В выражение (2.2) подставим уравнение, заданное в условии задачи для F(t), имеем:

$$v=frac{1}{m} intleft(2 t cdot bar{i}+3 t^{2} bar{j}right) d t=frac{1}{m}left(t^{2} cdot bar{i}+t^{3} bar{j}right)(1.3)$$

Подставим выражение для скорости из (1.3) в (1.1), получим:

$$P=left(2 t cdot bar{i}+3 t^{2} bar{j}right) frac{1}{m}left(t^{2} cdot bar{i}+t^{3} bar{j}right)=frac{1}{m}left(2 t^{3}+3 t^{5}right)$$

Ответ. $P=frac{1}{m}left(2 t^{3}+3 t^{5}right)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Какова мгновенная мощность силы тяжести на высоте h/2. если камень массы m падает с высоты h. Сопротивление воздуха не учитывать.

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем формулу для мгновенной мощности вида:

$$P=bar{F} cdot bar{v}(2.1)$$

Сила, действующая на тело – сила тяжести. Она направлена по оси Y, выражение для ее проекции на ось Y запишем как:

$$F=m g(2.2)$$

В начальный момент времени тело имело скорость равную нулю, тогда скорость тела в проекции на ось Y можно вычислить, используя выражение:

$$v=v_{0}+g t=g t(2.3)$$

где v0=0.

Найдем момент времени, в который тело окажется на половине высоты (y=h/2), применим уравнение, которое описывает равноускоренное
движение (из начальных условий y0=0, v0=0):

$$y=y_{0}+v_{0} t+frac{g t^{2}}{2}=frac{g t^{2}}{2}=frac{h}{2} rightarrow t=sqrt{frac{h}{g}}(2.4)$$

Используем выражения (2.2), (2.3), (2.4) подставим в (2.1), получим искомую мгновенную мощность силы тяжести на половине пути свободно падающего тела:

$$P=m g cdot g sqrt{frac{h}{g}}=m sqrt{g^{3} h}$$

Ответ. $P=m sqrt{g^{3} h}$

Читать дальше: Формула плотности вещества.

Понравилась статья? Поделить с друзьями:
  • Как найти кан шину в автомобиле
  • Как найти коэффициент трения между брусками
  • Как найти диагонали параллелепипеда зная его стороны
  • Как составить распоряжение на производстве
  • Как найти человека в москве по фотографии