Как найти фокусы эллипса по каноническому уравнению

  1. Определение эллипса.

    Начать изучение

  2. Фокусы, эксценриситет и директрисы эллипса.

    Начать изучение

  3. Уравнение касательной к эллипсу.

    Начать изучение

Определение эллипса.

Напомним, что мы назвали эллипсом линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}=1label{ref1}
$$
при условии (a geq b > 0).

Из уравнения eqref{ref1} следует, что для всех точек эллипса (|x| leq a) и (|y| leq b). Значит, эллипс лежит в прямоугольнике со сторонами (2a) и (2b).

Точки пересечения эллипса с осями канонической системы координат, имеющие координаты ((a, 0)), ((-a, 0)), ((0, b)) и ((0, -b)), называются вершинами эллипса. Числа (a) и (b) называются соответственно большой и малой полуосями эллипса.

эллипс

Рис. 8.1. Эллипс

В каноническое уравнение входят только квадраты координат. Поэтому, если координаты ((x, y)) какой-либо точки /(M) ему удовлетворяют, то ему удовлетворяют и координаты ((-x, y)), ((x, -y)) и ((-x, -y)) точек (M_{1}), (M_{2}) и (M_{3}) (рис. 8.1). Следовательно, справедливо следующее утверждение.

Утверждение 1.

Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы — его центром симметрии.

Внешний вид эллипса проще всего описать сравнением с окружностью радиуса (a) с центром в центре эллипса: (x^{2}+y^{2}=a^{2}). При каждом (x) таком, что (|x| < a), найдутся две точки эллипса с ординатами (pm b sqrt{1-x^{2}/a^{2}}) и две точки окружности с ординатами (pm a sqrt{1-x^{2}/a^{2}}). Пусть точке эллипса соответствует точка окружности с ординатой того же знака. Тогда отношение ординат соответствующих точек равно (b/a). Итак, эллипс получается из окружности таким сжатием ее к оси абсцисс, при котором ординаты всех точек уменьшаются в одном и том же отношении (b/a) (рис. 8.2).

преобразование окружности к эллипсу

Рис. 8.2. Сжатие окружности к эллипсу. Ординаты всех точек уменьшаются в отношении (b/a).

Фокусы, эксценриситет и директрисы эллипса.

У эллипса есть две замечательные точки, которые называются его фокусами.

Определение.

Пусть по определению
$$
c^{2}=a^{2}-b^{2}label{ref2}
$$
и (c geq 0).

Фокусами называются точки (F_{1}) и (F_{2}) с координатами ((c, 0)) и ((-c, 0)) в канонической системе координат (рис. 8.3).

фокусы эллипса

Рис. 8.3. Фокусы эллипса.

Для окружности (c=0), и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не является окружностью.

Определение.

Отношение
$$
varepsilon=frac{c}{a}label{ref3}
$$
называется эксцентриситетом эллипса.

Отметим, что (varepsilon < 1).

Утверждение 2.

Расстояние от произвольной точки (M(x, y)), лежащей на эллипсе, до каждого из фокусов (рис. 8.3) является линейной функцией от ее абсциссы (x):
$$
r_{1}=|F_{1}M|=a-varepsilon x, r_{2}=|F_{2}M|=a+varepsilon x.label{ref4}
$$

Доказательство.

Очевидно, что (r_{1}^{2}=(x-c)^{2}+y^{2}). Подставим сюда выражение для (y^{2}), найденное из уравнения эллипса. Мы получим
$$
r_{1}^{2}=x^{2}-2cx+c^{2}+b^{2}-frac{b^{2}x^{2}}{a^{2}}.nonumber
$$

Учитывая равенство eqref{ref2}, это можно преобразовать к виду
$$
r_{1}^{2}=a^{2}-2cx+frac{c^{2}x^{2}}{a^{2}}=(a-varepsilon x)^{2}.nonumber
$$
Так как (x leq a) и (varepsilon < 1), отсюда следует, что справедливо первое из равенств eqref{ref4}: (r_{1}=a-varepsilon x). Второе равенство доказывается аналогично.

Утверждение 3.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса (2a).

Доказательство.

Необходимость. Если мы сложим равенства eqref{ref4} почленно, то увидим, что
$$
r_{1}+r_{2}=2a.label{ref5}
$$
Достаточность. Пусть для точки (M(x, y)) выполнено условие eqref{ref5}, то есть
$$
sqrt{(x-c)^{2}+y^{2}}=2a-sqrt{(x+c)^{2}+y^{2}}.nonumber
$$
Возведем обе части равенства в квадрат и приведем подобные члены:
$$
xc+a^{2}=asqrt{(x+c)^{2}+y^{2}}.label{ref6}
$$
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение eqref{ref2}. Мы придем к (b^{2}x^{2}+a^{2}y^{2}=a^{2}b^{2}), равносильному уравнению эллипса eqref{ref1}.

С эллипсом связаны две замечательные прямые, называемые его директрисами. Их уравнения в канонической системе координат (рис. 8.4)
$$
x=frac{a}{varepsilon},\ x=-frac{a}{varepsilon}.label{ref7}
$$
Директрису и фокус, которые лежат по одну сторону от центра, будем считать соответствующими друг другу.

фокусы и директрисы эллипса

Рис. 8.4. Фокусы и директрисы эллипса.

Утверждение 4.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса (varepsilon).

Доказательство.

Докажем это предложение для фокуса (F_{2}(-c, 0)). Пусть (M(x, y)) — произвольная точка эллипса. Расстояние от (M) до директрисы с уравнением (x=-a/varepsilon) по формуле (9) §3 гл. II равно
$$
d_{2}=|x+frac{a}{varepsilon}|=frac{1}{varepsilon}(varepsilon x+a).nonumber
$$
Из формулы eqref{ref4} мы видим теперь, что (r_{2}/d_{2}=varepsilon).

Обратно, пусть для какой-то точки плоскости (r_{2}/d_{2}=varepsilon), то есть
$$
sqrt{(x+c)^{2}+y^{2}}=varepsilon left(x+frac{a}{varepsilon}right).nonumber
$$
Так как (varepsilon=c/a), это равенство легко приводится к виду eqref{ref6}, из которого, как мы знаем, следует уравнение эллипса.

Уравнение касательной к эллипсу.

Выведем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть (M_{0}(x_{0}, y_{0})) — точка на эллипсе и (y_{0} neq 0). Через (M_{0}) проходит график некоторой функции (y=f(x)), который целиком лежит на эллипсе. (Для (y_{0} > 0) это график (f_{1}(x)=bsqrt{1-x^{2}/a^{2}}), для (y_{0} < 0) — график (f_{2}(x)=-bsqrt{1-x^{2}/a^{2}}). Не уточняя знака (y_{0}), обозначим подходящую функцию (f(x)).) Для нее выполнено тождество
$$
frac{x^{2}}{a^{2}}+frac{(f(x))^{2}}{b^{2}}=1.nonumber
$$
Дифференцируем его по (x):
$$
frac{2x}{a^{2}}+frac{2ff’}{b^{2}}=0.nonumber
$$
Подставляя (x=x_{0}) и (f(x_{0}=y_{0})), находим производную от (f) в точке (x_{0}), равную угловому коэффициенту касательной:
$$
f'(x_{0})=frac{b^{2}}{a^{2}} frac{x_{0}}{y_{0}}.nonumber
$$
Теперь мы можем написать уравнение касательной:
$$
y-y_{0}=-frac{b^{2}}{a^{2}} frac{x_{0}}{y_{0}}(x-x_{0}).nonumber
$$
Упрощая это уравнение, учтем, что (b^{2}x_{0}^{2}+a^{2}y_{0}^{2}=a^{2}b^{2}), так как (M_{0}) лежит на эллипсе. Результату можно придать вид
$$
frac{xx_{0}}{a^{2}}+frac{yy_{0}}{b^{2}}=1.label{ref8}
$$

При выводе уравнения eqref{ref8} мы исключили вершины эллипса ((a, 0)) и ((-a, 0)), положив (y_{0} neq 0). Для этих точек оно превращается, соответственно, в уравнения (x=a) и (x=-a). Эти уравнения определяют касательные в вершинах. Проверить это можно, заметив, что в вершинах ж как функция от у достигает экстремума. Предоставим читателю проделать это подробно и показать тем самым, что уравнение eqref{ref8} определяет касательную для любой точки (M_{0}(x_{0}, y_{0})) на эллипсе.

Утверждение 5.

Касательная к эллипсу в точке (M_{0}(x_{0}, y_{0})) есть биссектриса угла, смежного с углом между отрезками, соединяющими эту точку с фокусами.

Доказательство.

Нам надо сравнить углы (varphi_{1}) и (varphi_{2}), составленные векторами (overrightarrow{F_{1}M_{0}}) и (overrightarrow{F_{2}M_{0}}) с вектором (boldsymbol{n}), перпендикулярным касательной (рис. 8.5). Из уравнения eqref{ref8} находим, что (boldsymbol{n}(x_{0}/a^{2}, y_{0}/b^{2})), и потому
$$
(overrightarrow{F_{1}M_{0}}, boldsymbol{n})=frac{x_{0}}{a^{2}}(x_{0}-c)+frac{y_{0}}{b^{2}}y_{0}=1-frac{x_{0}c}{a^{2}}=frac{a-varepsilon x_{0}}{a}.nonumber
$$
Используя eqref{ref4}, мы получаем отсюда, что (cos varphi_{1}=1/(a|boldsymbol{n}|)). Аналогично находим (cos varphi_{2}=1/(a|boldsymbol{n}|)). Утверждение доказано.

Рис. 8.5.

Рис. 8.5.

 (схема 21)

Эллипсом называется
геометрическое место точек плоскости, сумма расстояний от каждой из которых до
двух данных точек этой плоскости, называемых 
фокусами, есть величина постоянная, равная 2
a.

Обозначим фокусы через F1  и F2,
расстояние между ними через 2
c, а сумму расстояний от произвольной точки эллипса до
фокусов – через  2
a. По  определению 2a>2c,  то есть a>c  .

Выберем систему координат
 так, чтобы
фокусы
F1  и F2
лежали на оси 0
x, а начало координат совпадало с серединой отрезка F1F2. Тогда фокусы имют координаты:  F1(–c;0)  и F2(c;0). Пусть M(x;y)
произвольная точка эллипса (текущая точка). Тогда по определению эллипса можно записать

По сути, мы получили уравнение эллипса. Упростим его с помощью ряда несложных математических преобразований:

 

Так как, a>c, то a2c2>0, то можно обозначить a2c2=b2. Тогда 
последнее уравнение имеет вид: 

                                                                                                                                           (2.17)

Это
уравнение равносильно первоначальному. Оно называется 
каноническим уравнением
эллипса
 – кривой
второго порядка
.

Установим форму эллипса, пользуясь его каноническим
уравнением.

1. Уравнение (2.17) содержит x и y
только в четных степенях, поэтому
если  точка (
x;y)
принадлежит  эллипсу,  то 
ему  также  принадлежат 
точки (–
x;y), (x;–y), (–x;–y). Отсюда: эллипс симметричен относительно осей 0x и 0y, а также
относительно точки
O(0;0), которую называют центром эллипса.

2. Найдем точки пересечения эллипса с осями координат.
Положив
y=0, найдем точки A1(a;0) и A2(–a;0), в которых ось 0x пересекает эллипс. Положив в  уравнении 
(2.17)
x=0, находим точки пересечения эллипса с осью 0y: B1(0;b) и B2(0;–b). Точки A1, A2, B1, B2 называются вершинами эллипса. Отрезки А1А2,
В1В2, а также
их длины 2
a и 2b – соответственно большая и малая оси эллипса (рис. 2.4).

3. Из уравнения (2.17) следует, что каждое слагаемое в
левой  части не превосходит единицы,
т.е.:
 

.

Следовательно, все точки эллипса лежат внутри
прямоугольника, ограниченного прямыми
x= ± a
и y= ± b.

4. В уравнении (2.17) левая часть – сумма
неотрицательных слагаемых, т.е. при возрастании одного слагаемого другое будет
уменьшаться, если |
x| возрастает, |y|
уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму
овальной замкнутой кривой. Форма эллипса зависит от отношения
. При a=b эллипс превращается в окружность, уравнение эллипса
(2.17) принимает вид
: x2+y2=a2. Отношение 
половины расстояния между фокусами к большой полуоси эллипса – эксцентриситет  эллипса  . Причем
0<
ε<1, так как 0<c<a.

Отсюда видно, что чем меньше эксцентриситет эллипса,
тем будет
менее  эллипс сплющенным; при ε=0 эллипс
превращается в окружность.

Пусть M(x;y) – произвольная точка эллипса с фокусами F1  и F2.  Длины
отрезков |
MF1|=r1 и |MF2|=r2фокальные
радиусы
точки
M, r1+r2=2a. Имеют место формулы: r1=a+εx  и  r2=a εx.

Прямые  – директрисы
эллипса
.

Если r – расстояние от произвольной точки до какого–нибудь фокуса,
d
расстояние от этой же точки до соответствующей этому фокусу директрисы (рис. 2.5), то отношение
есть величина
постоянная, равная эксцентриситету эллипса: 
 .

Из   равенства a2c2=b2
следует, что
a>b. Если же
наоборот, то уравнение (2.17) определяет эллипс, большая ось которого 2
b лежит на
оси 0
y, а малая ось 2a – на оси 0x. Фокусы  такого
эллипса находятся в точках
F1(0;c) и F2(0;c), где 
. Данный эллипс будет растянут вдоль оси 0y.

Пример 2.5. Составить уравнение линии, для каждой точки
которой  отношение расстояний от нее до
точки
A(3;0) и до прямой x=12, равно числу ε=0,5.  Полученное
уравнение привести к простейшему виду
.

Решение. Пусть M(x;y) – текущая (произвольная) точка искомого
геометрического множества точек. Опустим перпендикуляр
MB на прямую

. Тогда  точка
B(12;y). По условию задачи
 
.

По формуле расстояния между
двумя  точками получаем:


 Отсюда

 Полученное уравнение представляет собой эллипс вида  где, согласно формуле (2.17).

Определим фокусы эллипса F1(–c;0) и F2(c;0). Для эллипса справедливо равенство b2=a2c2,
откуда
c2=a2b2 =9 и c=3. То есть,
F1(–3;0) и F1(3;0)–
фокусы эллипса (точки
F2 и A совпадают).

Эксцентриситет эллипса 

 Примечание. Если эллипс (окружность) вращать вокруг одной из его
осей, то описываемая им поверхность будет эллипсоидом вращения (сферой)
 

Пример 2.6. В геодезии используется система географических координат,
основанная на понятии геоида. Геоид – поверхность Земли,
ограниченная уровенной поверхностью, продолженной под континенты. Поверхность
геоида отличается от физической поверхности Земли, на которой резко выражены
горы и океанические впадины.

Тело, поверхность которого более всего соответствует
поверхности геоида, имеет определенные размеры и ориентирована соответственно в
теле Земли, называется референц–эллипсоидом. В  нашей стране с 1946 года для всех
геодезических работ принят референц–эллипсоид Красовского с
параметрами
a=6 378 245 м, b=6 356 863 м, α=1: 298,3.

Линия, проходящая вертикально через центр эллипсоида
является полярной осью. Линия, проходящая через центр эллипсоида,
перпендикулярно к полярной оси, – экваториальной осью. При пересечении
поверхности эллипсоида плоскостью, проходящей через его центр, перпендикулярно
к полярной оси, образуется окружность, называемая экватором. Окружность,
полученная от пересечения поверхности эллипсоида плоскостью, параллельной
плоскости экватора, называется параллелью. Линия пересечения
поверхности эллипсоида с плоскостью, проходящей через заданную точку и полярную
ось, называется меридианом данной точки. Положение точки на земной поверхности
определяется пересечением параллели и меридиана, проходящих через нее. Угол φ между плоскостью экватора и отвесной
линией называется географической широтой. Для определения долгот
точек один из меридианов (Гринвичский) принимают за начальный или нулевой. Угол
λ, составленный плоскостью меридиана,
проходящего через данную точку, и плоскостью начального меридиана, называется
географической долготой 

 Гиперболагеометрическое место точек плоскости, модуль разности расстояний от
каждой из которых до двух данных точек этой плоскости – фокусов, есть величина
постоянная, равная 2
a.

Обозначим фокусы через 
F1 и F2, расстояние между ними через 2c, а модуль
разности расстояний от каждой точки 
гиперболы до фокусов через 2
a. По определению 2a<2c,  то есть a<c.

Выберем  систему координат x0y так, чтобы фокусы F1 и F2 лежали на оси 0x, а начало координат совпало с серединой отрезка F1F2. Тогда фокусы будут иметь координаты F1(c;0) и  F2(–c;0). На этой основе выведем уравнение гиперболы. Пусть M(x;y) – ее произвольная точка.  Тогда по определению  |MF1MF2|=2a, то есть. Проведя преобразования, аналогичные упрощениям уравнения эллипса, получим  каноническое уравнение гиперболы:

,                                                                                                                                                                             (2.18)

 где
b2=a2c2.
Гипербола линия 2–го порядка.      

Установим форму гиперболы, исходя из ее канонического
уравнения.

1. Уравнение (2.18) содержит x и y только в
четных степенях. Следовательно, гипербола симметрична  относительно осей координат
0
x и 0y, и относительно  точки O(0;0) – центра гиперболы.

2. Найдем точки пересечения  гиперболы с осями координат. Положив в
уравнении (2.18)
y=0, находим две точки пересечения гиперболы с осью 0xA1(a;0) и A2(–a;0).

Положив в (2.18) x=0, получаем y2= – b2,
чего быть не может. Т.е. гипербола ось 0
y  не пересекает.

Точки A1(a;0) и A2(–a;0) – вершины гиперболы, а отрезок |A1A2|=2a  – действительная ось. Отрезок |B1B2|=2b,
соединяющий точки
B1(0;b) и B2(0;–b) – мнимая ось (рис. 2.6). Прямоугольник
со сторонами 2
a и 2b –  основной
прямоугольник гиперболы
.

3. Из уравнения (2.18) следует, что уменьшаемое . Это означает, что точки гиперболы расположены справа
от прямой
x=a (правая
ветвь гиперболы) и слева от прямой
x=–a (левая
ветвь) (рис. 2.6).

 


4. Из уравнения (2.18) гиперболы видно, что
когда |
x| возрастает, то |y| также
возрастает
. Это
следует из того, что разность 

сохраняет значение, равно
e единице. Следовательно, гипербола имеет форму,
состоящую из двух неограниченных ветвей.

Прямая L называется асимптотой некоторой неограниченной кривой, если расстояние d от точки M этой кривой до прямой L стремится к нулю при неограниченном
удалении
точки M вдоль кривой 
от начала координат.

Покажем, что гипербола  имеет две асимптоты: . Так как 
данные прямые и гипербола (2.18) симметричны относительно координатных
осей, то достаточно рассмотреть только точки, расположенные в первой четверти.

Возьмем на прямой   точку N, имеющую
ту же абсциссу, что и точка
M(x;y) на гиперболе 
. Найдем разность |MN|:

Очевидно: так как числитель есть величина постоянная, а знаменатель дроби увеличивается с возравстанием переменной х, то длина отрезка |MN| стремится
к нулю. Так как |
MN| больше
расстояния
от точки M до прямой L, то d стремится к нулю тем более (
и подавно). Следовательно, прямые

 – есть
асимптоты гиперболы (рис. 2.7).



       Построение гиперболы начинают с нанесения ее основного прямоугольника на координатную плоскость. Далее проводят диагонали этого прямоугольника, которые являются асимптотами гиперболы, затем отмечают ее вершины, фокусы и строят ветви гиперболы.       
 

Эксцентриситет  гиперболы
отношение расстояния между фокусами к величине её действительной оси,
обозначается
ε
. Так
как у гиперболы
c>a, то
эксцентриситет ее больше единицы. Эксцентриситет характеризует  форму гиперболы. Так как                 
. Видно, что чем меньше
эксцентриситет гиперболы, тем меньше отношение 
 ее полуосей, а
значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет 
равносторонней гиперболы равен 
. Действительно, . Фокальные радиусы

,

 для точек
правой ветви гиперболы имеют вид: r1=εx+ar2=εxa; для точек
левой ветви: 
r1=–(εx+a), r2=–(εxa).

Прямые называются директрисами
гиперболы. Тот факт, что для гиперболы
ε>1, то 
 означает: правая директриса  расположена  между центром и правой вершиной гиперболы,
левая – между центром и левой вершиной. Директрисы
гиперболы  имеют тоже свойство 
, что и директрисы эллипса. 

Уравнение  определяет гиперболу с действительной осью 2bрасположенной на оси 0y, и мнимой осью 2a, расположенной на оси абсцисс  (подобная гипербола изображена
на рисунке
2.7 пунктиром).

Значит, гиперболы
 
 и 
 имеют общие
асимптоты. Такие гиперболы называются сопряженными.

Примечание. Если у кривой 2–го порядка смещен центр в некоторую
точку
O(x0;y0), то  она
называется нецентральной кривой. Уравнение такой кривой имеет вид: 

 Примечание. При вращении гиперболы вокруг ее действительной оси
образуется двуполостный гиперболоид, вокруг  ее мнимой оси – однополостный гиперболоид
 

Подробно данные уравнения рассмотрены в теме:
«Исследование общего уравнения 2–ой степени» (смотри схему 10), частными
случаями которого являются данные формулы.

Вопросы
для самопроверки

Эллипс – это замкнутая плоская кривая, сумма расстояний от каждой точки до двух точек равняется постоянной величине.

Что такое эллипс и фокусное расстояние

Эллипс – это множество точек плоскости, сумма расстояний которых от двух заданных точек, что называются фокусами, есть постоянная величина и равна 2aquad{(a > 0)}.

Обозначим фокусы эллипса F_{1} и F_{2}. Допустим, что расстояние F_{1}{F_{2}} = 2c – фокусное расстояние.

Эллипс

Рис. 1

F_{1}, F_{2} – фокусы .

F_{1} = (c, 0); F_{2} = (- c ; 0),

c – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема:

Фокусное расстояние и полуоси связаны соотношением:

a^2 = b^2 + c^2

 Если точка M находится на пересечении эллипса с вертикальной осью, r_{1} + r_{2} = 2 * sqrt{b^2 + c^2} (теорема Пифагора). Если же точка M находится на пересечении его с горизонтальной осью, r_1} + r_{2} = a - c + a + c. Так как по определению сумма r_{1} + r_2} – постоянная величина, то приравнивая получается:

a^2 = b^2 + c^2to{r_{1} + r_{2} = 2a.

Уравнение эллипса

Уравнение элиппса бывает двух видов:

  1. Каноническое уравнение эллипса.
  2. Параметрическое уравнение эллипса.

Сначала рассмотрим каноническое уравнение эллипса:

Уравнение описывает эллипс в декартовой системе координат. Если центр эллипсa O в начале системы координат, а большая ось лежит на абсциссе, то эллипс описывается уравнением:

1 = {x^2over{a^2}} + {y^2over{b^2}}

Если центр эллипсa O смещен в точку с координатами (x_{0}, y_{0}) тогда уравнение:

1 = {(x - x_{0})^2over{a^2}} +  {(y - y_{0})^2over{b^2}}

Чтобы получить каноническое уравнение эллипса, разместим F_{1} и F_{2} на оси OX симметричной к началу координат. Тогда у фокусов будут такие координаты F_{2}(-c, 0) и F_{2}(c, 0) (см. рис. 2).

Пусть M(x, y) – произвольная точка эллипса. Обозначим через r_{2} и r_{1} – расстояние от точки M к фокусам. Согласно с определением эллипса:

r_{1} + r_{2} = 2a

(1)

Уравнение эллипса

Рис. 2

Подставим в (1) r_{1} = F_{1}M = sqrt{(x - c)^2 + (y - 0)^2}, r_{2} = sqrt{(x + c)^2 + y^2} и освободимся от иррациональности, подняв обе части к квадрату, получим:

r_{2} = 2a - r_{1}tosqrt{(x + c)^2 + y^2} = 2a - sqrt{(x - c)^2 + y^2}}to{x^2 + 2cx + c^2 + y^2} = 4a^2 - 4asqrt{(x - c)^2) + y^2} + x^2 - 2cx + c^2 + y^2to{4a}sqrt{(x - c^2 + y^2} = 4a^2 - 4cxarrowvert:4

asqrt{(x - c)^2 + y^2} =a^2 - cx

 (подносим к квадрату обе части): to{a^2x^2 - 2ca^2x + a^2c^2 + a^2y^2} = {a^4 - 2ca^2x + c^2x^2to{(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2)arrowvert:a^2(a^2 - c^2),

{x^2over{a^2}} + {y^2over{a^2 - c^2}} = 1

Обозначим: a^2 - c^2 = b^2, получаем каноническое уравнение эллипса:

{x^2over{a^2}} + {y^2over{b^2}} = {1}

(2)

Отметим, что по известному свойству треугольника (сумма двух сторон  больше третьей) из Delta{F_{1}}MF_{2} у нас получается F_{2}M + F_{1}M > F_{1}F_{2}to{r_{1} + r_{2}} > 2c. Так как r_{1} + r_{2} = 2a, тогда 2a > 2cto{a >c}, и поэтому b^2 = a^2 - c^2 >0.

Для построения эллипса обратим внимание, что если точка M_{1}(x, y) принадлежит эллипсу, то есть удовлетворяет уравнение (2), тогда точки M_{2}(-x, y), M_{3}(-x, -y), M_{4}(x, -y) тоже удовлетворяют это уравнение: из

{x^2over{a^2}} + {y^2over{b^2}} = 1to{(pm{x})^2over{a^2}} + {(pm{y})^2over{b^2}} = {1}.

Точки M_{1}, M_{2}, M_{3}, M_{4} – расположены симметрично относительно осей координат. Значит, эллипс – фигура, симметричная относительно координатных осей. Поэтому достаточно построить график в первой четверти, а тогда симметрично продолжить его.

Из уравнения (2) находим y = pm{{b}over{a}}sqrt{a^2 - x^2, для первой четверти {y} = {bover{a}}sqrt{a^2 - x^2}.

Если y = 0, тогда x = a. Если же x = 0, тогда y = b. Точки A_{1}(a, 0) и B_{1}(0, b), а также симметричные с ними A_{2}(-a, 0), B_{2}(0, -b) – вершины эллипса, точка O(0, 0) – центр эллипса, A_{1}A_{2} = 2a большая ось, B_{1}B_{2} = 2b – малая ось эллипса.

Если Min первой четверти, тогда из y = {bover{a}}sqrt{a^2 - x^2 получается, что при возрастании x от 0 к a значение y падает от b к 0. (рис. 3)

Параметрическое уравнение выглядит так:

left{ begin{aligned} x = a{cos}alpha\ y = b{sin}alpha end{aligned}quad {0leqalpha < 2pi right

Основные свойства эллипса

Рассмотрим основные свойства эллипса, которые необходимы для решения многих задач.

1. Угол между касательной к эллипсу и фокальным радиусом r_{1} равен углу между касательной и фокальным радиусом r_{2}.

2. Уравнение касательной к эллипсу в точке M с координатами (x_{M}, y_{M}):

1 = {x x_{M}over{a^{2}}} + {y y_{M}over{b^{2}}}.

3. Если эллипс пересекается двумя параллельными прямыми, то отрезок, который соединяет середины отрезков образовавшихся при пересечении прямых и эллипса, всегда проходит через середину (центр) эллипсa. (При помощи данного свойства можно построить эллипс при помощи циркуля и линейка, а также найти центр эллипса).

4. Эволюта эллипсa – это астероида, которая растянута вдоль короткой оси.

5. Если вписать эллипс с фокусами F_{1} и F_{2} у треугольника ABC, тогда выполняется соотношение:

{1} = {{overline{F_{1}A} * overline{F_{2}A}}over{overline{CA} * overline{AB}}} + {{overline{F_{1}B} * overline{F_{2}B}}over{overline{AB} * overline{BC}}} + {{overline{F_{1}C} * overline{F_{2}C}}over{overline{BC} * overline{CA}}}

Эксцентриситет эллипса

Эксентриситет эллипса – это величина отношения межфокусного расстояния к большей оси и после сокращения на 2 обозначается varepsilon = {cover{a}}

Значения эксентриситета характеризует степень “сплющенность” эллипса. Если a = b =R, тогда c = {sqrt{a^2 + b^2}} = 0to{varepsilon = 0} – получается круг. Если же b = 0, тогда varepsilon = 1 – эллипс превращается в отрезок. В некоторых случаях 0 < varepsilon < 1. Для фокальных радиусов приведём без доказательства такие формулы:

left{ begin{aligned} r_{1} = a - varepsilon{x},\ r_{2} = a + varepsilon, end{aligned} quad{xin[-a, a]. right

Эксцентриситет

 Рис. 3

Эллипс можно построить механическим способом. Из канонического уравнения нужно найти полуоси a и b, тогда вычислим c = {sqrt{a^2 + b^2}} – полуфокусное расстояние.

Строим фокусы F_{1} и F_{2} на расстоянии один от другого 2c Концы не растянутой нити длиной 2a закрепляем в точках F_{1} и F_{2}. Натягивая остриём карандаша нитку, водим остриём по плоскости таким образом, чтобы нитка скользила по острию. Карандаш при этом опишет полуось. Оттягивая нить в противоположную сторону, начертим вторую половину эллипса.

Примеры решения задач

Задача

Задан эллипс уравнением {x^2over{25}} + {y^2over{9}} = 1 и точки M_{0}(4; 1,8), M_{1}(3; 2,4).  Необходимо:

  1. убедиться, что точки M_{0} и M_{1} лежат на эллипсе;
  2. найти полуоси эллипса и координаты его фокусов;
  3. найти расстояние от точки M_{0} к фокусам;
  4. убедиться, что сумма этих расстояний равна длине большой оси;
  5. найти эксентриситет эллипса.

Решение

1. Подставим координаты x = 4 y = 1,8 точки M_{0} в левую часть уравнения эллипса:

{x^2over{25}} + {y^2over{9}} = {4^2over25}} + {1,8 * 1,8over{9}} = {16over25}} + {36over{100}} = {16over{25}} + {9over25}} = 1 – точка M_{0} лежит на эллипсе. Аналогично для M_{1}(3; 2,4):

{9over{25}} + {2*4 * 2,4over{9}} = {9over{25}} + 0,64 = {9over{25}} + {64over{100}} = {9 + 16over{25}} = 1 точка M_{1} лежит на эллипсе.

2. С канонического {x^2over{a^2}} + {y^2over{b^2}} = {1} и данного уравнения {x^2over{25}} + {y^2over{9}} = 1 эллипса выходит: a^2 = {25},quad{b^2 = 9}to{a = 5, b = 3}. Из равенства b^2 = a^2 - c^2 > 0 получается:

b^2 = a^2 - c^2to {c^2 = a^2 - b^2 = 25 - 9} = {16}to{c = 4} – полуфокусное расстояние. Координаты фокусов F_{1}(4; 0) и F_{2}(-4; 0).

3.  Найдём фокальные радиусы точки M_{0}:

r_{2} = F_{2}M_{0} = sqrt{(4 - (-4))^2 + 1,8^2} = sqrt{64 + 3,24} = sqrt{67,24} = 8,2

r_{1} = F_{1}M_{0} = sqrt{(4 - 4)^2 + 1,8^2} = 1,8.

4. Найдём сумму r_{1} + r_{2} = 1, 8 + 8.2 = 10 = 2 * 5 = 2a, что отвечает определению эллипса.

5. Эксцентриситет находится по формуле varepsilon = {cover{a}} = {4over{5}} = 0.8.

Задача

Найти оси, вершины и фокусы эллипса 169x^2 + 25y^2 - 4225 = 0

Решение

Сведём обычное уравнение к каноническому:

169x^2 + 25y^2 - 4225 = 0to{x^2over{25}} + {y^2over{169}} = 1

a^2 = 25, b^2 = 169to{a = 5, b = 13}. Вершины эллипса в точках A_{1}(5, 0), B_{1}(0, 13), A_{2}(-5, 0), B_{2}(0, -13). Строим вершины на координатных осях  и соединяем плавной линией (см. рис. 2). Так как в данном случае b = 13 больше, чем a = 5, то эллипс, который вытянут вдоль оси OY, находим полуфокусное расстояние c = sqrt{b^2 - a^2} = sqrt{169 - 25} = sqrt{144} = 12.

Фокусы в точках F_{1}(0, 12) и F_{2}(0, -12). (см. рис. 3)

Уравнение эллипса

Рис. 4

Найти оси, вершины и фокусы эллипса 25x^2 + 144y^2 = 3600quad{:}arrowvertto{25x^2over{3600}} + {144y^2over{3600}} = {1}to{x^2over{144}} + {y^2over{25}} = {1} или {X^2over{12^2}} + {y^2over{5^2}} = {1}. Построить эллипс.

Сравнивая последнее уравнение с уравнением (2), у нас получается:

a^2 = 12^2, b^2 = 5^2to{a = 12, b = 5}. Откуда находим оси эллипса: 2a = 24, 2b = 10 и координаты вершин: A_{1}(12, 0), A_{2} (-12, 0), B_{1}(0, 5), B_{2}(0, -5). Дальше из формулы:

b^2 = a^2 - c^2to{c^2 = a^2 - b^2 = 144 - 25 = 119}to{c = sqrt{119}}approx{10,91}. Значит, фокусами эллипса есть точки: F_{1}(sqrt{119}, 0) и F_{2}(-sqrt{119}, 0). Для построения эллипса отложим на осях OX и OY вершины A_{1}, B_{1}, A_{2}, B_{2} соответственно  соединим их плавной линией, (см. задачу 1).

Замечание! Если в каноническом уравнении {x^2over{a^2}} + {y^2over{b^2}} = {1} большей полуосью будет b > a, тогда фокусы эллипса будут расположены на оси OY и тогда c = sqrt{b^2 - a^2}.

Кривые второго порядка. Эллипс: формулы и задачи

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат — каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами эллипса (на чертеже — красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и — расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

.

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

,

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

Эллипс

Определение эллипса.

Напомним, что мы назвали эллипсом линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
frac>>+frac>>=1label
$$
при условии (a geq b > 0).

Из уравнения eqref следует, что для всех точек эллипса (|x| leq a) и (|y| leq b). Значит, эллипс лежит в прямоугольнике со сторонами (2a) и (2b).

Точки пересечения эллипса с осями канонической системы координат, имеющие координаты ((a, 0)), ((-a, 0)), ((0, b)) и ((0, -b)), называются вершинами эллипса. Числа (a) и (b) называются соответственно большой и малой полуосями эллипса.

Рис. 8.1. Эллипс

В каноническое уравнение входят только квадраты координат. Поэтому, если координаты ((x, y)) какой-либо точки /(M) ему удовлетворяют, то ему удовлетворяют и координаты ((-x, y)), ((x, -y)) и ((-x, -y)) точек (M_<1>), (M_<2>) и (M_<3>) (рис. 8.1). Следовательно, справедливо следующее утверждение.

Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы — его центром симметрии.

Внешний вид эллипса проще всего описать сравнением с окружностью радиуса (a) с центром в центре эллипса: (x^<2>+y^<2>=a^<2>). При каждом (x) таком, что (|x| Рис. 8.2. Сжатие окружности к эллипсу. Ординаты всех точек уменьшаются в отношении (b/a).

Фокусы, эксценриситет и директрисы эллипса.

У эллипса есть две замечательные точки, которые называются его фокусами.

Фокусами называются точки (F_<1>) и (F_<2>) с координатами ((c, 0)) и ((-c, 0)) в канонической системе координат (рис. 8.3).

Рис. 8.3. Фокусы эллипса.

Для окружности (c=0), и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не является окружностью.

Отметим, что (varepsilon Утверждение 2.

Расстояние от произвольной точки (M(x, y)), лежащей на эллипсе, до каждого из фокусов (рис. 8.3) является линейной функцией от ее абсциссы (x):
$$
r_<1>=|F_<1>M|=a-varepsilon x, r_<2>=|F_<2>M|=a+varepsilon x.label
$$

Очевидно, что (r_<1>^<2>=(x-c)^<2>+y^<2>). Подставим сюда выражение для (y^<2>), найденное из уравнения эллипса. Мы получим
$$
r_<1>^<2>=x^<2>-2cx+c^<2>+b^<2>-fracx^<2>>>.nonumber
$$

Учитывая равенство eqref, это можно преобразовать к виду
$$
r_<1>^<2>=a^<2>-2cx+fracx^<2>>>=(a-varepsilon x)^<2>.nonumber
$$
Так как (x leq a) и (varepsilon Утверждение 3.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса (2a).

Необходимость. Если мы сложим равенства eqref почленно, то увидим, что
$$
r_<1>+r_<2>=2a.label
$$
Достаточность. Пусть для точки (M(x, y)) выполнено условие eqref, то есть
$$
sqrt<(x-c)^<2>+y^<2>>=2a-sqrt<(x+c)^<2>+y^<2>>.nonumber
$$
Возведем обе части равенства в квадрат и приведем подобные члены:
$$
xc+a^<2>=asqrt<(x+c)^<2>+y^<2>>.label
$$
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение eqref. Мы придем к (b^<2>x^<2>+a^<2>y^<2>=a^<2>b^<2>), равносильному уравнению эллипса eqref.

Рис. 8.4. Фокусы и директрисы эллипса.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса (varepsilon).

Уравнение касательной к эллипсу.

Выведем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть (M_<0>(x_<0>, y_<0>)) — точка на эллипсе и (y_ <0>neq 0). Через (M_<0>) проходит график некоторой функции (y=f(x)), который целиком лежит на эллипсе. (Для (y_ <0>> 0) это график (f_<1>(x)=bsqrt<1-x^<2>/a^<2>>), для (y_ <0>Утверждение 5.

Касательная к эллипсу в точке (M_<0>(x_<0>, y_<0>)) есть биссектриса угла, смежного с углом между отрезками, соединяющими эту точку с фокусами.

Рис. 8.5.

Эллипс — определение и вычисление с примерами решения

Эллипс:

Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек

Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы

Рис. 29. Вывод уравнения эллипса.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению эллипса имеем Из треугольников и по теореме Пифагора найдем

соответственно. Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Уравнение принимает вид Разделив все члены уравнения на получаем каноническое уравнение эллипса: Если то эллипс вытянут вдоль оси Ох, для противоположного неравенствавдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:

  • т.е. точками пересечения эллипса с осью абсцисс будут точки
  • т.е. точками пересечения эллипса с осью ординат будут точки (Рис. 30).

Определение: Найденные точки называются вершинами эллипса.

Рис. 30. Вершины, фокусы и параметры эллипса

Определение: Если то параметр а называется большой, а параметр b — малой полуосями эллипса.

Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса

Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси

Если и эллипс вырождается в окружность. Если и эллипс вырождается в отрезок

Пример:

Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет

Решение:

Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Зная параметр с, можно вычислить малую полуось эллипса Следовательно, каноническое уравнение заданного эллипса имеет вид:

Пример:

Найти площадь треугольника, две вершины которого находятся в фокусах эллипса а третья вершина — в центре окружности

Решение:

Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипса Итак, Окружность: Выделим полные квадраты по переменным Следовательно, центр окружности находится в точке О(-5; 1).

Построим в декартовой системе координат треугольник Согласно школьной формуле площадь треугольника равна Высота а основание Следовательно, площадь треугольника равна:

Эллипс в высшей математике

где и —заданные положительные числа. Решая его относительно , получим:

Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное по абсолютной величине меньше , подкоренное выражение положительно, корень имеет два значения. Каждому значению , удовлетворяющему неравенству соответствуют два значения , равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси . Так же можно убедиться в том, что оно симметрично и относительно оси . Поэтому ограничимся рассмотрением только первой четверти.

При , при . Кроме того, заметим, что если увеличивается, то разность уменьшается; стало быть, точка будет перемещаться от точки вправо вниз и попадет в точку . Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.

Полученная линия называется эллипсом. Число является длиной отрезка , число —длиной отрезка . Числа и называются полуосями эллипса. Число эксцентриситетом.

Пример:

Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.

Решение:

Возьмем две плоскости, пересекающиеся под углом (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось примем прямую пересечения плоскостей, стало быть, ось будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости возьмем окружность радиуса с центром в начале координат, ее уравнение .

Пусть точка лежит на этой окружности, тогда ее координаты удовлетворяют уравнению .

Обозначим проекцию точки на плоскость буквой , а координаты ее—через и . Опустим перпендикуляры из и на ось , это будут отрезки и . Треугольник прямоугольный, в нем , ,, следовательно, . Абсциссы точек и равны, т. е. . Подставим в уравнение значение , тогда cos

а это есть уравнение эллипса с полуосями и .

Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.

Замечание. Окружность можно рассматривать как эллипс с равными полуосями.

Уравнение эллипсоида

Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.

Рассмотрим сферу радиуса R с центром в начале координат:

где Х, У, Z — текущие координаты точки сферы.

Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей с коэффициентами деформации, равными

В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам (х, у, z) с текущими координатами х, у, г, причем

Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в раз, если , и увеличиваются в раз, если и т. д.

Подставляя эти формулы в уравнение (1), будем иметь

где Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.

Величины называются полуосями эллипсоида; удвоенные величины называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).

Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями

а = b = 6377 км и с = 6356 км.

Если а = b = с, то эллипсоид превращается в сферу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Гипербола
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/ellipse/

http://www.evkova.org/ellips

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку клиента
  • Как найти вектор в старом базисе
  • Маленький экран как исправить разрешение
  • Принтер brother замятие бумаги как исправить
  • Астана как найти вокзал