Как найти формулу для графика линейной функции

Инфоурок


Алгебра

КонспектыАлгоритм определения формулы линейной функции по графику

Алгоритм определения формулы линейной функции по графику

Скачать материал

Скачать материал

  • Сейчас обучается 184 человека из 50 регионов

  • Сейчас обучается 22 человека из 17 регионов

  • Сейчас обучается 105 человек из 36 регионов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 268 696 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Алгебра», Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.

    «Алгебра», Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.

    Тема

    16. Линейная функция и её график

    Больше материалов по этой теме

Другие материалы

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Методика написания учебной и научно-исследовательской работы в школе (доклад, реферат, эссе, статья) в процессе реализации метапредметных задач ФГОС ОО»

  • Курс повышения квалификации «Основы местного самоуправления и муниципальной службы»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС юридических направлений подготовки»

  • Курс профессиональной переподготовки «Логистика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Разработка бизнес-плана и анализ инвестиционных проектов»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация маркетинга в туризме»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс повышения квалификации «Мировая экономика и международные экономические отношения»

  • Курс профессиональной переподготовки «Управление информационной средой на основе инноваций»

  • Скачать материал


    • 30.09.2020


      55169
    • DOCX
      549.2 кбайт
    • 253
      скачивания
    • Оцените материал:





  • Настоящий материал опубликован пользователем Хидиятова Залифа Даутовна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Хидиятова Залифа Даутовна

    • На сайте: 6 лет и 6 месяцев
    • Подписчики: 0
    • Всего просмотров: 104772
    • Всего материалов:

      37

Голубева Наталья Викторовна

Материал используется на уроке алгебры в 7 классе при изучении линейной функции.

Скачать:

Предварительный просмотр:

Подписи к слайдам:

Слайд 1

2 урок . По графику научить определять заданную функцию. Тема «Линейная функция и её график».

Слайд 2

На рисунке представлен график функции у = kx + b. Записать формулу линейной функции, соответствующей данному графику. Так как ордината точки пересечения графика функции с осью Оy равна 1, следовательно, b=1. у = kx + 1 Выбираем на графике произвольную точку и определяем её координаты: если x = 2, то у = 2 . Подставим в нашу формулу и получим уравнение относительно k. 2 = 2k+1 2k=1 k = 0.5 Записываем формулу линейной функции: у = 0,5х + 1.

По теме: методические разработки, презентации и конспекты

  • Мне нравится 

 

В новой 9 задаче профильного ЕГЭ много заданий на линейные функции. Самое сложное, что нужно сделать, решая эти задачи – определить формулу линейной функции, т.е. найти (k) и (b) по графику. Примеры таких заданий (решения будут внизу статьи):

пример нового 9 задание ЕГЭ

Новое задание ЕГЭ с линейной функцией

В статье я расскажу про два простых способа найти (k) и (b), если известен график линейной функции.

Способ 1

Первый способ основывается на трех фактах:

  1. Линейная функция пересекает ось (y) в точке (b).
    Примеры:

    Как определить b по линейной функции

    Но не советую определять так (b), если прямая пересекает ось не в целом значении или если точка пересечения вообще не видна на графике. Для таких случаев пользуйтесь вторым способом.

    Примеры:

    В каких случаях b не надо определять

  2. Если функция возрастает, то знак коэффициента (k) плюс, если убывает – минус, а если постоянна, то (k=0).

    Примеры:

    Как определить знак k у линейной функции

  3. Чтоб конкретнее определить (k) надо построить на прямой прямоугольный треугольник так, чтобы гипотенуза лежала на графике функции, а вершины треугольника совпадали с вершинами клеточек. Далее, чтоб определить (k) нужно вертикальную сторону треугольника поделить на горизонтальную и поставить знак согласно возрастанию/убыванию функции.

    Примеры:

    Как найти k у линейной функции

Пример (ЕГЭ)

пример 9 задания ЕГЭ

Давайте пока что не будем искать формулу иррациональной функции, сосредоточимся только на линейной функции.

решение 9 задания ЕГЭ

(b=3) – это сразу видно. Функция идет вниз, значит (k<0).

Достроим прямую до прямоугольного треугольника. Вершинами будут жирные точки, которые нам дали в задаче.

решение 9 задания ЕГЭ

(k=-frac{AC}{BC}=-frac{1}{3}). Получается (g(x)=-frac{1}{3}x+3).

Способ 1 быстрее способа 2, но не во всех ситуациях помогает. Поэтому важно владеть и вторым способом тоже.

Способ 2

Вы обращали внимание, что в задачах ЕГЭ на прямых всегда жирно выделяют 2 точки? Так вот, чтобы найти формулу линейной функции, достаточно подставить координаты этих точек в формулу (f(x)=kx+b) и решить получившуюся систему уравнений.

Пример (ЕГЭ)

Новое задание ЕГЭ с линейной функцией

Обозначим жирные точки какими-нибудь буквами и найдем их координаты.

решение 9 задания ЕГЭ

(A(-2;2)) и (B(2;-5)) подставим эти значения вместо (x) и (f(x)) в формулу (f(x)=kx+b):

Получим:

(begin{cases}2=-2k+b\-5=2k+bend{cases})

Теперь найдем (k) и (b), решив эту систему.

Для этого сложим уравнения друг с другом, чтобы исчезло (k):

(2+(-5)=-2k+b+2k+b)
(-3=2b)
(b=-1,5)

Теперь подставим найденное (b) во второе уравнение системы и найдем (k):

(-5=2k-1,5)
(-5+1,5=2k)
(-3,5=2k)
(k=-1,75)

Получается (f(x)=-1,75x-1,5). Остается последний шаг – вычислим при каком иксе функция, то есть (f(x)), равна (16):

(16=-1,75x-1,5)
(17,5=-1,75x)
(x=-10).

Ответ: (-10).

Пример (ЕГЭ)

пример нового 9 задание ЕГЭ

Чтоб решить задачу, нам понадобятся формулы каждой из двух функций. Давайте формулу нижней функции найдем с помощью способа 1, а формулу верхней с помощью способа 2. Начнем с нижней функции.

решение 9 задания ЕГЭ

Функция (f(x)) возрастает, значит (k>0). (k=+frac{AC}{BC}=frac{4}{4}=1,b=1). (f(x)=x+1).

Теперь перейдем к функции (g(x)). Найдем координаты точек (D) и (E): (D(-2;4)), (E(-4;1)). Можно составить систему:

(begin{cases}4=-2k+b\1=-4k+bend{cases})

Вычтем второе уравнение из первого, чтоб убрать (b):

(4-1=-2k+b-(-4k+b))
(3=2k)
(k=1,5)

Найдем (b):

(4=-2cdot 1,5+b)
(4=-3+b)
(b=7)

(g(x)=1,5x+7). Обе функции найдены, теперь можно найти абсциссу (икс) точки пересечения. Приравняем (f(x)) и (g(x)).

(x+1=1,5x+7)
(x-1,5x=7-1)
(-0,5x=6)
(x=6:(-0,5))
(x=-12).

Ответ: (-12).

Шпаргалка как найти k и b

Картинку в хорошем качестве, можно скачать нажав на кнопку «скачать статью».

Смотрите также:
Как определить a, b и c по графику параболы

Скачать статью

Прежде чем перейти к изучению функции «y = kx»
внимательно изучите урок
«Что такое функция в математике»
и
«Как решать задачи на функцию».

Важно!
Галка

Функцию вида «y = kx + b» называют линейной функцией.

Буквенные множители «k» и «b»
называют
числовыми коэффициентами.

Вместо «k» и «b»
могут стоять любые числа (положительные, отрицательные или дроби).

Другими словами, можно сказать, что «y = kx + b» — это семейство всевозможных функций, где вместо
«k» и «b» стоят числа.

Примеры функций типа «y = kx + b».

  • y = 5x + 3
  • y = −x + 1
  • y = x − 2
  • y = 0,5x

Давайте определим для каждой функций выше, чему равны числовые коэффициенты
«k» и
«b».

Функция Коэффициент «k» Коэффициент «b»
y = 5x + 3 k = 5 b = 3
y = −x + 1 k = −1 b = 1
y =

2
3

x − 2

k =

2
3
b = −2
y = 0,5x k = 0,5 b = 0

Обратите особое внимание на функцию «y = 0,5x»
в таблице. Часто совершают ошибку при поиске в ней числового коэффициента «b».

Рассматривая
функцию «y = 0,5x», неверно утверждать, что числового коэффициента
«b» в функции нет.

Числовый коэффициент «b» присутствет в функции типа «y = kx + b» всегда.
В функции «y = 0,5x»
числовый коэффициент «b» равен нулю.

Как построить график линейной функции
«y = kx + b»

Запомните!
!

Графиком линейной функции «y = kx + b» является прямая.

Так как графиком функции «y = kx + b»
является прямая линия, функцию называют линейной функцией.

Из геометрии вспомним аксиому (утверждение, которое не требует доказательств),
что через любые две точки можно провести прямую и притом только одну.

Исходя из аксиомы выше следует, что
чтобы построить график функции вида
«у = kx + b» нам достаточно будет найти всего
две точки.

Для примера построим график функции «y = −2x + 1».

Найдем значение функции «y» для двух произвольных значений «x».
Подставим, например, вместо «x» числа «0» и «1».

Важно!
Галка

Выбирая произвольные числовые значения вместо «x», лучше брать числа
«0» и «1».
С этими числами легко выполнять расчеты.

x Расчет «y = −2x + 1»
0 y(0) = −2 · 0 + 1 = 1
1 y(1) = −2 · 1 + 1 = −2 + 1 = −1

Полученные значения «x» и «y» — это координаты точек графика функции.

Запишем полученные координаты точек «y = −2x + 1» в таблицу.

Точка Координата по оси «Оx»
(абсцисса)
Координата по оси «Оy»
(ордината)
(·)A 0 1
(·)B 1 −1

Отметим полученные точки на системе координат.

точки графика функции y = -2x + 1

Теперь проведем прямую через отмеченные точки. Эта прямая будет
являться графиком функции «y = −2x + 1».

график функции y = -2x + 1

Как решать задачи на
линейную функцию «y = kx + b»

Рассмотрим задачу.


Построить график функции «y = 2x + 3». Найти по графику:

  1. значение «y» соответствующее значению «x» равному −1; 2; 3; 5;
  2. значение «x», если значение «y» равно
    1; 4; 0; −1.

Вначале построим график функции «y = 2x + 3».

Используем правила, по которым мы строили график функции выше.
Для построения графика функции «y = 2x + 3» достаточно найти всего две точки.

Выберем два произвольных числовых значения для «x». Для удобства расчетов выберем числа
«0» и «1».

Выполним расчеты и запишем их результаты в таблицу.

Точка Координата
по оси «Оx»
Координата
по оси «Оy»
(·)A 0 y(0) = 2 · 0 + 3 = 3
(·)B 1 y(1) = 2 ·1 + 3 = 5

Отметим полученные точки на прямоугольной системе координат.

точки графика функции y = 2x + 3

Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции
«y = 2x + 3».

график функции y = 2x + 3


Теперь работаем с построенным графиком функции «y = 2x + 3».

Требуется найти значение «y»,
соответствующее значению «x»,
которое равно −1; 2; 3; 5.


Тему
«Как получить координаты точки функции» с графика функции
мы уже подробно рассматривали в уроке
«Как решать задачи на функцию».

В этому уроке для решения задачи выше вспомним только основные моменты.

Запомните!
!

Чтобы найти значение «y» по известному значению «x» на графике
функции необходимо:

  1. провести перпендикуляр от оси «Ox»
    (ось абсцисс)
    из заданного числового значения «x»
    до пересечения
    с графиком функции;
  2. из полученной точки пересечения перпендикуляра и графика функции провести еще один перпендикуляр к оси
    «Oy»
    (ось ординат);
  3. полученное числовое значение на оси «Oy» и будет искомым значением.

По правилам выше найдем на построенном ранее графике функции «y = 2x + 3»
необходимые значения функции «y» для
«x» равным −1; 2; 3; 5.

найти значения y по известным значениям x

Запишем полученные результаты в таблицу.

Заданное значение «x» Полученное с графика значение «y»
−1 1
2 7
3 9
5 13

Переходим ко второму заданию задачи. Требуется найти значение «x»,
если значение «y» равно 1; 4; 0; −1.

Выполним те же действия, что и при решении предыдущего задания.
Разница будет лишь в том, что изначально мы будем проводить перпендикуляры от оси
«Oy».

найти значения x по известным значениям y

Запишем полученные результаты в таблицу.

Заданное значение «y» Полученное с графика значение «x»
−1 −2
0 −1,5
1 −1
4 0,5

Как проверить, проходит ли график через точку

Рассмотрим другое задание.

Не выполняя построения графика функции
«y = 2x −
», выяснить, проходит ли график
через точки с координатами (0;
− )
и (1; −2).


Запомните!
!

Чтобы проверить принадлежность точки графику функции нет необходимости строить график функции.

Достаточно подставить координаты точки в формулу функции (координату по оси
«Ox» вместо
«x», а координату по оси
«Oy» вместо «y») и выполнить арифметические расчеты.

  • Если получится верное равенство, значит, точка принадлежит графику функции.
  • Если получится неверное равенство, значит, точка
    не принадлежит графику функции.

Подставим в функцию
«y = 2x −
»

координаты точки (0;
− )
.


− = 2 · 0

   − =


(верно)

Это означает, что график функции «y = 2x −
» проходит через точку с координатами (0;
− )
.


Проверим точку с координатами (1; −2).
Также подставим координаты
в функцию «y = 2x −
».


−2 = 2 · 1 −

−2 = 2 −

−2 = 1 −

        −2 = 1 (неверно)

Это означает, что график функции «y = 2x −
» не проходит через точку с координатами (1; −2).


Как найти точки пересечения графика с осями

Рассмотрим задачу.

Найти координаты точек пересечения графика функции «y = −1,5x + 3» с осями координат.

Для начала построим график функции «y = −1,5x + 3» и на графике отметим точки пересечения
с осями.

Для построения графика функции найдем координаты двух точек
функции
«y = −1,5x + 3».

Выберем два произвольных числовых значения для «x» и рассчитаем значение
«y» по формуле
функции. Например, для x = 0 и
x = 1.

Точка Координата
по оси «Оx»
Координата
по оси «Оy»
(·)A 0 y(0) = −1,5 · 0 + 3 = 3
(·)B 1 y(1) = −1,5 · 1 + 3 = 1,5

Отметим полученные точки на системе координат и проведем через них прямую.
Тем самым мы построим график функции «y = −1,5x + 3».

точки пересечения графика функции с осями

Теперь найдем координаты точек пересечения графика функции с осями по формуле функции.

Запомните!
!

Чтобы найти координаты точки пересечения графика функции
с осью
«Oy»
(осью ординат)
нужно:

  • приравнять координату точки по оси
    «Ox» к нулю
    (x = 0);
  • подставить вместо «x» в формулу функции ноль и найти значение
    «y»;
  • записать полученные координаты точки пересечения с осью
    «Oy».

Подставим вместо «x» в формулу функции «y = −1,5x + 3» число ноль.

y(0) = −1,5 · 0 + 3 = 3

(0; 3) — координаты точки пересечения графика функции «y = −1,5x + 3»
c осью «Oy».

Запомните!
!

Чтобы найти координаты точки пересечения графика функции
с осью
«Ox»
(осью абсцисс)
нужно:

  • приравнять координату точки по оси
    «Oy» к нулю
    (y = 0);
  • подставить вместо «y» в формулу функции ноль и найти значение
    «x»;
  • записать полученные координаты точки пересечения с осью
    «Oy».

Подставим вместо «y» в формулу функции «y = −1,5x + 3» число ноль.

0 = −1,5x + 3        
1,5x = 3        | :(1,5)
x = 3 : 1,5           
x = 2                   

(2; 0) — координаты точки пересечения графика функции «y = −1,5x + 3»
c осью «Ox».

Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните
«правило противоположности».

Важно!
Галка

Если нужно найти координаты точки пересечения графика с осью
«Ox», то приравниваем
«y» к нулю.

И наооборот. Если нужно найти координаты точки пересечениа графика с осью
«Oy»,
то приравниваем «x» к нулю.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

19 мая 2023 в 9:06

Михаил Лысенко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Михаил Лысенко
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

19 мая 2023 в 13:04
Ответ для Михаил Лысенко

Борис Гуров
(^-^)
Профиль
Благодарили: 1

Сообщений: 28

(^-^)
Борис Гуров
Профиль
Благодарили: 1

Сообщений: 28


Добрый день!

Это квадратичная функция. Они разобраны в другом уроке

0
Спасибоthanks
Ответить


Предложу еще одно решение.

Конечно, можно решать по алгоритму: нахождения координат 2 точек и подставив их в общее уравнение прямой y = kx + b, получим систему из 2 уравнений, решив которую найдем k и b.

Этот алгоритм описал подробно «габбас».


Видим, что на графике прямая. Общее уравнение прямой y = kx + b

Сначала определим коэффициент k.

k — показывает уровень наклона прямой

По рисунку видим, что прямая идет из 2-й в 4-ю четверть, значит k — будет отрицательным.

Далее смотрим что при изменении х на 1, у сдвигается на -2. Значит k = -2/1 = -2.


Теперь определим b

b — это сдвиг прямой по оси y относительно начальной функции (начальная проходит через начало координат: х=0; y=0)

Смотрим при х=0, у функции «у» сдвинулся в -4, Значит b = -4

Ответ: Получили уравнение y = -2•x — 4

Понравилась статья? Поделить с друзьями:
  • Как найдет скрытый номер
  • Как в телеграмме найти сообщение по хештегу
  • Js как найти элемент в json
  • Как найти воду в болоте
  • Как исправить перекошенную вышивку