Как найти функцию параллельную данной прямой

В этой статье мы рассмотрим линейную функцию, график линейной функции и его свойства. И, как обычно, решим несколько задач на эту тему.

Линейной функцией называется функция вида y=kx+b

В уравнении функции число k, которое мы умножаем на x называется коэффициентом наклона.

Например, в уравнении функции y=-2x+3 k=-2; ~~b=3;

в уравнении функции y=-2+3x   k=3; ~~b=-2;

в уравнении функции y=-x   k=-1; ~~b=0;

в уравнении функции y=5   k=0; ~~b=5.

Графиком линейной функции является прямая линия.

1. Чтобы построить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

Например, чтобы построить график функции y={1/3}x+2  , удобно взять x=0  и x=3  , тогда ординаты эти точек будут равны y=2   и y=3  .

Получим точки А(0;2) и В(3;3). Соединим их и получим график  функции y={1/3}x+2  :

2. В уравнении функции y=kx+b коэффициент k   отвечает за наклон графика функции:

Коэффициент b отвечает за сдвиг графика вдоль оси OY:

На рисунке ниже изображены графики функций y=2x+3; y={1/2}x+3y=x+3

Заметим, что во всех этих функциях коэффициент k больше нуля, и все графики функций наклонены вправо. Причем, чем больше значение k, тем круче идет прямая.

Во всех функциях b=3 — и мы видим, что все графики пересекают ось OY в точке (0;3)

Теперь рассмотрим графики функций y=-2x+3; y=-{1/2}x+3y=-x+3

На этот раз  во всех  функциях коэффициент k меньше нуля, и все графики функций наклонены влево.

Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

Рассмотрим графики функций  y=2x+3y=2x; y=2x-2

Теперь  во всех уравнениях функций коэффициенты k равны. И мы получили три параллельные прямые.

Но коэффициенты b различны, и эти графики пересекают ось OY  в различных точках:

График функции y=2x+3 (b=3) пересекает ось OY  в точке (0;3)

График функции y=2x (b=0) пересекает ось OY  в точке (0;0) —  начале координат.

График функции y=2x-2 (b=-2) пересекает ось OY  в точке (0;-2)

Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.

Если  k<0 и b>0то график функции y=kx+b имеет вид:

Если  k>0 и b>0то график функции y=kx+b имеет вид:

Если  k>0 и b<0то график функции y=kx+b имеет вид:

Если  k<0 и b<0то график функции y=kx+b имеет вид:

Если  k=0то  функция y=kx+b превращается в функцию   y=b и ее график имеет вид:

Ординаты всех точек графика функции y=b равны b

Если b=0, то график функции y=kx проходит через начало координат:

 Это график прямой пропорциональности.

3. Отдельно отмечу график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

Например, график уравнения x=3  выглядит так:

Внимание! Уравнение x=a не является функцией, так  как различным значениям функции соответствует одно и то же значение аргумента, что не соответствует определению функции.

4. Условие параллельности двух прямых:

График функции y=k_1{x}+b_1 параллелен графику функции y=k_2{x}+b_2, если k_1=k_2

5. Условие перпендикулярности двух прямых:

График функции y=k_1{x}+b_1 перпендикулярен графику функции y=k_2{x}+b_2, если k_1*k_2=-1 или k_1=-1/{k_2}

6. Точки пересечения графика функции y=kx+b с осями координат.

С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):

Рассмотрим решение задач.

1. Постройте график функции y=kx+b, если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.

В уравнении функции  y=kx+b два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.

а) Из того, что график функции y=kx+b параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид y=-4x+b

б) Нам осталось найти b. Известно, что график функции y=-4x+b проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:

2=-4*(-3)+b  отсюда b=-10

Таким образом, нам надо построить график функции y=-4x-10

Точка А(-3;2) нам известна, возьмем точку B(0;-10)

Поставим эти точки в координатной плоскости и соединим их прямой:

2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).

Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой  y=kx+b. То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение  y=kx+b и получим систему линейных уравнений.

delim{lbrace}{matrix{2}{1}{{1=k+b} {4=2k+b} }}{ }

Вычтем из второго уравнения системы первое, и получим k=3. Подставим значение k в первое уравнение системы, и получим b=-2.

Итак, уравнение прямой y=3x-2.

3. Постройте график уравнения (2y-x+1)(y^2-1)=0

Чтобы найти,  при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть ОДЗ каждого множителя. 

Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:

delim{[}{matrix{3}{1}{{2y-x+1=0} {y-1=0} {y+1=0}}}{ }

delim{[}{matrix{3}{1}{{y={x/2}-1/2} {y=1} {y=-1}}}{ }

Построим графики всех  уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения  (2y-x+1)(y^2-1)=0:

4. Постройте график функции y=kx+b, если он перпендикулярен прямой y=-{1/2}x   и проходит через точку М(-1;2)

Мы не будем строить график, только найдем уравнение прямой.

а) Так как график функции y=kx+b, если он перпендикулярен прямой y=-{1/2}x  , следовательно k*{-1/2}=-1, отсюда k=2. То есть уравнение функции имеет вид y=2x+b

б) Мы знаем, что  график функции y=2x+b проходит через точку М(-1;2). Подставим ее координаты в уравнение функции. Получим:

2=2*{-1}+b, отсюда b=4.

Следовательно, наша функция имеет вид: y=2x+4.

5. Постройте график функции y=(x^2-1)(1/{x-1}-1/{x+1})+x

Упростим выражение, стоящее в правой части уравнения функции.

Важно! Прежде чем упрощать выражение, найдем его ОДЗ.

Знаменатель дроби не может быть равен нулю, поэтому x<>1, x<>-1.

(x^2-1)(1/{x-1}-1/{x+1})+x = (x-1)(x+1)({x+1-(x-1)}/({{x-1})({x+1})})+x= (x-1)(x+1)2/{(x-1)(x+1)}+x=x+2

Тогда наша функция принимает вид:

delim{lbrace}{matrix{3}{1}{{y=x+2} {x<>1} {x<>-1}}}{ }

То есть нам надо построить график функции y=x+2 и выколоть на нем две точки: с абсциссами x=1 и x=-1:

И.В. Фельдман, репетитор по математике.

График линейной функции, его свойства и формулы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

Функция Коэффициент «k» Коэффициент «b»
y = 2x + 8 k = 2 b = 8
y = −x + 3 k = −1 b = 3
y = 1/8x − 1 k = 1/8 b = −1
y = 0,2x k = 0,2 b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

Прямые на координатной плоскости

Линейная функция

Линейной функцией называют функцию, заданную формулой

где k и b – произвольные (вещественные) числа.

При любых значениях k и b графиком линейной функции является прямая линия .

Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

График линейной функции

При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

Рис.1
Рис.2
Рис.3

При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

Рис.4
Рис.5
Рис.6

При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

k y = kx + b1 и y = kx + b2 ,

имеющие одинаковые угловые коэффициенты и разные свободные члены , параллельны .

имеющие разные угловые коэффициенты , пересекаются при любых значениях свободных членов.

y = kx + b1 и

перпендикулярны при любых значениях свободных членов.

Угловой коэффициент прямой линии

равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

Рис.10
Рис.11
Рис.12

Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

Прямые, параллельные оси ординат

Прямые, параллельные оси Oy , задаются формулой

где c – произвольное число, и изображены на рис. 13, 14, 15.

Рис.13
Рис.14
Рис.15

Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

где p, q, r – произвольные числа.

В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

что и требовалось.

В случае, когда получаем:

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

В случае, когда q = 0, p = 0, уравнение (4) имеет вид

и при r = 0 его решением являются точки всей плоскости:

В случае, когда уравнение (5) решений вообще не имеет.

Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

параллельна прямой, заданной уравнением (4) .

Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

перпендикулярна прямой, заданной уравнением (4) .

Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

  1. параллельной к прямой
  2. перпендикулярной к прямой (8).

В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

Итак, уравнение прямой, параллельной к прямой

В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

Уравнение параллельной прямой

Альтернативная формула:
Прямая, проходящая через точку M1(x1; y1) и параллельная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения параллельной прямой (см. также как составить уравнение перпендикулярной прямой).

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение. Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника , где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
;
.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: . Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 /7x – 4 /7 (здесь a = 5 /7). Уравнение искомой прямой есть y – 5 = 5 / 7(x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

источники:

http://www.resolventa.ru/spr/algebra/degree1.htm

http://math.semestr.ru/line/parallel.php

Рассматривая линейную функцию вида (y=kx + b), особо выделяют случай, когда (b=0).

Тогда линейная функция принимает вид (y=kx) и называется прямой пропорциональностью

Графиком функции (y=kx) является прямая, проходящая через начало координат.

Важно уметь переходить от аналитической модели (y=kx) к геометрической и, наоборот, от геометрической к аналитической модели.

Например, рассмотрим прямую, изображённую на рисунке.

11.png

Эта прямая является графиком линейной функции (y=kx), так как проходит через начало координат. Нужно лишь определить значение коэффициента (k).

Из формулы (y=kx) получим, что

k=yx

.

Чтобы определить коэффициент (k), необходимо выбрать некоторую точку на прямой и вычислить частное ординаты и абсциссы заданной точки.

Прямая проходит через точку (M(4; 2)), следовательно получим 

24=0,5

. Значит, (k=0,5), и данная прямая является графиком линейной функции (y=0,5x).

Если в формуле (y=kx) вместо (x) подставим (1), то получим (y=k). Это означает, что прямая  (y=kx) проходит через точку ((1; k)). Поэтому график линейной функции можно строить по двум точкам: ((0;0)) и ((1; k)).

Иногда вместо точки ((1; k)) удобнее взять другую точку.

Коэффициент (k) определяет угол между прямой и положительным направлением оси (x).

Если (k>0), то этот угол острый (как на первом рисунке), а

если (k<0), то этот угол тупой (как на втором рисунке).

12.png

Поэтому коэффициент (k) в записи (y=kx) называют угловым коэффициентом.

Обобщая сведения о линейных функциях, можно сделать вывод:

прямая, служащая графиком линейной функции (y=kx + b), параллельна прямой, служащей графиком линейной функции (y=kx).

13.png

На рисунке показаны параллельные прямые с одним и тем же коэффициентом (k = 4).

Поэтому коэффициент (k) в записи (y=kx + b) также называют угловым коэффициентом, и

если (k>0), то прямая (y=kx + b) образует с положительным направлением оси (x) острый угол;

если (k<0), то этот угол тупой.

Линейная функция — функция вида y = x+b. График линейной функции — прямая.

Для построения графика линейной функции достаточно двух точек — потому что через две несовпадающие точки всегда можно провести прямую, причем единственную.

Угловой коэффициент прямой

Величина k в формуле линейной функции y = kx+b называется угловым коэффициентом прямой

Если k textgreater 0, линейная функция возрастает. Чем больше х, тем больше у, то есть график идет вправо и вверх.

Если k textless 0, линейная функция убывает. Чем больше х, тем меньше у, то есть график идет вправо и вниз.

Угловой коэффициент k равен тангенсу угла наклона графика линейной функции к положительному направлению оси Х.

k= tg alpha.

Пусть k textgreater 0. Чем больше k, тем круче вверх идет график функции.

А что же будет, если k=0? Мы получим горизонтальную прямую y = b. На рисунке показан график функции y = 3.

Заметим, что прямая x = 3 (также изображенная на рисунке) не является графиком функции в нашем обычном, школьном смысле слова. В самом деле — мы помним, что функция — это соответствие между двумя множествами, причем каждому элементу множества Х соответствует один и только один элемент множества Y.

Для прямой x = 3 это не выполняется: значению x = 3 соответствует бесконечно много значений у.

Если k_1{=k}_2, прямые параллельны.

При этом, чем больше b, тем выше расположен на координатной плоскости график функции.

Например, прямые y = 4 x + 3 и y = 4 x + 9 параллельны. Их угловые коэффициенты равны.

Если k_1, k_2=-1, прямые перпендикулярны. Например, прямые y = 4x + 3 и y = - 0,25 x - 1 пересекаются под прямым углом. Произведение их угловых коэффициентов равно — 1.

Построение графика линейной функции 

График линейной функции построить легко — достаточно двух точек.

Оказывается, что привычный нам вид уравнения прямой y = kx+b — не единственно возможный.

Уравнение прямой можно записать также в виде Ax + By + C = 0.

Построим, например, прямую, заданную уравнением 3x + 4y - 12 = 0.

При x = 0 получаем, что y = 3.

При y = 0 получаем, что x = 4.

Значит, наша прямая проходит через точки M (0; 3) и N (4; 0).

Выразив у из уравнения Ax + By + C = 0, получим уравнение прямой вида y = kx+b.

Если вы поступаете в вуз на специальность, связанную с математикой, — уже на первом курсе вы познакомитесь и с другими видами уравнения прямой.

Зачем изучать линейную функцию? 

Дело в том, что многие зависимости в природе и технике описываются формулой виде y = kx+b.

Например, закон Ома для участка цепи: U = I R. Напряжение U прямо пропорционально силе тока I.

Формула для равномерного прямолинейного движения: S= vt. Пройденное расстояние S прямо пропорционально времени.

Закон теплового расширения lleft(tright)=l_0left(1+ alpha cdot tright), который вам встретится в одной из задач под номером 10 варианта Профильного ЕГЭ по математике — тоже линейная функция. И таких примеров можно привести очень много.

Обратите внимание, что в формулу линейной функции y = kx+b аргумент х входит в первой степени. Мы просто умножаем х на угловой коэффициент k и прибавляем b.

Если в формулу функции входит аргумент в любой другой степени — например, в квадрате или в кубе, если мы делим на х, если в формуле присутствует sin x, frac{1}{x} или sqrt{x}, или показательные или логарифмические выражения, зависящие от х, — график функции уже не будет прямой линией.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Линейная функция» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.05.2023

Взаимное расположение графиков линейных функций

  1. Расположение графиков прямых пропорциональностей
  2. Расположение графиков линейных функций
  3. Примеры

Расположение графиков прямых пропорциональностей

$$y = kx, k neq 0$$

Функция возрастающая: $x rightarrow, y↑ $

Проходит через I и III квадранты

Функция убывающая: $x rightarrow,y ↓$

Проходит через II и IV квадранты

k = 1

Угол наклона прямой α = 45° биссектриса I и III квадрантов

k = -1

Угол наклона прямой α=135° биссектриса II и IV квадрантов

k = 1

Угол наклона прямой $45° lt α lt 90°$

k = -1

Угол наклона прямой $90° lt α lt 135°$

$0 lt k lt 1$

$-1 lt k lt 0 $

$0 lt k lt 1$

Угол наклона прямой $0° lt α lt 45°$

$-1 lt k lt 0 $

Угол наклона прямой $135° lt α lt 180°$

Расположение графиков линейных функций

y = kx+b

Внимание!

Угловой коэффициент k определяет угол наклона прямой y=kx+b.

Прямые с одинаковым угловым коэффициентом параллельны.

Параметр b определяет точку пересечения прямой с осью Y: (0;b)

Две прямые: $y = k_1 x+b_1 и y = k_2 x+b_2$

$k_1 = k_2$

$k_1 neq k_2$

$k_1 = k_2$

Прямые параллельны

$k_1 neq k_2$

Прямые пересекаются

$k_1 k_2=-1 $

Прямые перпендикулярны

Примеры

Пример 1. Задайте формулой прямую пропорциональность, график которой параллелен графику линейной функции:

Линейная функция

Прямая пропорциональность, $k_2 = k_1$

$б) y = frac{2}{3} x+8$

$y = frac{2}{3} x$

$в) y = -frac{63}{64} -5$

$y = -frac{63}{64} x$

$г) y = 8x-frac{1}{7}$

$y = 8x$

Пример 2. Задайте формулой прямую пропорциональность, график которой перпендикулярен графику линейной функции:

Линейная функция

Прямая пропорциональность, $k_2 = -frac{1}{k_1}$

а) y = -3x+5

$y = frac{1}{3}x$

$б) y = frac{2}{3} x+8$

$y = -frac{3}{2} x$

$в) y = -frac{63}{64} -5$

$y = -frac{64}{63} x$

$г) y = 8x-frac{1}{7}$

$y = -frac{1}{8}x$

Понравилась статья? Поделить с друзьями:
  • Как составить план характеристики карт по географии
  • Как найти максимальный по модулю элемент массива
  • Как найти x с индексом ноль
  • Как составить кроссворд по географии пятый класс
  • Как исправить в больничном листе стаж работы