Как найти функцию распределения построить график

Функция распределения случайной величины

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Пусть

 – действительное число. Вероятность события,
состоящего в том, что

 примет значение, меньшее

, то есть вероятность
события

 обозначим через

. Разумеется, если

 изменяется, то, вообще говоря, изменяется и

, то есть

 – функция от

.

Функцией распределения называют функцию

, определяющую вероятность
того, что случайная величина

 в результате испытания примет значение,
меньшее

, то есть:

Геометрически
это равенство можно истолковать так:

 есть вероятность того, что случайная величина примет
значение, которое изображается на числовой оси точкой, лежащей левее точки

.

Иногда
вместо термина «функция распределения» используют термин «интегральная
функция».

Функцию
распределения дискретной случайной величины

 можно представить следующим соотношением:

Это
соотношение можно переписать в развернутом виде:

Функция
распределения дискретной случайной величины есть разрывная ступенчатая функция,
скачки которой происходят в точках, соответствующих возможным значениям
случайной величины и равны вероятностям этих значений. Сумма всех скачков
функции

 равна 1.

Свойства функции распределения

Свойство 1.

Значения
функции распределения принадлежат отрезку

:


Свойство 2.

 – неубывающая функция, то есть:

,
если


Свойство 3.

Если возможные значения случайной величины
принадлежат интервалу

,
то:

1)

 при

;

2)

 при


Свойство 4.

Справедливо равенство:


Свойство 5.

Вероятность того, что непрерывная случайная
величина

 примет одно определенное значение, равна нулю.

Таким образом, не представляет интереса говорить о
вероятности того, что непрерывная случайная величина примет одно определенное
значение, но имеет смысл рассматривать вероятность попадания ее в интервал,
пусть даже сколь угодно малый.

Заметим, что было бы неправильным думать, что
равенство нулю вероятности

 означает, что событие

 невозможно (если, конечно, не ограничиваться
классическим определением вероятности). Действительно, в результате испытания
случайная величина обязательно примет одно из возможных значений; в частности,
это значение может оказаться равным

.


Свойство 6.

Если возможные значения непрерывной случайной величины
расположены на всей оси

,
то справедливы следующие предельные соотношения:


Свойство 7.

Функция распределения непрерывная слева, то есть:

Смежные темы решебника:

  • Дискретная случайная величина
  • Непрерывная случайная величина
  • Математическое ожидание
  • Дисперсия и среднее квадратическое отклонение

Примеры решения задач


Пример 1

Дан ряд
распределения случайной величины

:

1 2 6 8

0,2 0,3 0,1 0,4

Найти и изобразить ее функцию распределения.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Будем задавать различные значения

 и находить для них

1. Если

,
то, очевидно,

в том числе и при

2. Пусть

 (например

)

Очевидно, что и

3. Пусть

 (например

);

Очевидно, что и

4. Пусть

Очевидно, что и

5. Пусть

Итак:

График функции распределения


Пример 2

Случайная
величина

 задана функцией распределения:

Найти
вероятность того, что в результате испытания

 примет значение:

а) меньше
0,2;

б) меньше
трех;

в) не
меньше трех;

г) не
меньше пяти.

Решение

а) Так
как при

 функция

, то

то есть
при

б)

в)
События

 и

 противоположны, поэтому

Отсюда:

г) сумма
вероятностей противоположных событий равна единице, поэтому

Отсюда, в
силу того что при

 функция

, получим:


Пример 3

Задана
непрерывная случайная величина X своей плотностью
распределения вероятностей f(x). Требуется:

1)
определить коэффициент A;

2) найти
функцию распределения F(x);

3)
схематично построить графики функций f(x) и F(x);

4)
вычислить математическое ожидание и дисперсию X;

5)
определить вероятность того, что X примет значение из
интервала (a,b).

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

1)
Постоянный параметр

 найдем из
свойства плотности вероятности:

В
нашем случае эта формула имеет вид:

Получаем:

2)
Функцию распределения

 найдем из
формулы:

Учитывая
свойства

,  сразу можем отметить,
что:

и

Остается
найти выражение для

, когда х принадлежит интервалу

:

Получаем:  

3) Построим графики функций:

График плотности распределения

График функции распределения

4) Вычислим
математическое ожидание:

В нашем случае:

Вычислим дисперсию:

Искомая дисперсия:

5) Вероятность того, что

 примет значение из интервала

:

Задачи контрольных и самостоятельных работ


Задача 1

Закон
распределения случайной величины X задан таблицей.

Найти ее
математическое ожидание, дисперсию и значение функции распределения в заданной
точке.

F(1)=

M[X]=

D[X]=


Задача 2

Случайная
величины X задана функцией распределения

Найти
плотность распределения вероятностей, математическое ожидание и дисперсию
случайной величины. Построить графики дифференциальной и интегральной функций.
Найти вероятность попадания случайной величины X в интервалы (1,2; 1,8),
(1,8; 2,3)


Задача 3

Дискретная
случайная величина X задана рядом распределения. Найти:

1)
функцию распределения F(x) и ее график;

2)
математическое ожидание M(X);

3)
дисперсию D(X).

-5 5 25 45 65

0.2 0.15 0.3 0.25 0.1

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 4

В задаче
дискретная случайная величина задана рядом распределения.

Найти

; M(X), D(X), P(0≤X≤2); F(x).
Начертить график F(x)


Задача 5

В задаче
непрерывная случайная величина X задана функцией
распределения F(x).

Найти  a; f(x); M(X); D(X); P(X<0.2)

Начертить
графики функций f(x);F(x).


Задача 6

Функция
распределения непрерывной случайной величины X (времени безотказной работы
некоторого устройства) равна

 (

). Найти вероятность безотказной
работы устройства за время x больше либо равно T.


Задача 7

Функция
распределения непрерывной случайной величины задана выражением:

Найдите:

1)
параметр a;

2)
плотность вероятностей;

4) P(0<x<1)

Постройте
графики интегральной и дифференциальной функции распределения.


Задача 8

Дана
интегральная функция распределения. Найти: дифференциальную функцию f(x),M(X),σ(X),D(X).


Задача 9

Дана
функция распределения F(х) случайной величины Х.

Найти плотность
распределения вероятностей f(x), математическое ожидание M(X),
дисперсию D(X) и вероятность попадания X на
отрезок [a,b]. Построить графики
функций F(x) и f(x).


Задача 10

НСВ X имеет
плотность вероятности (закон Коши)

Найти:

а)
постоянную C=const;

б)
функцию распределения F(x);

в)
вероятность попадания в интервал -1<x<1

г)
построить графики f(x), F(x).

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ


2.2.7. Функция распределения случайной величины

Стандартное обозначение:

И для дискретной, и для непрерывной случайной величины она определяется одинаково:

, где – вероятность того, что случайная величина

 примет значение,

МЕНЬШЕЕ, чем переменная , которая«пробегает» все действительные значения от «минус» до

«плюс» бесконечности.

Построим функцию распределения для нашей подопытной игры:

Начинаем разбираться. Чему, например, равно значение ? Это вероятность того, что выигрыш будет меньше, чем –20. И это невозможное событие: . Совершенно понятно, что   и для всех «икс» из интервала , а также для . Почему? По определению функции распределения:
 – вы согласны?  Функция

 возвращает вероятность того,

что в точке  выигрыш

будет СТРОГО МЕНЬШЕ «минус» пяти.

Таким образом: , если .
На интервале  функция , поскольку левее

любой точки этого интервала есть только одно значение  случайной величины, которое появляется с вероятностью 0,5. Кроме того,

сюда же следует отнести точку ,

так как:
 – очень хорошо осознайте этот

момент!

Таким образом, если , то

Далее рассматриваем  промежуток . СТРОГО ЛЕВЕЕ любой точки этого промежутка находятся два выигрыша , поэтому:

И, наконец, если , то , ибо все значения

 случайной величины  лежат СТРОГО левее

любой точки интервала

Заметим, кстати, важную особенность: коль скоро функция  характеризует вероятность, то

она может принимать значения лишь из промежутка  – и никакие другие!

Итак, функция распределения вероятностей ДСВ является кусочной и, как многие знают, в таких случаях принято использовать

фигурные скобки:

График данной функции имеет разрывный «ступенчатый» вид:

Причём, функция  или её

график однозначно определяют сам закон распределения: в точке  высота «ступеньки» (разрыв) составляет  (следим по графику), в точке  «скачок» разрыва равен  и, наконец, в точке  он равен в точности .
Таким образом, функция распределения вероятностей – это ещё один способ ЗАДАТЬ случайную величину. И этот способ

особо важен для непрерывной случайной величины – по той причине, что её невозможно описать таблицей (ввиду бесконечного и

несчётного количества принимаемых значений). Однако, всему своё время, и НСВ – тоже.

Освоим технические моменты решения типовой задачи:

Задача 93
Построить функцию распределения случайной величины

Найти вероятности того, что случайная величина примет значение из следующих промежутков:

…, пожалуй, достаточно.

Решение: На практике удобно использовать формальный алгоритм построения функции распределения:

Сначала берём первое значение   и составляем нестрогое неравенство . На этом промежутке .

На промежутке  (между

 и ):

На промежутке  (между

 и ):

На промежутке  (между

 и ):

И, наконец, если  строго

больше самого последнего значения , то:

Легко заметить, что с увеличением «икс» идёт накопление (суммирование) вероятностей, и поэтому функцию  иногда называют интегральной функцией распределения. В

практических задачах проведённые выше действия обычно выполняют устно, а результат сразу записывают под единую скобку:

Выполним чертёж:

и проконтролируем правильность решения с помощью «скачков» графика: в точке  «скачок» равен , в точке составляет , в точке  равен , и, наконец, в точке  – .

При выполнении чертежа от руки оптимален следующий масштаб:
горизонтальная ось:  1 ед. = 2 или 1 тетрадная клетка;
вертикальная ось: 0,1 = 1 тетрадная клетка.

На левых концах ступенек (кроме нижнего луча) можно ставить выколотые точки – дело вкуса. Левый нижний луч следует прочертить жирно

(чтобы он не сливался с координатной осью) и до конца оси! Правая верхняя линия не должна заканчиваться раньше

острия оси! Такие оплошности могут говорить о непонимании функции распределения, а это, как вы понимаете, скверно. То было ручное

построение. Ну а о том, как строить такие красивые графики в Экселе можно узнать в этом ролике на Ютубе, к слову, полигон (многоугольник) распределения строится ещё проще.

Переходим ко второй части задания, её коротко можно сформулировать так:

2.2.8. Вероятность попадания в промежуток

2.2.6. Многоугольник распределения



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Эмпирическая функция распределения

Содержание:

  • Что называют эмпирической функции распределения
  • Свойства функции
  • Как найти
  • Как построить график
  • Примеры задач

Что называют эмпирической функции распределения

Допустим, известно статистическое распределение частот количественного признака Х. Обозначим nх – количество наблюдений со значением меньше x1, n – всего наблюдений. Очевидно, что относительная частота события Х<x будет равна nх/n.

Определение

Эмпирическая функция распределения – это функция F*(x), которая определяет для каждого значения x относительную частоту события X

Данное понятие можно записать в виде формулы:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

(Fast(x)=frac{n_x}n)

В этой записи nx – количество вариантов, меньших x– объем выборочной совокупности.

Существует также теоретическая функция распределения (функция распределения генеральной совокупности). Ее отличие от выборочной функции распределения состоит в определении объективной возможности или вероятности события X<x.

Свойства функции

Функция распределения выборки обладает рядом свойств, которые следуют из определения понятия.

  1. Значения рассматриваемой функции F*(x) располагаются на отрезке [0; 1].
  2. Функция имеет неубывающий характер.
  3. При минимальной варианте x1 верно равенство F*(x)=0 при условии, что х<х1. При максимальной варианте хверно равенство F*(x)=1 при условии х>xk.

Таким образом, функция распределения выборки помогает оценить теоретическую функцию распределения.

Как найти

Выборочная функция распределения для случайной величины рассчитывается по формуле:

(F(x)=P(xi<x))

Данное равенство читается так: функция распределения равна вероятности события, при котором случайная величина будем меньше x.

Поскольку при условии, что x меньше или равно 1, событие ξ20<1 невозможно (ξ20 не принимает значение менее 1, вероятность невозможного события равна 0), верно следующее выражение:

(F(x)=P(xi20<1)=0)

При принадлежности x отрезку (1; 2] событие ξ20<2 представляет собой равенство ξ20=1, значит, вероятность этого события равно 0,1. В записи это выглядит так:

(F(x)=P(xi20<2)=0,1)

Когда x принадлежит отрезку (2; 4], событие ξ20<4 состоит в равенстве ξ20 значению 1 или 2, то есть вероятность рассматриваемого события равна 0,1+0,2=0,3 или:

(F(x)=P(xi20<4)=0,3)

Если 4 < ≤ 5, то событие ξ20<5 означает, что ξ20 принимает значение либо 1, либо 2, либо 4. Следовательно, вероятность данного события вычисляется так: 0,1+0,2+0,35=0,65, то есть:

(F(x)=P(xi20<5)=0,65)

При 5 < ≤ 6 событие ξ20<6 заключается в том, что ξ20 принимает значение 1, 2, 4 или 5. Значит его вероятность равно 0,1+0,2+0,35+0,1=0,75 или:

(F(x)=P(xi20<6)=0,75)

И так далее.

Итак, эмпирическая функция распределения имеет следующий вид:

Функция

 

Как построить график

Построение графика эмпирической функции распределения возможно после вычисления ее значений на всей числовой оси. Для рассмотренного примера схематическое изображение будет выглядеть так:

График

 

График ступенчатого вида, построенный на отрезках. Совпадение графика с горизонтальной осью означает, что левее минимального значения x=1 функция приобретает значение нуля. Увеличение в каждой следующей точке xi происходит на величину вероятности νi. Правее максимального значения х8=13 функция равна 1. Стрелки и точки на концах отрезков указывают на определение функции на полуинтервалах.

Примеры задач

Задача

В таблице даны значения эмпирического распределения:

Задача

 

Необходимо найти объем выборочной совокупности, составить выборочную функцию распределения, построить ее график.

Решение

  1. Вычислим объем выборки: n=5+10+15+20=50.
  2. Из свойства эмпирической функции распределения: Fn(x)=0 при x≤1, Fn(x)=1 при x>4.

Выходит, что:

Задача 2

 

По полученным значениям построим график:

Задача 3

 

Рассмотрим пространство элементарных событий, в котором каждому элементарному событию в соответствие ставится число или вектор , т.е. на множестве есть определенная функция , которая для каждого элементарного события находит элемент одномерного пространства или — мерного пространства .

Эту функцию называют случайной величиной. В случае, когда отражает множество на одномерное пространство случайную величину называют одномерной. Если отображение осуществляется на , то случайную величину называют n— мерной (системой n случайных величин или n — мерным случайным вектором).

Величина называется случайной, если в результате проведения опыта под влиянием случайных факторов она приобретает то или другое возможное числовое значение с определенной вероятностью.

Если множество возможных значений случайной величины является счетно, то ее называют дискретной. В противном случае ее называют непрерывной.

Случайные величины для удобства обозначают прописными буквами латинского алфавита , а их возможные значения — строчными .

Для установления случайной величины необходимо знать не только множество возможных ее значений, но и указать, с какими вероятностями она приобретает то или иное возможное значение.

С этой целью вводят понятие закона распределения вероятностей – зависимость, которая устанавливает связь между возможными значениями случайной величины и соответствующими им вероятностями.

Закон распределения дискретной случайной величины часто задают в табличной форме, функцией, или графически с помощью вероятностного многоугольника.

При табличной формы записи закона указывается множество возможных значений случайной величины находится в порядке их возрастания в первой строке, и соответствующих им вероятностей в следующей:

Случайные события должны быть попарно несовместимы и образовывать полную группу, то есть удовлетворять условие:

Приведенную зависимость называют условием нормировки для дискретной случайной величины , а таблицу распределения – рядом распределения.

Функция распределения вероятностей и ее свойства

Закон распределения вероятностей можно представить в виде функции распределения вероятностей случайной величины , которая может использоваться как для дискретных, так и для непрерывных случайных величин.

Функцию аргумента , устанавливающую вероятность случайного события называют функцией распределения вероятностей:

Ее следует понимать как функцию, которая устанавливает вероятность случайной величины, которая может принимать значения, меньше .

Функция распределения обладает следующими свойствами:

1. Она всегда положительная со значениями в пределах от нуля до единицы

2. Функция является монотонно возрастающей, а именно , если .

С этого свойства получают приведенные выводы:

a) Вероятность вступления случайной величиной возможных значений из промежутка равна прироста ее интегральной функции на этом промежутке:

б) Вероятность, что непрерывная случайная величина примет конкретное возможное значение, всегда равна нулю

Для непрерывной случайной величины выполняются такие равенства:

3. На крайних точках непрерывная случайная величина принимает значение 0 и 1.

Из этих границ следует, что для дискретной случайной величины с возможными значениями из ограниченного промежутка имеем

для

для

—————————-

Приведем решения задач на отыскание функции распределения.

Пример 1. Закон распределения дискретной случайной величины задан таблицей:

Построить функцию распределения и ее график.

Решение. Согласно свойствами функции получим приведенные дальше значение.
1)
2)
3)
4)
5)
6)

Компактно функция распределения иметь запись

График функции распределения изображен на рисунке ниже

—————————-

Пример 2. Есть три коробки с шарами. В первой содержится 6 желтых и 4 синие шарики, во втором — 7 желтых и 3 синие, а в третьем — 2 желтых и 8 синих. Из каждой коробки наугад берут по одному шарику. Построить закон распределения вероятностей дискретной случайной величины – появления числа синих шариков среди трех наугад взятых, определить закон распределения и построить график этой функции.

Решение. Среди трех наугад взятых шариков число синих может быть 0, 1, 2, 3.
В табличной форме закон распределения дискретной случайной величины имеет вид:

Вычислим вероятности . С этой целью обозначим — случайное событие, заключающееся соответственно в появлении желтого шарики и – появление синего с первой коробки. Подобным образом для остальных коробок . Вероятности этих событий такие:

Поскольку случайные события независимы, то вероятности находим по формулам:



Вычисление достаточно просты и сделаны обозначения полностью все объясняют. Проверим выполнение условия нормировки

Всегда выполняйте проверку данного условия: это достаточно просто сделать и позволяет быстро проверить правильность вычислений вероятности. В случаях, когда условие нормировки не выполняется нужно отыскать ошибку и исправить ее.

У нас же все вычисления правильны, потому записываем закон распределения вероятностей в табличной форме:

Вычисляем значение интегральной функции
1)
2)
3)
4)
5)

В случае ошибок при нахождении вероятностей последнее соотношение дает отличный от единицы результат, поэтому можете проверять и по этому значению. Упрощенно функция распределения будет иметь вид

а ее график следующий

—————————-

Пример 3. Закон распределения случайной величины задан функцией распределения вероятностей

Построить график функции распределения и вычислить вероятность, что случайная величина принадлежит промежутку .

Решение. Функция распределения будет иметь вид.

Используя определение, вычислим


Таким образом вероятность, что случайная величина принадлежит промежутку [1,4] равна 0,36.

—————————-

Внимательно разберитесь с приведенными примерами нахождения функции распределения, это Вам пригодится на практических занятиях. Старайтесь проверять условие нормирования, чтобы избежать дальнейших ошибок и правильно определяйте вероятности.

———————————————-

Автор статьи

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение функции распределения

Пусть $X$ – случайная величина, а $x$ – вероятность распределения этой случайной величины.

Определение 1

Функцией распределения называется функция $F(x)$ удовлетворяющая условию $Fleft(xright)=P(X

Также иначе функцию распределения иногда называются интегральной функцией распределения или интегральным законом распределения.

В общем виде график функции распределения представляет собой график неубывающей функции с областью значений, принадлежащей отрезку $left[0,1right]$ (причем 0 и 1 обязательно входят в область значений). При этом функция может, как иметь, так и не иметь скачков функции (рис. 1)

Пример графика функции распределения

Рисунок 1. Пример графика функции распределения

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Функция распределения дискретной случайной величины

Пусть случайная величина $X$ является дискретной. И пусть для нее дан ряд её распределения. Для такой величины функцию распределения вероятностей можно записать в следующем виде:

ступенчатую функцию

Функция распределения непрерывной случайной величины

Пусть случайная величина $X$ теперь является непрерывной.

График функции распределения такой случайной величины всегда представляет собой неубывающую непрерывную функцию (рис. 3).

«Определение функции распределения» 👇

Функция распределения смешанной случайной величины

Рассмотрим теперь случай, где случайная величина $X$ является смешанной.

График функции распределения такой случайной величины всегда представляет собой неубывающую функцию, которая имеет минимальное значение в 0, максимальное значение в 1, но которая не на всей области определения является непрерывной функцией (то есть имеет скачки в отдельных точках) (рис. 4).

Функция распределения смешанной случайной величины

Рисунок 4. Функция распределения смешанной случайной величины

Примеры задач на нахождение функции распределения

Пример 1

Приведен ряд распределений появления события $A$ в трех опытах

Рисунок 5.

Найти функцию распределения вероятностей и построить её график.

Решение.

Так как случайная величина является дискретной, то мы можем пользоваться формулой $ Fleft(xright)=sumlimits_{x_i

При $xle 0$, $Fleft(xright)=0$;

При $0

При $1

При $2

При $x>3$, $Fleft(xright)=0,2+0,1+0,3+0,4=1$;

Отсюда получаем следующую функцию распределения вероятностей:

Рисунок 6.

Построим ее график:

Рисунок 7.

Пример 2

Проводится один опыт, в котором событие $A$ может, как произойти, так и не произойти. Вероятность того, что данное событие произойдет равно $0,6$. Найти и построить функцию распределения случайной величины.

Решение.

Так как вероятность того, что событие $A$ произойдет равно $0,6$, то вероятность того, что данное событие не произойдет равно $1-0,6=0,4$.

Построим для начала ряд распределения данной случайной величины:

Рисунок 8.

Так как случайная величина является дискретной, найдем функцию распределения по аналогии с задачей 1:

При $xle 0$, $Fleft(xright)=0$;

При $0

При $x>1$, $Fleft(xright)=0,4+0,6=1$;

Таким образом, получаем следующую функцию распределения:

Рисунок 9.

Построим ее график:

Рисунок 10.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как найти влияние структурных сдвигов
  • Как найти диск на почте гугл
  • Как найти дешевые запчасти для авто
  • Как найти нос самолета the forest
  • Как узнать в майле найти