Как найти геометрический центр сложной фигуры

  • Главная
  • Список секций
  • Математика
  • ОПРЕДЕЛЕНИЕ ГЕОМЕТРИЧЕСКИХ ЦЕНТРОВ СЛОЖНЫХ ФИГУР

ОПРЕДЕЛЕНИЕ ГЕОМЕТРИЧЕСКИХ ЦЕНТРОВ СЛОЖНЫХ ФИГУР

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Сенагатуллина А.К. 1


1МБОУ «Биляр-Озерская СОШ» Нурлатского МР РТ

Токарева Е.Г. 1


1МБОУ «Биляр-Озерская СОШ»


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение.

«Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет вам потом огромную помощь во всей вашей работе.» Эти слова принадлежат М.И. Калинину.

И действительно, это так, на сегодняшний день, в век инновационных технологий эта крылатая фраза имеет еще большое значение в современной жизни человека. Лишь математика как самый надежный инструмент может представить истину познания человеку в абсолютно любой области.

Тема определения центров областей, губерний, республик не нова. Многие территориальные образования уже давно обзавелись стелами, памятными камнями, обозначающими географический центр. Над этим работали и студенты, и научные работники и обучающиеся школ. И я тоже задалась проблемой определения центра неправильной фигуры, в первую очередь методов, понятных и доступных для большинства обучающихся, также проверки этого метода всеми возможными способами, ну и конечно, определение самого центра, для исследования которого взяла город Нурлат.

Цель проекта: найти центр г. Нурлат

Задачи проекта:Рассмотреть приемы исследовательской деятельности, методы, формы и способы научного исследования, научного познания.Формировать мотивацию исследовательской деятельности.Формировать творческую активность.Развивать самостоятельность.

Ожидаемые результаты:

Узнать методы и приемы определения центра сложных фигур, в частности географического центра города Нурлат;ощутить себя в роли экспериментатора, провести простые, но поучительные опыты по определению центров различных фигур;

закрепить вычислительные навыки, навыки вычисления площадей геометрических фигур, что позволит успешно сдать экзамены по математике.

План работы:

1. Выбор направления и темы работы2. Постановка цели и задач3. Изучение теории4. Поиск и подготовка материалов5 Проверка точности теоретических вычислений опытным путем.

6. Выводы7. Оформление работы и Презентация.

Историческая справка

Центр тяжестинеизменно связанная с твердым телом точка, через которую проходит равнодействующая сил тяжести, действующих на частицы этого тела при любом положении тела в пространстве. У однородного тела, имеющего центр симметрии (круг, шар, куб и т. д.), центр тяжести находится в центре симметрии тела.

Понятие о центре тяжести было впервые изучено примерно 2200 лет назад греческим геометром Архимедом, величайшим математиком древности. С тех пор это понятие стало одним из важнейших в механике, а также позволило сравнительно просто решать некоторые геометрические задачи.

У каждого предмета есть центр тяжести. Изучение этого свойства тел необходимо для понимания понятия равновесия тел, при решении конструкторских задач, расчете устойчивости сооружений и во многих других случаях.

Теоретическая часть

1. Понятие о центре тяжести

Каждое тело можно представить как систему материаль­ных частиц, взаимодействующих с Землей. Суммарный результат этого взаимодействия — равнодействующая эле­ментарных сил тяжести. Точка приложения этой равнодей­ствующей называется центром тяжести тела. По­скольку элементарные силы тяжести образуют систему параллельных сил, то центр тяжести обладает всеми свой­ствами центра параллельных сил. Следовательно, при лю­бом положении тела в пространстве положение центра тяжести остается неизменным.

2. Определение центра тяжести плоских фигур

Положение центра тяжести плоских фигур (т. е. весьма тонких тел) можно определить анали­тически и экспериментально.

Аналитически центр тяжести находится как центр параллельных сил. При этом возможны три случая:

фигура имеет две оси симметрии — центр тяжести нахо­дится на пересечении осей;

фигура имеет одну ось симметрии — центр тяжести лежит на этой оси, необходимо отыскать одну координату;

фигура не имеет осей симметрии — положение центра тяжести заранее неизвестно, надо определить две координаты.

Заданную фигуру разбивают на простейшие, положение центров тяжести которых вполне определенно, и затем подсчитывают искомые координаты по следующим формулам:

хс = ;

(1)

yc= ,

где х1, х2, …,хn и у1,,у2,…, уn – координаты центров тяжести простейших фигур;

S1, S2,…, Sn – площади простейших фигур.

3. Центр тяжести простых фигур

Отрезок – его середина;

Параллелограмм – точка пересечения диагоналей;

Треугольник – точка пересечения медиан;

Круг – его центр.

4. Центр тяжести сложной фигуры

Задача 1. Определить координаты цен­тра тяжести однородной пластинки, изобра­женной на рисунке, зная, чтоАН=2см, HG=1,5см, AB=3см, BK=10см, EF=4см, ED=2см.

Решение. Фигура не имеет осей симметрии, следовательно, для определения центра тяжести надо найти две его координаты. Проводим оси Ох и Оу и разби­ваем пластину на три прямоугольника: AHGL, LRKB и EDRF (линии разреза показаны на рисунке). Вычисляем коорди­наты центров тяжести каждого из прямоугольников и их пло­щади:

Для прямоугольника AHGL S1=AH∙HG; x1= ; y1=LB+.

Так как LB=AB-HG=3-1,5=1,5см, то S1=2∙1,5=3 см2; x1==1 см; y1= 1,5+=1,5+0,75=2,25 см .

Для прямоугольника LRKB S2=BK∙LB; x2= ; y2=,

т.е. S2=10∙1,5=15 см2; x2==5 см; y2==0,75 см.

Для прямоугольника EDRF S3=BD∙EF; x3=BK-; y3=LB+,

т.е. S3=2∙4=8 см2; x3=10-=9 см; y3= 1,5+=3,5 см.

По формулам (1) получаем:

Xc==5 см; Yc==1 см.

5. Координаты центра тяжести площади треугольника.

Разобьем площадь треуголь­ника ABD на бесконечно тонкие элемен­тарные полоски, параллельные основа­нию AB. Центр тяжести каж­дой такой полоски расположен в ее середине. Геометрическое ме­сто центров тяжести всех полосок есть медиана OE. На ней поэтому и должен ле­жать центр тяжести всего треугольника. Так как такое же рассуждение спра­ведливо и для двух других медиан, то центр тя­жести треугольника лежит в точке пересече­ния его медиан. При задании вершин треугольника их координатами получим

XC=(xA+xB+xD); (2)

YC=(yA+yB+yD)

Экспериментальный способ основан на том, что при любом положении тела линия действия силы тяжести проходит через центр тяжести и заключается в последова­тельном подвешивании тела (плоской фигуры) за любые две точки. На пересечении отвесов, проходящих через эти точки, и будет находиться центр тяжести. Проверить это можно, если на остриё карандаша поместить фигуру в найденном центре тяжести. Она окажется в равновесии.

Практическая часть.

Изначально был найден центр Нурлатского района, он находится вблизи села Тюрнясево. А я задумала найти центр города Нурлат. Сейчас эта тема достаточно популярна. Я в своей работе сделала возможным найти приблизительные координаты этого исторического места, и тем не менее считаю работу выполненной. Положительный момент, который мне помог в вычислениях — это относительно ровный ландшафт, а сложность в том, что конфигурация территории города извилистая. Не каждое территориальное образование имеет географический центр, например, центр территории России невозможно найти, т.к. она имеет острова и Калининградскую область, расположенные обособленно.

Перед началом работы я разобрала теоретические вопросы, изучила методы и приемы определения центра различных фигур. Опробовала эти методы на простейших фигурах, затем перешла к более сложным фигурам, центр тяжести которых определяется методом группировки.

Определение центра города Нурлат Нурлатского района республики Татарстан

1. Для определения границ Нурлата я воспользовалась генеральным планом-схемой, которая размещена на сайте Нурлатского муниципального района http://nurlat.tatarstan.ru/rus/generalniy-plan-goroda-nurlat.htm .(Рис.1)

2. Далее увеличенное изображение карты перенесла на миллиметровую бумагу, т.к. требовалась работа с координатами.(Рис.2)

3. Затем разбила территорию города на множество простейших фигур, координаты центров которых определить относительно легко.(Рис.2)

4. Затем по формулам, описанным выше, вычислила координаты центра.(см Таблица)

5. Для подтверждения результата я применила физические методы исследования, используя простейшие приемы из статики. Для этого я перенесла карту на плоский картон, вырезала изображение по контуру и проверила точку центра, используя метод подвесов и вертикальный упор. Все полученные результаты совпали. (см. Фото3,4)

Центром города Нурлат является точка, которая расположена в области железнодорожного вокзала.

Заключение.

Тема вынашивалась давно, но реализовать ее раньше не удавалось по причине того, что практически ежегодно вносились изменения в границы города. Сначала к территории города были присоединены близлежащие поселки Ключи, Верхний Нурлат, Нижний Нурлат, позже с выделением земельных участков для многодетных семей, к территории города были присоединены новые площади, которые изменили границы города. Последняя версия карты с границами нашего районного центра размещена на сайте Нурлатского муниципального района.

Методы, которые я использовала, с успехом можно применять для определения подобных точек различных территориальных образований. Ожидаемые результаты осуществлены.

Литература и информационные ресурсы:

1. Геометрия. 7-9 классы: учеб. Для общеобразоват. Организаций/[Л.С. Атанасян, В.Ф. Бутузов, С. Б. Кадомцев и др.].- 2-еизд. – М.:Просвещение, 2014. – 383с.

2. Гольдин, И. И. Основные сведения по технической механике: Учеб.пособие для сред.ПТУ / И. И. Гольдин. — 3-е изд.,перераб.и доп. — М. : Высшая школа, 1986. — 96с.

3. https://ru.wikipedia.org/wiki

4. http://nwpi-fsap.narod.ru/lists/statika/5.htm.

5.http://freemath.ru/publ/istorija_matematiki/vyskazyvanija_o_matematike/vyskazyvanija_o_matematike/19-1-0-36

Приложение

Рис.1 Рис.2

Таблица. Координаты центров и площади простейших фигур

i

xi

yi

Si

Xi∙Si

yi∙Si

Для прямоугольников

1

25

30

600

15000

18000

2

21,1

48,5

85,4

1801,94

4141,9

3

31,8

45,7

9,75

310,05

445,575

4

37,3

44,4

22,09

823,957

980,796

5

37,4

41

9,2

344,08

377,2

6

37,5

37,5

25

937,5

937,5

7

37,5

32,5

25

937,5

812,5

8

41

35,5

2

82

71

9

40,7

33,6

3,64

148,148

122,304

10

37,3

26,9

27,6

1029,48

742,44

11

35,8

23,5

1,5

53,7

35,25

12

36,3

20,8

11,7

424,71

243,36

13

39,25

22,25

0,25

9,8125

5,5625

14

38,4

20,8

3,52

135,168

73,216

15

38,9

19,1

3,12

121,368

59,592

16

38,5

11,75

94,5

3638,25

1110,375

17

43,7

12,1

27,06

1182,522

327,426

18

45,65

12,55

6,12

279,378

76,806

19

43

7

4

172

28

20

37

4,4

4,8

177,6

21,12

21

34,3

4,4

3,15

108,045

13,86

22

33

4,1

1,7

56,1

6,97

23

31,15

8,1

0,84

26,166

6,804

24

32,35

12,1

30,74

994,439

371,954

25

25,3

13,55

26,1

660,33

353,655

26

27,5

11,5

2,4

66

27,6

27

21,75

11,7

1,12

24,36

13,104

28

20,65

13,95

0,35

7,2275

4,8825

29

19,2

14,6

2,88

55,296

42,048

30

14,3

13,8

5,5

78,65

75,9

31

12,65

14,1

1,62

20,493

22,842

32

7,85

13,75

22

172,7

302,5

33

10,15

12,25

1,05

10,6575

12,8625

34

8

11,05

0,7

5,6

7,735

35

2,9

14,5

1,3

3,77

18,85

36

10

20

100

1000

2000

37

3,75

18

15

56,25

270

38

4

22

4

16

88

39

4,5

23,75

1,5

6,75

35,625

40

6,75

25,75

5,25

35,4375

135,1875

41

7,35

26,5

2,2

16,17

58,3

42

9,5

27,7

10,8

102,6

299,16

43

12,75

30

45

573,75

1350

44

12,5

40,3

52,5

656,25

2115,75

45

7,6

40,35

32,16

244,416

1297,656

46

8,9

34,25

4,65

41,385

159,2625

47

8,35

36

6,6

55,11

237,6

48

6,1

36,5

1,2

7,32

43,8

49

14,35

46,75

3,25

46,6375

151,9375

50

14,75

48,45

0,45

6,6375

21,8025

51

40

27,4

1,55

62

42,47

52

23,5

2,7

0,54

12,69

1,458

53

29,6

11,6

0,12

3,552

1,392

Для треугольников

1

27,63

47,3

45,5

1257,165

2152,15

2

28,4

46

0,225

6,39

10,35

3

39,8

43,7

0,72

28,656

31,464

4

39,8

40,66

0,6

23,88

24,396

5

40,66

37,33

4

162,64

149,32

6

41.5

34,6

0,36

14,94

12,456

7

41,6

32,73

0,72

29,952

23,5656

8

40,73

31,46

2,42

98,5666

76,1332

9

39.85

29,9

0,045

1,79325

1,3455

10

39,85

29,2

0,165

6,57525

4,818

11

40,43

28,8

0,385

15,56555

11,088

12

40,46

28,7

0,13

5,2598

3,731

13

40,63

27,13

0,78

31,6914

21,1614

14

40,26

27,66

0,3

12,078

8,298

15

39,86

25,73

0,125

4,9825

3,21625

16

39,83

25,03

0,28

11,1524

7,0084

17

39,3

24,93

0,09

3,537

2,2437

18

37,9

23,6

1,44

54,576

33,984

19

37

23,33

0,75

27,75

17,4975

20

37,7

22,66

0,15

5,655

3,399

21

39,3

21,76

0,105

4,1265

2,2848

22

39,3

21,23

0,135

5,3055

2,86605

23

39,4

19,33

0,21

8,274

4,0593

24

40,8

18,4

1,08

44,064

19,872

25

43,1

16,96

5,775

248,9025

97,944

26

45,86

15,46

0,935

42,8791

14,4551

27

47,8

12,83

6,15

293,97

78,9045

28

48,7

14,71

1

48,7

14,71

29

48,98

14,1

1,035

50,6943

14,5935

30

45,86

9,3

1,6

73,376

14,88

31

44,43

7,36

1,235

54,87105

9,0896

32

42,6

5,7

0,9

38,34

5,13

33

39,96

3,93

1,74

69,5478

6,8382

34

37,6

3,6

0,77

28,952

2,772

35

35.6

3,7

0,27

9,612

0,999

36

32,3

4

0,43

13,889

1,72

37

33,3

5,2

0,15

4,995

0,78

38

34,1

5,8

0,6

20,46

3,48

39

33,5

8

8,3

278,05

66,4

40

30,6

8,7

0,2

6,12

1,74

41

29,6

9,7

0,3

8,88

2,91

42

28,7

12

0,1

2,87

1,2

43

26,9

10,8

0,18

4,842

1,944

44

25,7

11,6

0,12

3,084

1,392

45

24,6

11,

1,53

37,638

16,83

46

23,4

1,7

0,29

6,786

0,493

47

22,6

11,9

0,18

4,068

2,142

48

21,9

11,2

0,17

3,723

1,904

49

20,9

13,4

0,12

2,508

1,608

50

17,8

14

0,39

6,942

5,46

51

17

14

0,98

16,66

13,72

52

16

14,2

2,25

36

31,95

53

14,2

12,4

0,36

5,112

4,464

54

4,4

12,3

0,25

1,1

3,075

55

11,3

11,8

0,18

2,034

2,124

56

8,6

11,2

0,12

1,032

1,344

57

8,4

11,8

0,9

7,56

10,62

58

8,1

12,1

1,38

11,178

16,698

59

3,3

13

0,45

1,485

5,85

60

2,4

15,9

0,54

1,296

8,586

61

5,7

21,4

0,17

0,969

3,638

62

3,7

23,4

0,54

1,998

12,636

63

4,7

25,1

0,81

3,807

20,331

64

5,6

26,6

0,24

1,344

6,384

65

8

28,1

1,23

9,84

34,563

66

10,4

36,5

0,62

6,448

22,63

67

9,7

33,3

0,21

2,037

6,993

68

7,2

34,5

0,49

3,528

16,905

69

6,5

35,7

0,3

1,95

10,71

70

5,4

36,7

0,18

0,972

6,606

71

5

41,4

1,35

6,75

55,89

72

4,9

42,9

0,88

4,312

37,752

73

8,4

44,3

4,47

37,548

198,021

74

12,5

46

2,59

32,375

119,14

75

14,3

48,3

0,3

4,29

14,49

Для окружностей

1

10,7

11,4

0,785

8,3995

8,949

2

12,7

12

0,785

9,9695

9,42

3

19,8

13,7

0,785

15,543

10,7545

Сумма

 

1473,8

36306,77

41894,16

Расчеты координат центра карты в рассмотренной системе координат

Фото 1 Фото 2.

Просмотров работы: 2779

Определение координат центра тяжести фигур

Определение координат центра тяжести xC и yC плоских фигур нестандартной формы выполняется при решении задач для последующих расчетов остальных геометрических характеристик, например, таких как радиусы и осевые моменты инерции поперечных сечений.

Рассмотрим способы и пример определения координат положения центра тяжести фигуры нестандартной формы.

Способы определения координат центра тяжести

Способы определения координат центров тяжести твердых объёмных тел и плоских фигур можно получить исходя из полученных ранее общих формул для расчета положения центра тяжести.

Существует 5 способов расчета координат положения центра тяжести:

  1. Аналитический (путем интегрирования).
  2. Метод симметрии. Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.
  3. Экспериментальный. (метод подвешивания тела).
    Этот способ подходит в основном для плоских и линейных тел.
  4. Разбиение. Тело или фигура разбивается на конечное число частей (простых тел или фигур), для каждой из которых положение центра тяжести C и площадь A известны.

    Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями A1 и A2 (A = A1+ A2).
    Определение координат центра тяжести разбиением

    Рисунок 1.8

    Центры тяжести этих фигур находятся в точках C1(x1, y1) и C2(x2, y2). Тогда координаты центра тяжести тела равны:
    Формулы для расчета координат центра тяжести

  5. Дополнение (Метод отрицательных площадей или объемов).
    Это частный случай предыдущего способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны.

    Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):
    Метод отрицательных площадей или объемов

    Рисунок 1.9

    Тогда координаты центра тяжести фигуры с отверстием можно определить по формулам:
    Формула определения центра тяжести

При решении задач по определению координат центра тяжести плоских фигур и объемных тел применяются последние два способа (разбиение и дополнение).

Пример определения координат центра тяжести сложной фигуры в нашем коротком видео:

Другие видео

Пример определения координат центра тяжести плоской фигуры

Задача
Определить координаты центра тяжести плоской фигуры с круглым отверстием
Сложное сечение
Решение
Разделим заданное сечение на простые фигуры – прямоугольник, круг и прямоугольный треугольник.
Через нижнюю левую точку фигуры проведем координатные оси x и y.
Разбивка сечения
Рассчитаем необходимые для решения задачи площади A и координаты x,y центров тяжести Ci отдельных фигур:

Прямоугольник (фигура 1)
Площадь
A1=400×500=200000 мм2
Положение центра тяжести
x1=200мм
y1=250мм
Центры тяжести частей фигуры
Круг (2) (вычитаемая фигура)
Площадь
A2=π×2002/4=31416 мм2
Центр тяжести
x2=200мм
y2=300мм

Прямоугольный треугольник (3)
Площадь
A3=400*100/2=20000 мм2
Положение центра тяжести треугольника находится на пересечении его медиан (на расстоянии 1/3 высоты от основания или 2/3 высоты от его вершин)
x3=400×2/3=266,7мм
y3=500+100×1/3=533,3мм

Координаты x и y центра тяжести C всей плоской фигуры определим по формулам:
Расчет координат центра тяжести
Ответ: Таким образом, центр тяжести заданной фигуры находится в точке C с координатами xC=207,1мм, yC=271,7мм.
Координаты центра тяжести

Другие примеры решения задач >
Центры тяжести простейших фигур >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

§1. Центр тяжести однородного тела.

Рассмотрим твердое тело весом P и объемом V в системе координат Oxyz , где оси x и y связаны с поверхностью земли, а ось z направлена в зенит.

Если разбить тело на элементарные части объемом ∆Vi , то на каждую его часть будет действовать сила притяжения ∆Pi, направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.1), и к ней применимы все выводы предыдущей главы.

Рис.1. Параллельная система сил

Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой

плоско­сти.

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

3) Если однородное тело имеет центр симметрии, то центр тя­жести тела находится в этой точке.

§2. Способы определения координат центра тяжести.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.2), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.2. Центр тяжести тел, имеющих ось симметрии

2. Разбиение. Тело разбивается на конечное число частей (рис.3), для каждой из которых положение центра тяжести и площадь известны.

Рис.3. Центр тяжести сплошной

сложной геометрической фигуры

— центр тяжести и площадь первой фигуры;

— центр тяжести и площадь второй фигуры;

— координата центра тяжести сплошной сложной геометрической фигуры по оси x;

— координата центра тяжести сплошной сложной геометрической фигуры по оси y;

3. Метод отрицательных площадей. Частный случай способа разбиения (рис.4). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S1 и площади вырезанной части S2 .

Рис.4. Центр тяжести сложной геометрической фигуры,

имеющей отверстие

— центр тяжести и площадь первой фигуры;

— центр тяжести и площадь второй фигуры;

— координата центра тяжести сложной геометрической фигуры по оси x;

— координата центра тяжести сложной геометрической фигуры по оси y;

§3. Координаты центра тяжести некоторых простых фигур.

1. Центр тяжести тре­угольника. Центр тяжести треугольника лежит в точке пересечения его медиан (рис.5). Координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин: xc =1/3(x1+x2+x3) ; yc =1/3(y1+y2+y3).

Рис.5. Центр тяжести треугольника

2. Центр тяжести прямоугольника. Центр тяжести прямоугольника лежит в точке пересечения его диагоналей (рис.6). Координаты центра тяжести прямоугольника рассчитываются по формулам: xc =b/2 ; yc =h/2.

Картинки по запросу центр тяжести простых геометрических фигур

Рис. 6. Центр тяжести треугольника

3. Центр тяжести полукруга. Центр тяжести полукруга лежит на оси симметрии (рис.7). Координаты центра тяжести полукруга рассчитываются по формулам: xc =D/2 ; yc =4R/3π.

Картинки по запросу центр тяжести простых геометрических фигур

Рис. 7. Центр тяжести полукруга

4. Центр тяжести круга. Центр тяжести круга лежит в центре (рис.8). Координаты центра тяжести круга рассчитываются по формулам: xc =R ; yc =R.

Картинки по запросу центр тяжести простых геометрических фигур

Рис. 8. Центр тяжести круга

Вопросы для самопроверки:

— Что называется центром параллельных сил?

— Что называется центром тяжести тела?

— Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

— Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

— Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, квадрата, трапеции и половины круга?

— Как используются свойства симметрии при определении центров тяжести тел?

— В чем состоит сущность способа отрицательных площадей?

— Каким графическим построением можно найти центр тяжести треугольника?

— Запишите формулу, определяющую центр тяжести треугольника.

Как найти центр тяжести?

Опубликовано 21 Окт 2013
Рубрика: Механика | 3 комментария

Две вилки и монета в равновесии на кромке бокалаВ инженерной практике случается, что возникает необходимость вычислить координаты центра тяжести сложной плоской фигуры, состоящей из простых элементов, для которых расположение центра тяжести известно. Такая задача является частью задачи определения…

…геометрических характеристик составных поперечных сечений балок и стержней. Часто с  подобными вопросами приходится сталкиваться инженерам-конструкторам вырубных штампов при определении координат центра давления, разработчикам схем погрузки различного транспорта при размещении грузов, проектировщикам строительных металлических конструкций при подборе сечений элементов и, конечно, студентам при изучении дисциплин «Теоретическая механика» и «Сопротивление материалов».

Библиотека элементарных фигур.

Формулы расчета центров тяжести и площадей плоских фигур

Для симметричных  плоских фигур центр тяжести совпадает с центром симметрии. К симметричной группе элементарных объектов относятся: круг, прямоугольник (в том числе квадрат), параллелограмм (в том числе ромб), правильный многоугольник.

Из десяти фигур, представленных на рисунке выше, только две являются базовыми. То есть, используя треугольники и сектора кругов, можно скомбинировать почти любую фигуру, имеющую практический интерес. Любые произвольные кривые можно, разбив на участки, заменить дугами окружностей.

Оставшиеся восемь фигур являются самыми распространенными, поэтому они и были включены в эту своеобразную библиотеку. В нашей классификации эти элементы не являются базовыми. Прямоугольник, параллелограмм и трапецию можно составить из двух треугольников. Шестиугольник – это сумма из четырех треугольников. Сегмент круга — это разность сектора круга и треугольника. Кольцевой сектор круга — разность двух секторов. Круг – это сектор круга с углом α=2*π=360˚. Полукруг – это, соответственно, сектор круга с углом α=π=180˚.

Передавать и воспринимать информацию, рассматривая пример, всегда легче, чем изучать вопрос на чисто теоретических выкладках.  Рассмотрим решение задачи «Как найти центр тяжести?» на примере составной фигуры, изображенной на рисунке, расположенном ниже этого текста.

Чертеж составной фигуры с координатами центра тяжести

Составное сечение представляет собой прямоугольник (с размерами a1=80 мм, b1=40 мм), к которому слева сверху добавили равнобедренный треугольник (с размером основания  a2=24 мм и высотой h2=42 мм) и из которого справа сверху вырезали полукруг (с центром в точке с координатами x03=50 мм и y03=40 мм, радиусом r3=26 мм).

В помощь для выполнения расчета привлечем программу MS Excel или программу OOo Calc. Любая из них легко справится с нашей задачей!

В ячейках с желтой заливкой выполним вспомогательные предварительныерасчеты.

В ячейках со светло-желтой заливкой считаем результаты.

Синий шрифт – это исходные данные.

Черный шрифт – это промежуточные результаты расчетов.

Красный шрифт – это окончательные результаты расчетов.

Начинаем решение задачи – начинаем поиск координат центра тяжести сечения.

Исходные данные:

1. Названия элементарных фигур, образующих составное сечение впишем соответственно

в ячейку D3: Прямоугольник

в ячейку E3: Треугольник

в ячейку F3: Полукруг

2. Пользуясь представленной в этой статье «Библиотекой элементарных фигур», определим координаты центров тяжести элементов составного сечения xci и yci в мм относительно произвольно выбранных осей 0x и 0y и запишем

в ячейку D4: =80/2=40,000

xc1=a1/2

в ячейку D5: =40/2=20,000

yc1= b1/2

в ячейку E4: =24/2=12,000

xc2=a2/2

в ячейку E5: =40+42/3=54,000

yc2= b1+h2/3

в ячейку F4: =50=50,000

xc3=x03

в ячейку F5: =40-4*26/3/ПИ()=28,965

yc3= y03-4*r3/3/π

3. Рассчитаем площади элементов F1, F2, F3 в мм2, воспользовавшись вновь формулами из раздела  «Библиотека элементарных фигур»

в ячейке D6: =40*80=3200

F1=a1*b1

в ячейке E6: =24*42/2=504

F2=a2*h2/2

в ячейке F6: =-ПИ()/2*26^2=-1062

F3= -π/2*r3^2

Площадь третьего элемента – полукруга – отрицательная потому, что это вырез – пустое место!

Таблица Excel с расчетом координат центра тяжести составной фигуры

Расчет координат центра тяжести:

4. Определим общую площадь итоговой фигуры F0 в мм2

в объединенной ячейке D8E8F8: =D6+E6+F6=2642

F0=F1+F2+F3

5. Вычислим статические моменты составной фигуры Sx и Sy в мм3 относительно выбранных осей 0x и 0y

в объединенной ячейке D9E9F9: =D5*D6+E5*E6+F5*F6=60459

Sx=yc1*F1+ yc2*F2+ yc3*F3

в объединенной ячейке D10E10F10: =D4*D6+E4*E6+F4*F6=80955

Sy=xc1*F1+ xc2*F2+ xc3*F3

6. И в завершение рассчитаем координаты центра тяжести составного сечения Xc и Yc в мм в выбранной системе координат 0x — 0y

в объединенной ячейке D11E11F11: =D10/D8=30,640

Xc=Sy/F0

в объединенной ячейке D12E12F12: =D9/D8=22,883

Yc=Sx/F0

Задача решена, расчет в Excel выполнен — найдены координаты центра тяжести сечения, составленного при использовании трех простых элементов!

Заключение.

Пример в статье был выбран очень простым для того, чтобы легче было разобраться в методологии расчетов центра тяжести  сложного сечения. Метод заключается в том, что любую сложную фигуру следует разбить на  простые элементы с известными местами расположения центров тяжести и произвести итоговые вычисления для всего сечения.

Если сечение составлено из прокатных профилей – уголков и швеллеров, то их нет необходимости разбивать на прямоугольники и квадраты с вырезанными круговыми «π/2»- секторами. Координаты центров тяжести этих профилей приведены в таблицах ГОСТов, то есть и уголок и швеллер будут в ваших расчетах составных сечений базовыми элементарными элементами (о двутаврах, трубах, прутках и шестигранниках говорить нет смысла – это центрально симметричные сечения).

Расположение осей координат на положение центра тяжести фигуры, конечно, не влияет! Поэтому выбирайте систему координат, упрощающую вам расчеты. Если, например, я развернул бы  в нашем примере систему координат на 45˚ по часовой стрелке, то вычисление координат центров тяжести прямоугольника, треугольника и полукруга превратилось бы в еще один отдельный и громоздкий этап расчетов, который «в уме» не выполнишь.

Представленный ниже расчетный файл Excel в данном случае программой не является. Скорее – это набросок калькулятора, алгоритм, шаблон по которому следует в каждом конкретном случае составлять свою последовательность формул для ячеек с яркой желтой заливкой.

Итак, как найти центр тяжести любого сечения вы теперь знаете! Полный расчет всех геометрических характеристик произвольных сложных составных сечений будет рассмотрен в одной из ближайших статей в рубрике «Механика».

Несколько слов о бокале, монете и двух вилках, которые изображены на «значке-иллюстрации» в самом начале статьи. Многим из вас, безусловно, знаком этот «трюк», вызывающий восхищенные взгляды детей и непосвященных взрослых. Тема этой статьи – центр тяжести. Именно он и точка опоры, играя с нашим сознанием и опытом, попросту дурачат наш разум!

Центр тяжести системы «вилки+монета» всегда располагается на фиксированном расстоянии по вертикали вниз от края монеты, который в свою очередь является точкой опоры. Это положение устойчивого равновесия! Если покачать вилки, то сразу становится очевидным, что система стремится занять свое прежнее устойчивое положение! Представьте маятник – точка закрепления (=точка опоры монеты на кромку бокала), стержень-ось маятника (=в нашем случае ось виртуальная, так как масса двух вилок разведена в разные стороны пространства) и груз внизу оси (=центр тяжести всей системы «вилки+монета»). Если начать отклонять маятник от вертикали в любую сторону (вперед, назад, налево, направо), то он неизбежно под действием силы тяжести будет возвращаться в исходное устойчивое состояние равновесия (это же самое происходит и с нашими вилками и монетой)!

Кто не понял, но хочет понять – разберитесь самостоятельно. Это ведь очень интересно «доходить» самому! Добавлю, что этот же принцип использования устойчивого равновесия реализован и в игрушке ванька–встань-ка. Только центр тяжести у этой игрушки расположен выше точки опоры, но ниже центра полусферы опорной поверхности.

Ссылка на скачивание файла: raschet-tsentra-tyazhesti (xls 17,0KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

В этой статье посмотрим, как определяются координаты центра тяжести сложной фигуры — состоящей из простых. В задачах по сопромату часто приходится находить положение центра тяжести составных сечений, для дальнейшего вычисления моментов инерции и т. д.

Также часто, при изучении теоретической механики, студентам предлагается решить подобную задачу, и найти центр тяжести какой-нибудь фигуры.

Условие задачи

Предлагаю рассмотреть следующую фигуру:

Фигура, состоящая из нескольких простых фигур

В сопромате принято заштриховывать сечения тонкими линиями, вот так:

Штриховка на сечении, состоящем из нескольких фигур

В своих же уроках я буду использовать заливку. Так, штриховка не будет мешать наносить обозначения.

Разбивка сложной фигуры на простые

Как видишь, сечение состоит из прямоугольника, прямоугольного треугольника, четверти круга, а также имеет круглый вырез:

Разбивка сложной фигуры на простые и нумерация фигур

Отметим центры тяжести (С1, С2, С3, С4) каждой отдельной фигуры, с учётом справочной информации.

Открой эту страничку, и пока не закрывай, она нам ещё понадобится!

Указание центров тяжести простых фигур

Покажем вспомогательные оси (x0, y0) для всего сечения, которые будем использовать для нахождения положения центра тяжести (C):

Введение вспомогательной системы координат для всего сечения

Как определить положение центра тяжести?

Чтобы определить координату центра тяжести сечения, например, вертикальное расстояние от оси x0 до центра тяжести сечения (yc):

Указание координаты от вспомогательной оси до центра тяжести

Нужно статический момент сечения относительно этой вспомогательной оси (x0) разделить на площадь всего сечения (A):

Площадь всего сечения (A) найти просто – это алгебраическая сумма площадей всех фигур:

Статический момент сечения, относительно вспомогательной оси будет равен алгебраической сумме статических моментов каждой фигуры (с учётом знака):

где Ai – площадь отдельной фигуры;
yi – расстояние от центра тяжести отдельной фигуры до вспомогательной оси (x0).

Координата центра тяжести (xc), находится аналогично:

Определение площади сечения

Для начала предлагаю сделать самое простое, используя формулы, указанные на этой странице, найти площадь всего сечения (A):

Сечение, для которого рассчитывается площадь

Как видишь, круглый вырез, нужно учесть с «минусом», что очевидно.

Определение расстояний от вспомогательных осей до центров тяжести отдельных фигур

Найдём расстояния от вспомогательных осей (x0, y0) до центров тяжести отдельных фигур, опять же, используя нашу шпаргалку:

Определение статических моментов

Определяем статические моменты сечения относительно вспомогательных осей (x0, y0):

Важно! Статические моменты могут быть и отрицательными.

Определение координат центра тяжести

И, наконец, определяем положение центра тяжести всего сечения (C):

Покажем центр тяжести всего сечения (C):

Указание найденного центра тяжести сечения

Если остались какие-то вопросы по данному уроку, можешь смело задавать их в комментариях. Также, другие уроки, на сайте – ssopromat.ru, по определению геометрических характеристик, можешь найти здесь.

Понравилась статья? Поделить с друзьями:
  • Как составить оптимальный режим дня
  • Как составить информационную табличную модель
  • Как найти длину участка 4 класс
  • Как найти корни квадратного многочлена на
  • Как составить доменный адрес