Как найти горизонтальную силу сопротивления

Сила сопротивления зависит от размеров и формы тела и скорости перемещения тела в среде, возникающая при его движении и затормаживает это движение. Сила сопротивления отличается от силы трения тем, что последняя рассматривает характер взаимодействия друг с другом твердых тел. Можно наблюдать, когда один элемент двигается по поверхности другого. Вектор силы сопротивления имеет направление противоположное движению.

Работа силы сопротивления видна на примере: при свободном падении листка с дерева на него действует сила сопротивления воздуха, которую можно сравнить с силой тяжести. В связи с этим, ускорение падающего листка будет не таким, как от ускорения свободного падения.

Аналогично с перемещением в жидкости, если тело погружается в воду плавно, то сопротивление воды будет меньше, чем при прыжке в нее.

Чему равна сила сопротивления

В числовом выражении общая сила сопротивления равна силе, которую следует приложить для равномерного передвижения тела по ровной горизонтальной поверхности. Определяется третьим законом Ньютона.

Формулы 1 — 3

Сила сопротивления прямо пропорциональна массе тела и вычисляется по формуле:

[F=mu * m * g]

где [boldsymbol{mu}] коэффициент материала изготовления опоры, выбирается по таблице;
g – постоянная величина равная 9,8 м/с2.

Для тел с небольшой скоростью сила сопротивления рассчитывается как произведение коэффициента сопротивления материала (a) и силы, провоцирующую движение предмета (v).

[F=v a]

где v — скорость движения предмета, a — коэффициент сопротивления среды.

При высоких скоростях или больших размеров предметов, силу сопротивления вычисляют пропорционально квадрату скорости.

[F=c v^{2}]

График зависимости сопротивления:

График зависимости сопротивления

Зависимость силы от сопротивления определяется для каждой среды отдельно. Сила сопротивления среды растет, с ростом скорости движения предмета в среде.

От чего зависит сила сопротивления

На величину силы сопротивления влияют следующие факторы:

  • особенности и плотность среды, например, у жидкости плотность выше, чем у газа;
  • форма тела, у предметов с вытянутыми обтекаемыми вдоль движения формами сопротивление меньше, чем с расположенными перпендикулярно движению гранями;
  • скорость движения.

В зависимости от воздействия на движущиеся предметы различают несколько типов силы сопротивления:

  • Сила сопротивления качению [P_{f}]. Зависит от вида и состояния опорной поверхности, скорости перемещения, силы давления воздуха и прочее. Коэффициент сопротивлению качению f зависит типа и состояния опорной поверхности, его значение уменьшается, при повышении давления и температуры.
  • Сила сопротивления воздуха [P_{B}] возникает при разных показателях давления. В аэродинамике называется лобовым сопротивлением. Показатель будет выше с ростом вихреобразования в передней и задней частях объекта движения. Величина вихреобразования зависит от формы передвигаемых предметов.

Понятие силы электрического сопротивления

Строение металлических проводников объясняет наличие сопротивления. Свободные электроны движутся по проводнику встречая ионы кристаллической решетки. При контакте с ними другие электроны теряют часть своей энергии. У проводников с отличающимся атомным строением будет разное сопротивление току. Поэтому чем выше сопротивление проводника, тем проводимость электрического тока будет меньше.

Сила сопротивления
Рис.1. Сила сопротивления

Формулы 4 — 5

Электрическое сопротивление в физике обозначают R, измеряется в Ом. Сопротивление равно 1 Ом, если на концах проводника возникает напряжение в 1 Вольт при силе тока равной 1 Ампер.

Формула сопротивления силы тока:

[R=rho frac{l}{S}]

где l – длина проводника; S – площадь сечения; ρ – удельное сопротивление.

Сила электрического сопротивления зависит от материала проводника, его длины, формы и температуры. Удельное сопротивление отличается у различных материалов.

Удельное сопротивление [boldsymbol{(rho)}] — сопротивление проводника длиной и обладающего площадью поперечного сечения [boldsymbol{1м^{2}}]. Обозначается в Ом*м. К примеру, удельное сопротивления меди [1,7 * 10^{-8} Oм * м], это значит, что у медного проводника длиной [1м^{2}] сопротивление равно [1,7 * 10^{-8} Ом].

Сопротивление проводника будет расти с увеличением температуры:

[rho=rho_{o}(1+alpha Delta T)]

где [boldsymbol{rho_{0}}] – обозначает удельное сопротивление при [T_{0}=293 mathrm{~K}left(20^{circ} mathrm{C}right), Delta T=T-T_{0}], α – температурный коэффициент сопротивления [left(K^{-1}right)].

При нагревании движение частиц материала возрастает и создает препятствия для направленного движения электродов. Количество столкновений свободных электронов с ионами кристаллической решетки увеличивается.

Такое свойство применимо в термометрах сопротивления, измеряют температуру исходя из зависимости температуры и сопротивления с высокой точностью измерения.

Нет времени решать самому?

Наши эксперты помогут!

Формула силы тока и сопротивление

Формула 6

Законом Ома для участка цепи называют взаимосвязь между силой тока (I), напряжением (U) и сопротивлением (R) проводника на практике установлена Г. Омом.

[I=frac{U}{R}]

Материалы с низким удельным сопротивлением считаются проводниками, они эффективно проводят электрический ток. С высоким удельным сопротивлением – диэлектрики, их используют как изоляторы. Промежуточное положение занимают полупроводники.

Пример

Найти силу тока в проводнике длиной 100 мм, сечением 0,5 мм2 изготовленном из меди, если напряжение на его концах 6,8 В.

Решение:

Запишем формулу закона Ома и найдем сопротивление через силу тока : [I=frac{U}{R}]

Для определения силы тока I, нужно определить сопротивление R. С помощью формулы с удельным сопротивлением преобразуем формулу для закона Ома:

[begin{array}{r}
R=rho frac{l}{S} \
I=frac{U S}{rho l}
end{array}]

Подставляем значения в формулу:

[I=frac{6,8 * 0,5}{0,017 * 100}=2 mathrm{~A}]

Значение ρ для меди берется из таблиц.

Ответ: 2А

Как найти силу сопротивления движению

При любом движении между поверхностями тел или в среде, в которой оно движется, всегда возникают силы сопротивления. Их еще называют силами трения. Они могут зависеть от видов трущихся поверхностей, реакций опоры тела и его скорости, если тело движется в вязкой среде, например, воде или воздухе.

Как найти силу сопротивления движению

Вам понадобится

  • — динамометр;
  • — таблица коэффициентов трения;
  • — калькулятор;
  • — весы.

Инструкция

Найдите силу сопротивления движению, которая действует на равномерно прямолинейно движущееся тело. Для этого при помощи динамометра или другим способом измерьте силу, которую необходимо приложить к телу, чтобы оно двигалось равномерно и прямолинейно. По третьему закону Ньютона она будет численно равна силе сопротивления движения тела.

Определите силу сопротивления движению тела, которое перемещается по горизонтальной поверхности. В этом случае сила трения прямо пропорциональна силе реакции опоры, которая, в свою очередь равна силе тяжести, действующей на тело. Поэтому сила сопротивления движению в этом случае или сила трения Fтр равна произведению массы тела m, которая измеряется весами в килограммах, на ускорение свободного падения g≈9,8 м/с² и коэффициент пропорциональности μ, Fтр=μ∙m∙g. Число μ называется коэффициентом трения и зависит от поверхностей, входящих в контакт при движении. Например, для трения стали по дереву этот коэффициент равен 0,5.

Рассчитайте силу сопротивления движению тела, движущегося по наклонной плоскости. Кроме коэффициента трения μ, массы тела m и ускорения свободного падения g, она зависит от угла наклона плоскости к горизонту α. Чтобы найти силу сопротивления движению в этом случае, нужно найти произведения коэффициента трения, массы тела, ускорения свободного падения и косинуса угла, под которым плоскость наклонена к горизонту Fтр=μ∙m∙g∙сos(α).

При движении тела в воздухе на невысоких скоростях сила сопротивления движению Fс прямо пропорциональна скорости движения тела v, Fc=α∙v. Коэффициент α зависит от свойств тела и вязкости среды и рассчитывается отдельно. При движении на высоких скоростях, например, при падении тела со значительной высоты или движении автомобиля, сила сопротивления прямо пропорциональна квадрату скорости Fc=β∙v². Коэффициент β дополнительно рассчитывается для высоких скоростей.

Источники:

  • 1 Общая формула для силы сопротивления воздуха На рисунке

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как найти силу сопротивления

Как найти силу сопротивления

При движении любого предмета по поверхности или в воздухе возникают силы, препятствующие этому. Их называют силами сопротивления или трения. В этой статье мы расскажем, как найти силу сопротивления, и рассмотрим факторы, влияющие на нее.

1

Для определения силы сопротивления необходимо воспользоваться третьим законом Ньютона. Эта величина численно равна силе, которую нужно приложить, чтобы заставить равномерно двигаться предмет по ровной горизонтальной поверхности. Это можно сделать при помощи динамометра.

Как найти силу сопротивления

2

Сила сопротивления вычисляется по формуле F=μ*m*g. Согласно этой формуле, искомая величина прямо пропорциональна массе тела. Стоит учесть, что для правильного подсчета необходимо выбрать μ – коэффициент, зависящий от материала, из которого изготовлена опора. Принимают во внимание и материал предмета. Этот коэффициент выбирается по таблице. Для расчета используется постоянная g, которая равна 9,8 м/с2.

Как найти силу сопротивления

3

Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α).

Как найти силу сопротивления

4

Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую – F=v2*β. Для расчета силы трения высокоскоростных тел используют квадрат скорости и коэффициент β, который рассчитывается для каждого предмета отдельно. При движении предмета в газе или жидкости при расчете силы трения необходимо учитывать плотность среды, а также массу и объем тела.

Как найти силу сопротивления

5

Сопротивление движению существенно снижает скорость поездов и автомобилей. Причем на движущие предметы действует два вида сил – постоянные и временные. Общая сила трения представлена суммой двух величин. Для снижения сопротивления и повышения скорости машины конструкторы и инженеры изобретают разнообразные материалы со скользящей поверхностью, от которой воздух отталкивается. Именно поэтому передняя часть скоростных поездов имеет обтекаемую форму. Рыбы очень быстро движутся в воде благодаря обтекаемому телу, покрытому слизью, которая снижает трение.

6

Не всегда сила сопротивления отрицательно сказывается на движении машин. Чтобы вытащить автомобиль из грязи, необходимо под колеса насыпать песок или щебень. Благодаря увеличению трения авто отлично справляется с болотистой почвой и грязью.

Как найти силу сопротивления

Сопротивление движения в воздухе используется во время прыжков с парашютом. В результате возникающего трения между куполом и воздухом скорость движения парашютиста снижается, что позволяет без ущерба для жизни заниматься парашютным спортом.

Силами сопротивления
называются силы, препятствующие движению
автомобиля. Эти силы направлены против
его движе­ния.

При
движении на подъеме, характеризуемом
высотой Hп,
длиной проекции Вп
на
гори­зонтальную плоскость и углом
подъема дороги α, на автомобиль действуют
следующие силы со­противления (рис.
3.12): сила со­противления качению Рк,
равная
сумме сил сопротивления каче­нию
передних (РК|)
и задних (РК2)
колес, сила сопротивления подъе­му
Рп,
сила
сопротивления воз­духа Д и сила
сопротивления раз­гону РИ.
Силы
сопротивления ка­чению и подъему
связаны с особенностями дороги. Сумма
этих сил называется силой сопротивления
дороги РД.

Рис.
3.13. Потери энергии на внутреннее
трение в шине:

а
точка,
соответствующая мак­симальным
значениям нагрузки и прогиба
шины

Сила сопротивления качению

Возникновение
силы сопротивления качению при движении
обусловлено потерями энергии на
внутреннее трение в шинах, поверхностное
трение шин о дорогу и образование колеи
(на деформируемых дорогах).О потерях
энергии на внутреннее трение в шине
можно судить по рис. 3.13, на котором
приведена зависимость между вертикаль­ной
нагрузкой на колесо и деформацией шины
— ее прогибом fш.

При
движении колеса по неровной поверхности
шина, испы­тывая действие переменной
нагрузки, деформируется. Линия αО,
которая
соответствует возрастанию нагрузки,
деформирующей шину, не совпадает с
линией аО,
отвечающей
снятию нагрузки. Площадь области,
заключенной между указанными кривыми,
ха­рактеризует потери энергии на
внутреннее трение между отдель­ными
частями шины (протектор, каркас, слои
корда и др.).

Потери
энергии на трение в шине называются
гистерезисом, а линия ОαО
петлей
гистерезиса.

Потери
на трение в шине необратимы, так как при
деформа­ции она нагревается и из нее
выделяется теплота, которая рассе­ивается
в окружающую среду. Энергия, затрачиваемая
на дефор­мацию шины, не возвращается
полностью при последующем вос­становлении
ее формы.

Сила
сопротивления качению Рк
достигает
наибольшего зна­чения при движении
по горизонтальной дороге. В этом случае

где
G
вес
автомобиля, Н; f
— коэффициент сопротивления качению.

При
движении на подъеме и спуске сила
сопротивления каче­нию уменьшается
по сравнению с Рк
на
горизонтальной дороге, и тем значительнее,
чем они круче. Для этого случая движения
сила сопротивления качению

где α — угол
подъема, °.

Зная
силу сопротивления качению, можно
определить мощ­ность, кВт,

затрачиваемую на
преодоление этого сопротивления:

где
v
—скорости
автомобиля,м/c2

Для
горизонтальной дороги соs0°=1
и

Зависимости
силы сопротивления качениюРк

и
мощности NК
от
скорости автомобиля v
показаны
на рис. 3.14

Коэффициент сопротивления качению

Коэффициент
сопротивления качению существенно
влияет на потери энергии при движении
автомобиля. Он зависит от многих
конструктивных и эксплуатационных

Рис 3.15. Зависимости
коэффициента сопротивления качению от

Скорости движения (а), давления воздуха в шине (б) и момента, передаваемого через колесо (в)

факторов
и определяется экспериментально. Его
средние значения для различных дорог
при нормальном давлении воздуха в шине
составляют 0,01 …0,1.Рассмотрим влияние
различных факторов на коэффициент
сопротивления качению.

Скорость
движения
.
При изменении скорости движения в
ин­тервале 0…50 км/ч коэффициент
сопротивления качению изме­няется
незначительно и его можно считать
постоянным в указан­ном диапазоне
скоростей.

При
повышении скорости движения за пределами
указанного интервала коэффициент
сопротивления качению существенно
уве­личивается (рис. 3.15, а)
вследствие
возрастания потерь энергии в шине на
трение.

Коэффициент
сопротивления качению в зависимости
от ско­рости движения можно приближенно
рассчитать по
формуле

где


скорость
автомобиля, км/ч.

Тип
и состояние покрытия дороги.

На дорогах с твердым по­крытием
сопротивление качению обусловлено
главным образом деформациями шины.

При
увеличении числа дорожных неровностей
коэффициент сопротивления качению
возрастает.

На
деформируемых дорогах коэффициент
сопротивления ка­чению определяется
деформациями шины и дороги. В этом случае
он зависит не только от типа шины, но и
от глубины образую­щейся колеи и
состояния грунта.

Значения
коэффициента сопротивления качению
при рекомен­дуемых уровнях давления
воздуха и нагрузки на шину и средней
скорости движения на различных дорогах
приведены ниже:

Асфальто-
и цементобетонное шоссе:

в
хорошем состоянии
………………………………. 0,007…0,015

в
удовлетворительном состоянии
…………… 0,015…0,02

Гравийная
дорога в хорошем состоянии …. 0,02…0,025

Булыжная
дорога в хорошем состоянии…… 0,025…0,03

Грунтовая
дорога сухая, укатанная …………..
0,025…0,03

Песок…………………………………………………………..
0,1…0,3

Обледенелая
дорога, лед …………………………. 0,015…0,03

Укатанная
снежная дорога ………………………..
0,03…0,05

Тип
шины.

Коэффициент сопротивления качению во
многом зависит от рисунка протектора,
его износа, конструкции каркаса и
качества материала шины. Изношенность
протектора, уменьше­ние числа слоев
корда и улучшение качества материала
приводят к падению коэффициента
сопротивления качению вследствие
снижения потерь энергии в шине.

Давление
воздуха в шине
.
На дорогах с твердым покрытием при
уменьшении давления воздуха в шине
коэффициент сопро­тивления качению
повышается (рис. 3.15, б).
На
деформируемых дорогах при снижении
давления воздуха в шине уменьшается
глу­бина колеи, но возрастают потери
на внутреннее трение в шине. Поэтому
для каждого типа дороги рекомендуется
определенное давление воздуха в шине,
при котором коэффициент сопротивле­ния
качению имеет минимальное значение.

Нагрузка
на колесо
.
При увеличении вертикальной нагрузки
на колесо коэффициент сопротивления
качению существенно возрастает на
деформируемых дорогах и незначительно
— на до­рогах с твердым покрытием.

Момент,
передаваемый через колесо
.
При передаче момента через колесо
коэффициент сопротивления качению
возрастает (рис. 3.15, в)
вследствие
потерь на проскальзывание шины в месте
ее контакта с дорогой. Для ведущих колес
значение коэффициента сопротивления
качению на 10… 15 % больше, чем для ведомых.

Коэффициент
сопротивления качению оказывает
существен­ное влияние на расход
топлива и, следовательно, на топливную
экономичность автомобиля. Исследования
показали, что даже не­большое уменьшение
этого коэффициента обеспечивает
ощути­мую экономию топлива. Поэтому
неслучайно стремление конст­рукторов
и исследователей создать такие шины,
при использова­нии которых коэффициент
сопротивления качению будет незна­чительным,
но это весьма сложная проблема.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Инструкция

Найдите силу сопротивления движению, которая действует на равномерно прямолинейно движущееся тело. Для этого при помощи динамометра или другим способом измерьте силу, которую необходимо приложить к телу, чтобы оно двигалось равномерно и прямолинейно. По третьему закону Ньютона она будет численно равна силе сопротивления движения тела.

Определите силу сопротивления движению тела, которое перемещается по горизонтальной поверхности. В этом случае сила трения прямо пропорциональна силе реакции опоры, которая, в свою очередь равна силе тяжести, действующей на тело. Поэтому сила сопротивления движению в этом случае или сила трения Fтр равна произведению массы тела m, которая измеряется весами в килограммах, на ускорение свободного падения g≈9,8 м/с² и коэффициент пропорциональности μ, Fтр=μ∙m∙g. Число μ называется коэффициентом трения и зависит от поверхностей, входящих в контакт при движении. Например, для трения стали по дереву этот коэффициент равен 0,5.

Рассчитайте силу сопротивления движению тела, движущегося по . Кроме коэффициента трения μ, массы тела m и ускорения свободного падения g, она зависит от угла наклона плоскости к горизонту α. Чтобы найти силу сопротивления движению в этом случае, нужно найти произведения коэффициента трения, массы тела, ускорения свободного падения и косинуса угла, под которым плоскость к горизонту Fтр=μ∙m∙g∙сos(α).

При движении тела в воздухе на невысоких скоростях сила сопротивления движению Fс прямо пропорциональна скорости движения тела v, Fc=α∙v. Коэффициент α зависит от свойств тела и вязкости среды и рассчитывается отдельно. При движении на высоких скоростях, например, при падении тела со значительной высоты или движении автомобиля, сила сопротивления прямо пропорциональна квадрату скорости Fc=β∙v². Коэффициент β дополнительно рассчитывается для высоких скоростей.

Источники:

  • 1 Общая формула для силы сопротивления воздуха На рисунке

Для определения силы
сопротивления
воздуха
создайте условия, при которых тело начнет под действием силы тяжести двигаться равномерно и прямолинейно. Рассчитайте значение силы тяжести, оно будет равно силе сопротивления воздуха. Если тело движется в воздухе, набирая скорость, сила его сопротивления находится при помощи законов Ньютона, также силу сопротивления воздуха можно найти из закона сохранения механической энергии и специальных аэродинамических формул.

Вам понадобится

  • дальномер, весы, спидометр или радар, линейка, секундомер.

Инструкция

Перед измерением сопротивления
б/у резистора обязательно выпаяйте его из старой платы или блока. Иначе он может быть шунтирован другими деталями схемы, и вы получите неправильные показания его сопротивления
.

Видео по теме

Чтобы найти электрическое сопротивление проводника, воспользуйтесь соответствующими формулами. Сопротивление участка цепи находится по закону Ома. Если же известен материал и геометрические размеры проводника, его сопротивление можно рассчитать при помощи специальной формулы.

Вам понадобится

  • — тестер;
  • — штангенциркуль;
  • — линейка.

Инструкция

Вспомните, что подразумевает собой понятие резистора. В данном случае под резистором надо понимать любой проводник или элемент электрической цепи, имеющий активное резистивное сопротивление. Теперь важно задаться вопросом о том, как действует изменение значения сопротивления на значение силы тока и от чего оно зависит. Суть явления сопротивления заключается в том, что резистора формируют своего рода барьер для прохождения электрических зарядов. Чем выше сопротивление вещества, тем более плотно расположены атомы в решетке резистивного вещества. Данную закономерность и объясняет закон Ома для участка цепи. Как известно, закон Ома для участка цепи звучит следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на участке и обратно пропорциональна сопротивлению самого участка цепи.

Изобразите на листе бумаги график зависимости силы тока от напряжения на резисторе, а также от его сопротивления, исходя из закона Ома. Вы получите график гиперболы в первом случае и график прямой во втором случае. Таким образом, сила тока будет тем больше, чем больше напряжение на резисторе и чем меньше сопротивление. Причем зависимость от сопротивления здесь более яркая, ибо она имеет вид гиперболы.

Обратите внимание, что сопротивление резистора также изменяется при изменении его температуры. Если нагревать резистивный элемент и наблюдать при этом за изменением силы тока, то можно заметить, как при увеличении температуры уменьшается сила тока. Данная закономерность объясняется тем, что при увеличении температуры увеличиваются колебания атомов в узлах кристаллической решетки резистора, уменьшая таким образом свободное пространство для прохождения заряженных частиц. Другой причиной, уменьшающей силу тока в данном случае, является тот факт, что при увеличении температуры вещества увеличивается хаотичное движение частиц, в том числе заряженных. Таким образом, движение свободных частиц в резисторе становится в большей степени хаотичным, чем направленным, что и сказывается на уменьшении силы тока.

Видео по теме

Сила
тяги, развиваемая двигателем на ведущих
колесах автомобиля, расходуется на
преодоление сил сопротивления движению.
К ним относятся:

    сопротивление
    качению (Р
    f
    );

    сопротивление
    уклона (Р
    i
    );

    сопротивление
    воздуха (Р
    w
    );

    сопротивление
    инерционных сил (Р
    j
    ).

Сопротивление
качению


вызывается затратой энергии на деформацию
шин и дорожной одежды. В процессе движения
упругой покрышки колеса автомобиля по
упругой поверхности дороги плоскость
следа колеса на дороге смещается
несколько вперед на величину а


(рис. 3.4).

Рис.
3.4. Схема к определению величины
коэффициента сопротивления качению
колеса автомобиля: 1


след колеса стоящего автомобиля; 2

след колеса движущегося автомобиля

Вращение
ведущего колеса вызывается крутящим
моментом (М к),
передаваемым от двигателя автомобиля,
который в свою очередь создает в плоскости
контакта колеса с покрытием окружную
или касательную силу (Р
к),
что вызывает реакцию на касательную
силу (Р
т)
(рис. 3.4).

В
соответствии со схемой представим
уравнение равновесия действующих сил

М к
= R
к ·a
+ P
т ·r
д, (3.4)

где
r
д

динамический радиус колеса r
д
= (0,950,97)·r
к;
r
к

радиус колеса.

Проведем
следующие преобразования:

М к
= Р
к ·r
д;
R
к
= G
к;
Р
т
= Р
р
,

Тогда
формула (3.4) будет иметь вид

Р
к ·r
д
= G
к ·а
+ Р
р
·r
д. (3.5)

Разделим
левую и правую часть уравнения на r
д
и сделаем перенос членов уравнения,
чтобы определить величину силы тяги
(Р
р
).

Р
р

= Р
к

G
к · . (3.6)

Отношение
называюткоэффициентом
сопротивления качения f

.
Тогда величина сопротивления качению
(Р
f
),
отнесенная к общему весу автомобиля,
будет равна

Р
f

= G
·f
. (3.7)

Величина
сопротивления качению (коэффициента
сопротивления качению) зависит от
ровности покрытия, скорости автомобиля
и эластичности шин. В зависимости от
типа покрытия коэффициент f

колеблется от 0,01 (асфальтобетонное,
цементобетонное покрытие) до 0,06 (грунтовая
ровная, укатанная дорога).

Сопротивление
уклона


связано с дополнительной силой,
способствующей или препятствующей
движению, создаваемой составляющей
силы веса –
Р
i

(рис. 3.5).

Рис. 3.5. Схема к
определению величины сопротивления
уклона

Из представленной
схемы определим:

Р
i

= G
·sinα
. (3.8)

Для
получения возможности применения в
расчетах традиционно используемых в
проектировании дорог показателей,
проведем следующие преобразования

sinα


tg
,
tg


i
,

где
i


величина продольного уклона поверхности
дороги в тысячных (промилле — ‰).
Тогда

Р
i

= G
·i
. (3.9)

Сопротивление
воздуха


(аэродинамическое сопротивление
воздушной среды) складывается в основном
из: лобового сопротивления, которое
обусловлено разностью давления спереди
и сзади движущегося автомобиля; трения
воздуха о боковую поверхность;
сопротивления, создаваемого выступающими
частями автомобиля.

Суммарная
сила сопротивления воздуха движению
автомобиля (Р
w
)
выражается формулой аэродинамики:

P
w

=

, (3.10)

где
k
b

коэффициент сопротивления воздуха; W


«лобовая площадь автомобиля», м 2 ;
V
a

скорость движения автомобиля, км/ч; V
b

скорость ветра, км/ч.

Следует
сделать следующие пояснения:

k
b
= c·
, (3.11)

где
c –
коэффициент сопротивления среды,
зависящий от формы тела, движущегося в
воздухе;


плотность воздуха.

ω

= (0,8 ÷
0,9)·В·Н, (3.12)

где
(0,8÷0,9)

коэффициент формы соответственно для
легкового и грузового автомобиля; В, Н

габаритные ширина и высота автомобиля,
м.

Сопротивление
воздуха резко возрастает при увеличении
скорости движения. Его можно снизить,
улучшая обтекаемость автомобиля. За
последние 30 лет коэффициент сопротивления
воздуха, благодаря этому, снизился почти
в 2 раза.

Сопротивление
инерционных сил


автомобиля складывается из инерции
поступательного движения автомобиля
и инерции вращающихся частей автомобиля.
Эта сила действует на автомобиль при
ускорении или замедлении его движения.

Учитывая,
что масса автомобиля

,
то инерционная сила поступательного
движения

, (3.13)

где

ускорение автомобиля; j

=


относительное ускорение.

Но
так как при изменении скорости автомобиля
изменяется и скорость его вращающихся
частей (колес, маховика, механизмов
трансмиссии), то дополнительно возникает
инерция этих частей. Для упрощения
расчетов, здесь эта величина учитывается
путем введения поправочного коэффициента
(
вр

) к силе
инерции поступательного движения.

, (3.14)

где
Р
j

пост,
Р
f

вращ

соответственно силы, необходимые для
разгона поступательно и вращательно
движущихся частей автомобиля.

Тогда
инерционная сила автомобиля будет
описана выражением

Р
j

= G
·j
·
вр
. (3.15)

Величина
коэффициента
вр

определяется примерно по зависимости

 =
1,04 + n·i
к 2 , (3.16)

где
n –
коэффициент, равный 0,03-0,05 для легковых
и 0,05-0,07 для грузовых автомобилей; i
к

передаточное число коробки передач.

Силой и всегда направлена против вектора скорости тела в среде. Наряду с подъёмной силой является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией .

Поток и форма
препятствия
Сопротивление
формы
Влияние

вязкости на трение

~0,03 ~100 %
~0,01-0,1 ~90 %
~0,3 ~10 %
1,17 ~5 %
Полусфера 1,42 ~10

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха , когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:


X
0
=
C
x
0
ρ
V
2
2
S
{displaystyle X_{0}=C_{x0}{frac {rho V^{2}}{2}}S}


C
x
0
{displaystyle C_{x0}}
— безразмерный аэродинамический коэффициент сопротивления , получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) — площадь поперечного сечения;
  • для крыльев и оперения — площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов — либо площадь лопастей, либо ометаемая площадь винта;
  • для подводных объектов обтекаемой формы — площадь смачиваемой поверхности;
  • для продолговатых тел вращения , ориентированных вдоль
    потока (фюзеляж, оболочка дирижабля) — приведённая волюметрическая площадь, равная V 2/3 , где V — объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости (
P
=
X
0

V
=
C
x
0
ρ
V
3
2
S
{displaystyle P=X_{0}cdot V=C_{x0}{dfrac {rho V^{3}}{2}}S}
).

Индуктивное сопротивление в аэродинамике

Индуктивное сопротивление
(англ. lift-induced drag
) — это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение, во-первых, сопровождается образованием подъёмной силы, а во-вторых — приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления. На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы (так, в случае отрицательной работы подъёмной силы направление вектора индуктивного сопротивления противоположно вектору силы, обусловленной тангенсальным трением), но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху.
При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей — вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату
подъёмной силы Y, и обратно пропорционально
площади крыла S, его удлинению
λ
{displaystyle lambda }
, плотности среды ρ и квадрату
скорости V:


X
i
=
C
x
i
ρ
V
2
2
S
=
C
y
2
π
λ
ρ
V
2
2
S
=
1
π
λ
Y
2
ρ
V
2
2
S
{displaystyle X_{i}=C_{xi}{frac {rho V^{2}}{2}}S={frac {C_{y}^{2}}{pi lambda }}{frac {rho V^{2}}{2}}S={frac {1}{pi lambda }}{frac {Y^{2}}{{frac {rho V^{2}}{2}}S}}}

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:


X
=
X
0
+
X
i
{displaystyle X=X_{0}+X_{i}}

Так как сопротивление при нулевой подъёмной силе пропорционально квадрату скорости, а индуктивное — обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости
X
0
{displaystyle X_{0}}

растёт, а
X
i
{displaystyle X_{i}}

— падает, и график зависимости суммарного сопротивления
X
{displaystyle X}

от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых
X
0
{displaystyle X_{0}}

и
X
i
{displaystyle X_{i}}

, при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит, наивысшим

При движении любого предмета по поверхности или в воздухе возникают силы, препятствующие этому. Их называют силами сопротивления или трения. В этой статье мы расскажем, как найти силу сопротивления, и рассмотрим факторы, влияющие на нее.

Для определения силы сопротивления необходимо воспользоваться третьим законом Ньютона. Эта величина численно равна силе, которую нужно приложить, чтобы заставить равномерно двигаться предмет по ровной горизонтальной поверхности. Это можно сделать при помощи динамометра.
Сила сопротивления вычисляется по формуле F=μ*m*g. Согласно этой формуле, искомая величина прямо пропорциональна массе тела. Стоит учесть, что для правильного подсчета необходимо выбрать μ – коэффициент, зависящий от материала, из которого изготовлена опора. Принимают во внимание и материал предмета. Этот коэффициент выбирается по таблице. Для расчета используется постоянная g, которая равна 9,8 м/с2.
Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α).
Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую – F=v2*β. Для расчета силы трения высокоскоростных тел используют квадрат скорости и коэффициент β, который рассчитывается для каждого предмета отдельно. При движении предмета в газе или жидкости при расчете силы трения необходимо учитывать плотность среды, а также массу и объем тела.
Сопротивление движению существенно снижает скорость поездов и автомобилей. Причем на движущие предметы действует два вида сил – постоянные и временные. Общая сила трения представлена суммой двух величин. Для снижения сопротивления и повышения скорости машины конструкторы и инженеры изобретают разнообразные материалы со скользящей поверхностью, от которой воздух отталкивается. Именно поэтому передняя часть скоростных поездов имеет обтекаемую форму. Рыбы очень быстро движутся в воде благодаря обтекаемому телу, покрытому слизью, которая снижает трение.
Не всегда сила сопротивления отрицательно сказывается на движении машин. Чтобы вытащить автомобиль из грязи, необходимо под колеса насыпать песок или щебень. Благодаря увеличению трения авто отлично справляется с болотистой почвой и грязью.

Сопротивление движения в воздухе используется во время прыжков с парашютом. В результате возникающего трения между куполом и воздухом скорость движения парашютиста снижается, что позволяет без ущерба для жизни заниматься парашютным спортом.

Для расчета используется постоянная g, которая равна 9,8 м/с2. 3 Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α). 4 Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую — F=v2*β.

Закон стокса

Математическое изучение движения тел в вязкой жидкости сопряжено со столь большими трудностями, что до сих пор такому изучению оказались доступными только предельные случаи, а именно, случай очень большой вязкости, т.е. очень малого числа Рейнольдса, и случай очень малой вязкости, т.е. очень большого числа Рейнольдса. Если в потоке преобладают силы вязкости, что имеет место, с одной стороны, в очень вязких жидкостях (например, в моторном масле), а с другой стороны, также в обычных жидкостях при весьма малых размерах, определяющих движение, то можно пренебречь силами инерции по сравнению с силами вязкости и считать, что перепад давления и силы трения, приложенные к любой части жидкости, уравновешивают друг друга.

Краткая формула сопротивления воды

Число Рейнольдса имеет огромное значение при моделировании реальных процессов в меньших (лабораторных) масштабах. Если для двух течений разных размеров числа Рейнольдса одинаковы, то такие течения подобны, и возникающие в них явления могут быть получены одно из другого простым изменением масштаба измерения координат и скоростей. Поэтому, например, на модели самолета или автомобиля в аэродинамической трубе можно предугадать и изучить процессы, которые возникнут в процессе реальной эксплуатации.

Важно

Коэффициент сопротивления. Итак, коэффициент сопротивления в формуле для силы сопротивления зависит от числа Рейнольдса: Эта зависимость имеет сложный характер, показанный (для шара) на рис. 9.16. Теоретически получить эту кривую трудно, и обычно используют зависимости, экспериментально измеренные для данного тела. Однако возможна качественная ее интерпретация. Рис. 9.16.

В частности, вискозиметры Гепплера c падающим шариком, производимые фирмой Gebruder HAAKE GmbH, предназначены для точных измерений вязкости прозрачных ньютоновских жидкостей и газов в следующих отраслях: химия (растворители, смолы и пр.); фармацевтическая пром-ть (глицерин, и т.п.); пищевая пром-ть (желатин, сироп, пивное сусло и пр.); нефтехимия (масла, жидкие углеводороды). Образец исследуемой жидкости набирается в измерительный шприц с шариком. После временной выдержки с целью выравнивания температуры (5 мин) магнит поднимает шарик в верхнюю стартовую позицию.

Затем шарик освобождается и скатывается по стенке шприца, наклоненного для исключения поперечного биения на 15°. Время падения, в соответствии с формулой Стокса, пропорционально вязкости жидкости. Время прохождения шариком определенной дистанции измеряется автоматически и пересчитывается в единицы вязкости.

Как найти силу сопротивления

Как видно из формулы, величина полного гидродинамического сопротивления прямо пропорциональна величине миделевого сечения. При плавании человека величина миделевого сечения постоянно изменяется. Наименьшая проекция будет в том случае, если тело занимает в воде горизонтальное положение.

Внимание

Величину миделевого сечения необходимо учитывать не только при выборе рационального положения тела, но и при выполнении рабочих и подготовительных движений. Пловец продвигается вперед, опираясь конечностями о воду и отталкиваясь от нее. Отталкивания будут тем более эффективными, чем больше они будут вызывать сопротивление своему движению, которое зависит от величины миделевого сечения.

Практически это достигается тем, что ладони во время гребка располагаются по возможности перпендикулярно направлению движения.

§ 8.5 движение тел в вязкой среде. закон стокса.

Разумеется, уравнения движения тела в жидкости невозможно даже начать решать, пока нам ничего неизвестно о модулесилы сопротивления. Величина этой силы существенно зависит от характера обтекания тела встречным потоком газа (или жидкости). При малых скоростях этот поток является ламинарным (то есть слоистым).

Инфо

Его можно представить себе как относительное движение не смешивающихся между собой слоев среды. Ламинарное течение жидкости демонстрируется на опыте, показанном на рис. 13. Как уже отмечалось в главе 9.3, при относительном движении слоёв жидкости или газа между этими слоями возникают силы сопротивления движению, которые называются силами внутреннего трения.

Эти силы обусловлены особым свойством текучих тел — вязкостью, которая характеризуется численно коэффициентом вязкости.

9.4. движение тел в среде с сопротивлением

В современной гидромеханике аналитическое выражение для определения силы полного сопротивления движению тела в воздушной или водной среде, отвечающее принципам гидродинамического подобия, имеет вид (8.54) где R – полная сила сопротивления воды движению тела; ζ – безразмерный коэффициент сопротивления; ρ – плотность среды; Ω – характерная площадь тела; υ – относительная скорость движения тела. Требуется установить зависимость для определения силы сопротивления движению тела, используя метод показателей. 1. Записываем функциональную зависимость для определения силы сопротивления R = f (ρ, l, υ, μ, g) (8.55) где l – длина тела; μ – динамическая вязкость; g – ускорение свободного падения. Размерность входящих в зависимость (8.55) параметров является сочетанием трех основных единиц измерения [ М ],[ L ] и[Т]. 2.

Сила сопротивления жидкости формула

Таким параметром может служить отношение силы лобового сопротивления к силе внутреннего трения. Подставляя в формулу для силы сопротивления выражение для площади поперечного сечения шара, убеждаемся, что величина силы лобового сопротивления с точностью до несущественных сейчас числовых факторов определяется выражением а величина силы внутреннего трения — выражением Отношение этих двух выражений и есть число Рейнольдса: Если речь идет не о движении шара, то под D понимается характерный размер системы (скажем, диаметр трубы в задаче о течении жидкости). По самому смыслу числа Рейнольдса ясно, что при его малых значениях доминируют силы внутреннего трения: вязкость велика и мы имеем дело с ламинарным потоком. При больших значениях числа Рейнольдса, наоборот, доминируют силы динамического лобового сопротивления и поток становится турбулентным.

Сила сопротивления воды формула

Теоретический расчет внутреннего трения для движения шарика диаметром D приводит к формуле Стокса: Подставляя формулу Стокса в выражение для силы сопротивления при установившемся движении, находим выражение для установившейся скорости падения шарика в среде: Видно, что чем легче тело, тем меньше скорость его падения в атмосфере. Полученное уравнение объясняет нам, почему пушинка падает медленнее,чем стальной шарик. При решении реальных задач, например, вычислении установившейся скорости падения парашютиста при затяжном прыжке, не следует забывать, что сила трения пропорциональна скорости тела лишь для относительно медленного ламинарного встречного потока воздуха.

При увеличении скорости тела вокруг него возникают воздушные вихри, слои перемешиваются, движение в какой-то момент становится турбулентным, и сила сопротивления резко возрастает.
Для расчета силы трения высокоскоростных тел используют квадрат скорости и коэффициент β, который рассчитывается для каждого предмета отдельно. При движении предмета в газе или жидкости при расчете силы трения необходимо учитывать плотность среды, а также массу и объем тела. 5 Сопротивление движению существенно снижает скорость поездов и автомобилей. Причем на движущие предметы действует два вида сил – постоянные и временные.

Общая сила трения представлена суммой двух величин. Для снижения сопротивления и повышения скорости машины конструкторы и инженеры изобретают разнообразные материалы со скользящей поверхностью, от которой воздух отталкивается. Именно поэтому передняя часть скоростных поездов имеет обтекаемую форму. Рыбы очень быстро движутся в воде благодаря обтекаемому телу, покрытому слизью, которая снижает трение.
Однако предположение о полном увлечении частиц среды движущимся телом оказывается слишком сильным. В реальности любое тело так или иначе обтекается потоком, что уменьшает силу сопротивления. Принято использовать так называемый коэффициент сопротивления C, записывая силу лобового сопротивления в виде: При турбулентном потоке в некотором интервале скоростей C не зависит от скорости движения тела, но зависит от его формы: скажем, для диска он равен единице, а для шара примерно 0,5. Подставляя формулу для силы лобового сопротивления в выражение для силы сопротивления при установившемся движении, приходим к иному, нежели ранее полученная формула, выражению для установившейся скорости падения шара (при C = 0,5): Применяя найденную формулу к движению парашютиста весом 100 кг с поперечным размером парашюта 10 м, находим что соответствует скорости приземления при прыжке без парашюта с высоты 2 м.

Сила сопротивления единицы измерения

Распределение скоростей вблизи стенки На рис. 92 показано распределение скоростей в пограничном слое. Если толщина пограничного слоя представляет собой величину порядкаа размер тела в направлении течения — величину порядка I, то сила трения на единицу объема, равная, согласно сказанному в конце § 1, (направление у нормально к поверхности тела), будет иметь порядока сила инерции на единицу объема, как и раньше, — порядок Так как в пограничном слое обе эти силы представляют собой величины одного и того же порядка, то величины ипропорциональны друг другу, т. е. (знак ~ означает «пропорционально»), откуда получается формула: дающая оценку для толщины пограничного слоя. Рис. 93. Течение вдоль пластинки Этот же результат можно получить, применяя теорему о количестве движения к потоку вдоль плоской пластинки.

Понравилась статья? Поделить с друзьями:
  • Как найти номера телефонов в телефоне самсунг
  • Как найти коэффициент корректирования нормативов
  • Как найти историю вкладок на яндексе
  • Как составить маршрутно операционную карту
  • Как найти работу в кракове