Как найти градусную меру меньшей дуги окружности

Геометрия

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Центральный угол и градусная мера дуги

Любые две точки на окружности разбивают ее на две дуги. Чтобы отличать эти дуги, на каждой из них ставят точку, которую и указывают в обозначении дуги:

Здесь красным цветом показана⋃АСВ, а синим – ⋃ADB. Однако иногда для простоты указывают только концы дуги, то есть используют обозначение ⋃AВ. Это делается тогда, когда ясно, о какой дуге окружности идет речь. Обычно всегда подразумевается та дуга, которая меньше.

Можно заметить, что дуги отличаются по размеру, поэтому возникает потребность их измерения. Для этого используют такое понятие, как градусная мера дуги.

Для ее определения необходимо соединить концы дуги с центром окруж-ти. В результате получаются радиусы, которые пересекаются в центре окружности. Угол между ними именуется центральным углом окруж-ти.

Для каждой дуги можно построить единственный центральный угол, поэтому логично измерять дугу с помощью такого угла. Правда, обратное неверно. На рисунке видно, что центральному углу ∠АОВ соответствует сразу две дуги: ⋃АСВ и ⋃АDB:

Поэтому условно считают, градусная мера той из двух дуг, которая меньше, как раз и равна центральному углу:

Дуги, также как отрезки или углы, можно складывать или вычитать. Например, пусть есть две дуги, ⋃AВ и ⋃ВС, чьи градусные меры составляют 40° и 30°.

Как найти ⋃АС? Ей соответствует центральный угол ∠АОС, который в свою очередь равен сумме ∠АОВ и ∠ВОС:

Диаметр делит окруж-ть на две равные друг другу дуги, которые называются полуокружностями. При этом диаметр окружности можно рассматривать как угол между двумя радиусами, равный 180°. Получается, что градусная мера полуокружности составляет 180°:

Вместе две полуокружности образуют полную окруж-ть. Получается, что градусная мера всей окруж-ти составляет 180° + 180° = 360°.

Этот факт известен и из жизни – когда кто-то делает полный оборот вокруг своей оси, говорят, что он повернулся на 360°. Теперь мы можем вернуться к случаю, когда две точки делят окруж-ть на две неравные друг другу дуги. Градусная мера меньшей из них будет равна величине соответствующего центрального угла (обозначим его как α). В сумме две дуги должны дать 360°. Значит, градусная мера большей дуги будет составлять 360° – α:

Задание. Точки А, В, С и D лежат на одной окруж-ти. Известно, что ⋃АСВ составляет 107°. Какова величина ADB?

Решение. Вместе дуги ⋃АСВ и ⋃АDВ образуют полную окруж-ть, поэтому их сумма равна 360°. Это позволяет составить уравнение и найти из него ⋃АDB:

Задание. Найдите величину ∠АОС на рисунке, если известны ⋃AВ и ⋃ВС:

Решение. Сначала найдем ⋃АС, учтя, что все три дуги, показанные на рисунке, в сумме составляют 360°:

Для доказательства построим две одинаковые хорды AВ и СD в окруж-ти и соединим их концы с центром:

В результате получились ∆АОВ и ∆ОСD. У них равны все три стороны, значит, сами эти треугольники равны. Тогда

∠COD = ∠AOB

Но эти углы – центральные для дуг ⋃AВ и ⋃CD. Получается, что у этих дуг одинаковы их градусные меры, поэтому они также равны, ч. т. д.

Примечание. Всякая хорда окружности разбивает ее на две дуги – большую и меньшую. В данном правиле говорится именно равенстве меньших дуг.

Задание. На окруж-ти отмечены точки А, В и С так, что хорды AВ, ВС и АС равны. Найдите угол между радиусами окружности АО и ВО.

Дуги ⋃AВ, ⋃ВС и ⋃АС стянуты равными хордами AВ, ВС и АС. Значит, они одинаковы. Но в сумме эти три дуги образуют окруж-ть величиной в 360°. Значит, каждая из этих дуг втрое меньше:

⋃AВ = ⋃BC = ⋃AC = 360°:3 = 120°

∠АОВ – центральный для ⋃AВ, значит, он равен ее градусной мере, то есть он составляет 120°.

Вписанный угол

В окруж-ти можно построить ещё один угол, который именуют вписанным углом. Его отличие от центрального заключается в том, что его вершина лежит на окруж-ти, а не в ее центре. Сторонами же вписанного угла являются хорды окруж-ти.

Здесь дуга ⋃ВС находится внутри угла, а ее концы лежат на его сторонах. В таких случаях говорят, что ∠ВАС опирается на дугу ВС. Оказывается, что между величиной вписанного угла и дугой, на которую он опирается, есть взаимосвязь.

Обозначим вписанный угол ∠СAВ буквой α. Так как радиусы АО и ОС одинаковы, то ∆АОС – равнобедренный, и тогда углы при его основании будут одинаковы:

∠СОВ – внешний для ∆АОС. Напомним, что такой угол равен сумме тех 2 углов треуг-ка, которые с ним не смежны. В частности, в данном случае можно записать

∠СОВ = ∠OCA = ∠OAC = α + α = 2α

Но этот же угол – центральный, и его величина равна ⋃ВС:

Получается, что дуга вдвое больше вписанного угла.

Далее рассмотрим случай, когда диаметр, проведенный из вершины вписанного угла, делит его на две части:

В этом случае вписанный угол ∠СAВ можно представить как сумму углов ∠САD (обозначен как α)и ∠ВАD (обозначен как β). Мы уже доказали, что дуги, на которые опираются эти углы, вдвое больше самих углов:

Осталось рассмотреть третий случай, при котором обе стороны вписанного угла ∠ВАС лежат по одну сторону от диаметра:

Если здесь обозначить ∠САD как α, а ∠ВАD как β, то интересующий нас ∠СAВ можно представить как их разность:

Итак, во всех трех возможных случаях вписанный угол оказывается вдвое меньше дуги, на которую он опирается.

Задание. Найдите ∠ВАС на рисунке:

Задание. Найдите вписанный ∠AВС, сели прилегающие к нему дуги ⋃AВ и ⋃ВС равны 100° и 128°.

Решение. В сумме дуги ⋃АС, ⋃ВС и ⋃AВ образуют окруж-ть, поэтому их сумма составляет 360°. Тогда можно найти ⋃АС:

Задание. Найдите дугу SM на рисунке:

Решение. Сначала найдем дугу ⋃MN, она вдвое больше соответствующего ей вписанного угла:

⋃NM = 2*NSM = 2*35° = 70°

Заметим, что ⋃SN– это полуокружность, то есть она составляет 180°. При этом ⋃SM и ⋃MN вместе как раз образуют эту полуокружность, то есть их сумма также составляет 180°. Значит, ⋃МS можно найти, вычтя из полуокружности ⋃MN:

⋃MS = ⋃SN — ⋃MN = 180° — 70° = 110°

Заметим, что для одной дуги можно построить несколько вписанных углов. Каждый из них будет равен половине дуги, то есть все эти углы окажутся одинаковыми.

Задание. Найдите ∠АСD на рисунке:

Решение. Так как ∠ACD и ∠ABD опираются на одну дугу ⋃AD, то они должны быть одинаковыми:

∠ACD = ∠ABD = 63°

Задание. Докажите, что две дуги, находящиеся между двумя параллельными секущими окруж-ти, равны друг другу.

Нам надо доказать, что ⋃AВ и ⋃CD равны, если АС||BD. Проведем секущую ВС:

∠СВD и ∠АСВ равны, ведь они накрест лежащие. Получается, что ⋃AВ и ⋃CD являются основаниями равных вписанных углов. Отсюда вытекает, что эти дуги должны быть равными.

Напомним, что диаметр разбивает окруж-ть на две дуги по 180°. Отсюда можно сделать вывод – любой угол, опирающийся на полуокружность, должен составлять 180°:2 = 90°:

Задание. Диаметр окруж-ти AВ равен 17. Хорда ВС имеет длину 8. Какова длина хорды АС?

Так как ∠АСВ опирается на диаметр AВ, то он прямой. Значит, и ∆АСВ – прямоугольный, причем диаметр AВ в нем – гипотенуза. Неизвестный катет можно найти по теореме Пифагора:

Задание. Окруж-ть разбита на две дуги, ⋃AВС и ⋃СDA. Известно, что ∠AВС = 72°. Найдите ADC.

Зная ∠AВС, мы легко найдем дугу ⋃ADC, она вдвое больше опирающегося на нее вписанного угла:

Углы между хордами и секущими

До этого мы рассматривали простые углы в окруж-ти, вершины которых лежали либо на самой окруж-ти, либо в ее центре. Однако иногда хорды и секущие пересекаются в другой точке, либо внутри, либо вне окруж-ти. Рассмотрим подобные задачи.

Более прост случай, когда необходимо найти угол между двумя пересекающимися хордами. Пусть хорды при пересечении образовали дуги ⋃AВ и ⋃СD величиной α и β. Каков угол между ними?

Проведем ещё одну хорду АD. В результате получим вписанные ∠САD и ∠ADB, которые будут равны половинам от соответствующих дуг, то есть α/2 и β/2. Интересующий нас ∠СPD оказывается внешним для ∆APD, и потому равен сумме двух углов в ∆APD (тех, которые с ним не смежны), то есть он составляет величину α/2 + β/2:

Величину α/2 + β/2 можно записать и иначе, вынеся множитель 1/2 за скобки:

Эту величину можно назвать полусуммой дуг, на которые опирается интересующий нас угол.

Задание. Найдите ∠МКВ на рисунке:

Решение. Интересующий нас угол опирается на хорды величиной 38° и 42°. Значит, он равен половине от их суммы:

∠MKB = (42° + 38°)/2 = 80°/2 = 40°

В более сложном случае необходимо найти угол между секущими, которые пересекаются вне окруж-ти. При этом известны дуги, образованные этими секущими:

Снова проведем хорду АD, чтобы у нас получились два вписанных угла, ∠ADB и ∠СAD, которые соответственно будут иметь величину β/2 и α/2:

Теперь уже ∠САD оказывается внешним для ∆ADK, а потому он является суммой двух других углов:

В итоге получили, что угол между секущими составляет половину от разности дуг, которые они отсекают от окруж-ти.

Задание. Найдите на рисунке величину∠К, если ⋃AВ и ⋃СD соответственно равны 42° и 130°:

Решение. В этой задаче просто используем доказанную теорему об углах между секущими. Искомый угол составляет половину от разности дуг, заключенных между секущими:

∠K = (130° — 42°):2 = 88°/2 = 44°

Теорема о произведении отрезков хорд

Можно заметить, что при пересечении двух хорд образуется пара подобных треугольников. Пусть хорды ADи ВС пересекаются в точке K. Добавим хорды AВ и СD и получим ∆AВК и ∆КСD:

На дугу ⋃BD опираются вписанные углы∠А и ∠С, значит, они одинаковы. Также на одну дугу АС опираются ∠D и∠В, поэтому и они одинаково. Равенство двух углов уже означает, что треугольники подобны по первому признаку подобия (дополнительно можно заметить, что ∠АКВ и ∠СКD равны как вертикальные углы).

Из подобия ∆AВК и ∆СКD вытекает пропорция между их сторонами:

Перемножив члены пропорции крест накрест, получим соотношение:

В результате нам удалось доказать следующее утверждение:

Задание. Хорды AВ и CD пересекаются в точке М. Известны, что АМ = 9, МВ = 3, МС = 2. Какова длина отрезка МD?

Хорда AВ разбивается на отрезки АМ и МВ, а хорда CD – на отрезки СМ и МD. Произведения этих отрезков одинаковы:

Подставим в это равенство известные величины

Рассмотрим ещё одну геометрическую конструкцию. Пусть из некоторой точки А к окруж-ти проведена как касательная к окружности АК, так и секущая, пересекающая окруж-ть в точках В и С:

Какие здесь есть взаимосвязи между углами и длинами отрезков? Для начала проведем хорды ВК и СК, а также радиусы ОК и ОВ. Обозначим буквой α угол ∠ВСК. Он вписанный, поэтому дуга, на которую он опирается (это ⋃ВК), вдвое больше и равна 2α. Тогда и центральный угол ∠ВОК также составляет 2α:

Теперь исследуем ∆ВОК. Он равнобедренный (ВО и ОК – одинаковые радиусы), поэтому углы при его основании совпадают:

Итак, углы при основании ∆ОВК, в частности ∠ОКВ, равны 90° – α. Заметим, что ∠ОКА – прямой, так как образован радиусом ОК и касательной АК, при этом он состоит из двух углов, ∠АКВ и ∠ВКО. Это позволяет найти ∠АКВ:

В результате мы получили важный промежуточный результат – угол между касательной и хордой, проведенной из точки касания, вдвое меньше образующейся при этом дуги.

Вернемся к картинке с секущей. Изначально как α мы обозначили ∠ВСК, но в результате получили, что и ∠АКВ = α.

Рассмотрим ∆AВК и ∆САК. У них есть общий∠А, а также одинаковые ∠AКВ и ∠ВСК, которые отмечены буквой α. Значит, ∆AВК и ∆САК подобны, поэтому мы имеем право записать пропорцию между его сторонами:

Здесь отрезок АС можно назвать секущей, а AВ – ее внешней частью. Тогда выведенное отношение можно сформулировать так:

Решение. Сначала находим длину всей секущей, пользуясь доказанной теоремой:

Решение. Проведем из точки А ещё и касательную АК к окруж-ти:

Величину квадрата касательной АК можно найти, используя секущую АС. Сначала вычислим длину АС:

Задачи на квадратной решетке

Рассмотрим несколько несложных задач, часто встречающихся на экзаменах.

Задание. Найдите ∠AВС на рисунке:

Решение. Здесь следует заметить, что расстояние между А и С составляет 8 клеток, при этом в окруж-ть как раз можно вписать квадрат со стороной 8.

Такой квадрат разобьет окруж-ть на 4 дуги, причем так как эти дуги опираются на хорды одинаковой длины, то они и сами равны. Вся окруж-ть составляет 360°, значит, каждая из этих дуг составляет 360°:4 = 90°. ∠AВС – вписанный, то есть он составляет половину дуги, на которую он опирается, а это⋃АС, равная 90°. Тогда

Задание. Найдите ∠AВС, используя рисунок:

Решение. Используя рассуждения из предыдущей задачи, легко определить, что∠А составляет 45°.При этом ∆AВС – равнобедренный, и ВС – его основание. Это следует хотя бы из того факта, что высота АН делит сторону ВН пополам.

Углы∠В и ∠С одинаковы, так как лежат при основании равнобедренного треуг-ка. Найдем их, используя тот факт, что все 3 угла в ∆AВС составляют в сумме 180°:

Задание. Вычислите ∠AВС:

Решение. Снова в окруж-ть можно вписать квадрат со стороной 8 клеток. Из этого следует что ⋃АВС составляет 90° (показана фиолетовым цветом):

Но ∠АВС опирается на синюю дугу. Так как вместе фиолетовая и синяя дуга составляют окружность, равную 360°, то синяя дуга должна быть равна 360° – 90° = 270°. ∠АВС как вписанный будет вдвое меньше, то есть он равен 270°:2 = 135°.

Задание. Чему равен ∠AВС на рисунке?

Если вписать в окруж-ть квадрат то он разобьет окруж-ти на дуги по 90°. В свою очередь точка А является серединой такой дуги, то есть она разбивает ее на две дуги по 45°.

∠AВС как вписанный будет вдвое меньше, то есть он равен 22,5°.

Углы в окружности, центральный и вписанный. Свойства и способы нахождения

Планиметрия – это раздел геометрии, изучающий свойства плоских фигур. К ним относятся не только всем известные треугольники, квадраты, прямоугольники, но и прямые и углы. В планиметрии также существуют такие понятия, как углы в окружности: центральный и вписанный. Но что они означают?

Что такое центральный угол?

Для того чтобы понять, что такое центральный угол, нужно дать определение окружности. Окружность – это совокупность всех точек, равноудаленных от данной точки (центра окружности).

Очень важно отличать ее от круга. Нужно запомнить, что окружность – это замкнутая линия, а круг – это часть плоскости, ограниченная ею. В окружность может быть вписан многоугольник или угол.

Центральный угол – это такой угол, вершина которого совпадает с центром окружности, а стороны пересекают окружность в двух точках. Дуга, которую угол ограничивает точками пересечения, называется дугой, на которую опирается данный угол.

Рассмотрим пример №1.

На картинке угол AOB – центральный, потому что вершина угла и центр окружности – это одна точка О. Он опирается на дугу AB, не содержащую точку С.

Чем вписанный угол отличается от центрального?

Однако кроме центральных существуют также вписанные углы. В чем же их различие? Так же как и центральный, вписанный в окружность угол опирается на определенную дугу. Но его вершина не совпадает с центром окружности, а лежит на ней.

Приведем следующий пример.

Угол ACB называется углом, вписанным в окружность с центром в точке О. Точка С принадлежит окружности, то есть лежит на ней. Угол опирается на дугу АВ.

Чему равен центральный угол

Для того чтобы успешно справляться с задачами по геометрии, недостаточно уметь различать вписанный и центральный углы. Как правило, для их решения нужно точно знать, как найти центральный угол в окружности, и уметь вычислить его значение в градусах.

Итак, центральный угол равен градусной мере дуги, на которую он опирается.

На картинке угол АОВ опирается на дугу АВ, равную 66°. Значит, угол АОВ также равен 66°.

Таким образом, центральные углы, опирающиеся на равные дуги, равны.

На рисунке дуга DC равна дуге AB. Значит, угол АОВ равен углу DOC.

Как найти вписанный угол

Может показаться, что угол, вписанный в окружность, равен центральному углу, который опирается на ту же дугу. Однако это грубая ошибка. На самом деле, даже просто посмотрев на чертеж и сравнив эти углы между собой, можно увидеть, что их градусные меры будут иметь разные значения. Так чему же равен вписанный в окружность угол?

Градусная мера вписанного угла равна одной второй от дуги, на которую он опирается, или половине центрального угла, если они опираются на одну дугу.

Рассмотрим пример. Угол АСВ опирается на дугу, равную 66°.

Значит, угол АСВ = 66° : 2 = 33°

Рассмотрим некоторые следствия из этой теоремы.

  • Вписанные углы, если они опираются на одну и ту же дугу, хорду или равные дуги, равны.
  • Если вписанные углы опираются на одну хорду, но их вершины лежат по разные стороны от нее, сумма градусных мер таких углов составляет 180°, так как в этом случае оба угла опираются на дуги, градусная мера которых в сумме составляет 360° (вся окружность), 360° : 2 = 180°
  • Если вписанный угол опирается на диаметр данной окружности, его градусная мера равна 90°, так как диаметр стягивает дугу равную 180°, 180° : 2 = 90°
  • Если центральный и вписанный углы в окружности опираются на одну дугу или хорду, то вписанный угол равен половине центрального.

Где могут встретиться задачи на эту тему? Их виды и способы решения

Так как окружность и ее свойства – это один из важнейших разделов геометрии, планиметрии в частности, то вписанный и центральный углы в окружности – это тема, которая широко и подробно изучается в школьном курсе. Задачи, посвященные их свойствам, встречаются в основном государственном экзамене (ОГЭ) и едином государственном экзамене (ЕГЭ). Как правило, для решения этих задач следует найти углы на окружности в градусах.

Углы, опирающиеся на одну дугу

Этот тип задач является, пожалуй, одним из самых легких, так как для его решения нужно знать всего два простых свойства: если оба угла являются вписанными и опираются на одну хорду, они равны, если один из них – центральный, то соответствующий вписанный угол равен его половине. Однако при их решении нужно быть крайне внимательным: иногда бывает сложно заметить это свойство, и ученики при решении таких простейших задач заходят в тупик. Рассмотрим пример.

Дана окружность с центром в точке О. Угол АОВ равен 54°. Найти градусную меру угла АСВ.

Эта задача решается в одно действие. Единственное, что нужно для того, чтобы найти ответ на нее быстро – заметить, что дуга, на которую опираются оба угла — общая. Увидев это, можно применять уже знакомое свойство. Угол АСВ равен половине угла АОВ. Значит,

1) АОВ = 54° : 2 = 27°.

Углы, опирающиеся на разные дуги одной окружности

Иногда в условиях задачи напрямую не прописана величина дуги, на которую опирается искомый угол. Для того чтобы ее вычислить, нужно проанализировать величину данных углов и сопоставить их с известными свойствами окружности.

В окружности с центром в точке О угол АОС равен 120°, а угол АОВ – 30°. Найдите угол ВАС.

Для начала стоит сказать, что возможно решение этой задачи с помощью свойств равнобедренных треугольников, однако для этого потребуется выполнить большее количество математических действий. Поэтому здесь будет приведен разбор решения с помощью свойств центральных и вписанных углов в окружности.

Итак, угол АОС опирается на дугу АС и является центральным, значит, дуга АС равна углу АОС.

Точно так же угол АОВ опирается на дугу АВ.

Зная это и градусную меру всей окружности (360°), можно с легкостью найти величину дуги ВС.

ВС = 360° — АС — АВ

ВС = 360° — 120° — 30° = 210°

Вершина угла САВ, точка А, лежит на окружности. Значит, угол САВ является вписанным и равен половине дуги СВ.

Угол САВ = 210° : 2 = 110°

Задачи, основанные на соотношении дуг

Некоторые задачи вообще не содержат данных о величинах углов, поэтому их нужно искать, исходя только из известных теорем и свойств окружности.

Найдите угол, вписанный в окружность, который опирается на хорду, равную радиусу данной окружности.

Если мысленно провести линии, соединяющие концы отрезка с центром окружности, то получится треугольник. Рассмотрев его, можно заметить, что эти линии являются радиусами окружности, а значит, все стороны треугольника равны. Известно, что все углы равностороннего треугольника равны 60°. Значит, дуга АВ, содержащая вершину треугольника, равна 60°. Отсюда найдем дугу АВ, на которую опирается искомый угол.

АВ = 360° — 60° = 300°

Угол АВС = 300° : 2 = 150°

В окружности с центром в точке О дуги соотносятся как 3:7. Найдите меньший вписанный угол.

Для решения обозначим одну часть за Х, тогда одна дуга равна 3Х, а вторая соответственно 7Х. Зная, что градусная мера окружности равна 360°, составим уравнение.

По условию, нужно найти меньший угол. Очевидно, что если величина угла прямо пропорциональна дуге, на которую он опирается, то искомый (меньший) угол соответствует дуге, равной 3Х.

Значит, меньший угол равен (36° * 3) : 2 = 108° : 2 = 54°

В окружности с центром в точке О угол АОВ равен 60°, а длина меньшей дуги — 50. Вычислите длину большей дуги.

Для того чтобы вычислить длину большей дуги, нужно составить пропорцию — как меньшая дуга относится к большей. Для этого вычислим величину обеих дуг в градусах. Меньшая дуга равна углу, который на нее опирается. Ее градусная мера составит 60°. Большая дуга равна разности градусной меры окружности (она равна 360° вне зависимости от остальных данных) и меньшей дуги.

Большая дуга равна 360° — 60° = 300°.

Так как 300° : 60° = 5, то большая дуга в 5 раз больше меньшей.

Большая дуга = 50 * 5 = 250

Итак, конечно, существуют и другие подходы к решению подобных задач, но все они так или иначе основаны на свойствах центральных и вписанных углов, треугольников и окружности. Для того чтобы успешно их решать, необходимо внимательно изучать чертеж и сопоставлять его с данными задачи, а также уметь применять свои теоретические знания на практике.

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

источники:

http://fb.ru/article/445770/uglyi-v-okrujnosti-tsentralnyiy-i-vpisannyiy-svoystva-i-sposobyi-nahojdeniya

Геометрия. Урок 5. Окружность

Как найти градусную меру меньшей дуги.

На этой странице находится вопрос Как найти градусную меру меньшей дуги?, относящийся к категории
Алгебра. По уровню сложности данный вопрос соответствует знаниям
учащихся 10 — 11 классов. Здесь вы найдете правильный ответ, сможете
обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С
помощью автоматического поиска на этой же странице можно найти похожие
вопросы и ответы на них в категории Алгебра. Если ответы вызывают
сомнение, сформулируйте вопрос иначе. Для этого нажмите кнопку вверху.

ДоЧь ДьЯвОлА [21]2 года назад



0



0

Градусная мера меньшей дуги АС=углу О, который красным показан, а большей дуги это 360-красный угол

Рассмотрим окружность. Отметим на ней две точки А и B. Эти точки разделяют окружность на две дуги.

Возникает вопрос, а как узнать про какую дугу говорить?
Ведь и одна и вторая дуги стягивается хордой АB.
Именно для того, чтобы различать дуги, берутся дополнительные точки на этих
дугах. Дуги обозначаются специальным знаком и тремя заглавными буквами. Запишем
дуги, которые у нас получились: ᴗ, ᴗ. Иногда дуга может обозначаться двумя
буквами, но только в том случае, когда точно ясно о какой дуге идет речь.
Например, если дуга стягивается диаметром ᴗ. Такая дуга носит особое название – полуокружность.

Давайте введем еще одно определение. Угол с вершиной в
центре этой окружности называется центральным углом.

По рисунку видно, что центральный угол может быть
любым: как меньше развернутого, так и больше развернутого. Давайте попробуем на
рисунке указать центральные углы.

Центральными углами будут углы AOB и EOF. Пусть стороны центрального угла окружности
пересекают ее в точках А и B. Центральному углу AOB соответствуют две дуги с концами А и B. Если этот угол развернутый, то ему соответствуют две полуокружности.
Если угол не развёрнутый, то говорят, что дуга АB,
расположенная внутри этого угла, меньше полуокружности. Про другую дугу
говорят, что она больше полуокружности.

Мы помним, что длина окружности вычисляется по формуле
. И измеряется длина только в единицах
измерения длины. А дуга может измеряться, как в единицах измерения длины, так и
в градусах.

, , ; , , ,

Если дуга AB окружности меньше
полуокружности или является полуокружностью, то ее градусная мера равна
градусной мере центрального угла АОB. Мы знаем, что градусная
мера круга равна 360º, поэтому если дуга AB
больше полуокружности, то ее градусная мера .

Решим задачу. Найти градусную меру дуг по рисункам.

На первом рисунке дуга BMA
меньше полуокружности:  .

На втором рисунке изображены две полуокружности, их
градусные меры равны .

На третьем рисунке дуга BMA
меньше полуокружности и, значит, ее градусная мера равна ,

Решим несколько задач.

Задача. Начертить окружность с центром  и отметить на ней точку . Построить хорду  так, чтобы:

а) ,          б) ,       в) ,      г)

Решение.

Построим окружность, с центром в точке О. Отметим на
окружности точку А. Соединим точки А и О.

Возьмем циркуль и померяем получившийся отрезок ОА. И
таким же радиусом проведем окружность, центром которой будет точка А. Эта
окружность пересечет исходную окружность в двух точках. Обозначим одну из нах
буквой B. Рассмотрим треугольник AOB.
Поскольку точка B лежит на окружности, то ОА и ОB равны как радиусы, поскольку из точки А мы проводили окружность с таким
же радиусом, то ОА равно AB. Таким образом, треугольник АОВ –
равносторонний. Углы равностороннего треугольника равны по 60 градусов, то есть
угол АОВ =60º.

Таким образом, мы построили хорду АB так, чтобы угол АОB был равен 60 º.

Теперь давайте построим хорду АБ так, чтобы угол АОB=  90º.

Проведем через точки А и О диаметр окружности. Из
точки О проведем перпендикуляр к построенному диаметру, полученный
перпендикуляр пересекает окружность в двух точках. Обозначим одну из них за B. Хорда АB и будет искомая.

Теперь давайте построим хорду АB так, чтобы угол АОB=120º.

 Для этого проведем через точки О и А диаметр
окружности. Он делит окружность на две полуокружности, градусная мера которых
равна 180º.

Построим хорду АB, так,
чтобы один из центральных углов был равен 60º.

Обозначим вторую точку диаметра C и проведем окружность с радиусом равным радиусу исходной окружности и
центром в точке C. Обозначим одну из точек пересечения
окружностей за B и получим, что угол COB= 60º,
(мы уже выяснили почему), тогда угол АОB=
180-60= 120º. То есть хорда АB – искомая.

Теперь нам надо построить хорду Аб так, чтобы угол АОБ
был бы равен ста восьмидесяти градусам. Такой хордой, будет диаметр проведенный
через точку А.

Обозначим второй конец диаметра буквой Б и получим
искомую хорду.

Задача. Хорды  и  окружности с центром  равны. Доказать, что две дуги с концами  и  соответственно равны двум дугам с концами  и . Найти градусные меры дуг с концами  и , если .

Решение. Выполним чертеж.

 и

 и  по условию

 

Ответ:.

Задача. На полуокружности  взяты точки  и  так, что , . Найдите хорду , если .

Решение. Выполним чертеж.

 

 

 

− равносторонний

 (см)

Ответ: см.

Итак, давайте повторим главное: Дуга – часть
окружности. Дуга называется полуокружностью, если отрезок, соединяющий ее
концы, является диаметром окружности.

Угол с вершиной в центре окружности называется центральным
углом
этой окружности. Если дуга АB окружности меньше
полуокружности или является полуокружностью, то ее градусная мера равна
градусной мере центрального угла АОB. Мы знаем, что градусная
мера круга равна 360º, поэтому если дуга AB
больше полуокружности, то ее градусная мера считается равной .

ВИДЕОУРОК

Центральный угол – угол с вершиной в центре окружности. 

ПРИМЕР:



АОВ центральный угол.

Стороны
центрального угла пересекают окружность в двух точках и делят её на две дуги. 

Если центральный угол развёрнутый, то ему соответствуют две полуокружности. 

Если центральный угол неразвёрнутый, то дуга, расположенная внутри этого угла,
меньше полуокружности, а вторая дуга больше полуокружности. 

Каждая дуга
окружности содержит некоторую угловую меру – меру соответствующего ей
центрального угла. Говорят также, что центральный угол измеряется дугою, на
которую он опирается. 

Пишут: 

АВ = 60°.

Угловая мера всей
окружности равна 
360°

Полуокружность
равна развёрнутому углу, то есть она равна 
180°.
Если дуга окружности меньше или равна полуокружности, то её градусная мера
равна градусной мере соответствующего ей центрального угла. Если дуга
окружности больше полуокружности, то её градусная мера равна 
360°  минус центральный угол. Сумма градусных мер
двух дуг окружности с общими концами равна 
360°.

Вписанный угол – угол, вершина которого лежит на окружности, а стороны
пересекают окружность.

Если дуга лежит во
внутренней области вписанного угла, то говорят, что данный вписанный угол
опирается на эту дугу.

Вписанный
угол
 – угол, вершина которого лежит на окружности, а стороны
пересекают окружность. Если дуга лежит во внутренней области вписанного угла,
то говорят, что данный вписанный угол опирается на эту дугу.

ПРИМЕР:


АВС вписанный угол.

– вписанный угол
измеряется половиной дуги на которую он опирается
;


ЗАДАЧА:

Угол  АВС вписанный в окружность с центром  О, угол 

АОС = 120°.

Найти угол 
АВС
.

РЕШЕНИЕ:

АВС = 1/2 АОС = 

1/2 ×120° = 60°.

ОТВЕТ:  60°.

ЗАДАЧА:

Точки  А, В 
и 
С  лежат
на окружности с центром 
О. Найдите угол  АОС, если АВС = 66°.

РЕШЕНИЕ:

Угол  АВС, вписанный в окружность, опирается на дугу  АС.

АОС = 132°так как это центральный угол данной окружности и он в два раза больше
вписанного.

– вписанные углы,
опирающиеся на одну и ту же дугу, равны
;

– вписанный угол,
опирающийся на полуокружность – прямой
;

ЗАДАЧА:

Точка  О – центр окружности, изображённой на рисунку.

Найдите градусную меру угла  АОС.

РЕШЕНИЕ:

Вписанный угол  АВС  опирается на
дугу 
АmС,
поэтому градусная мера дуги будет равна

2 ∙ 130° = 260°.

Градусная мера дуги, на которую опирается центральный
угол
АОС
равна

360° – 260° = 100°,

АОС
= 100°
.

ЗАДАЧА:

Найдите вписанный угол, который опирается на дугу,
которая составляет
1/4  части окружности.

РЕШЕНИЕ:

360° : 4 = 90° – мера
дуги,

90° : 2 = 45° – мера вписанного угла.

ЗАДАЧА:

Точка  О – центр окружности, изображенной на рисунку. Найдите градусную меру угла  АВС.

РЕШЕНИЕ:

АС =
52°, тогда

АВС  = 1/2 АС =

= 1/2
52° =
2
6°.

Длина дуги окружности.

Угол и дуга измеряются в градусах и радианах. Длина дуги

где  n  – градусная мера соответствующего центрального угла.

Пусть  l – длина дуги окружности
радиуса 
R, α – радианная мера центрального угла этой
окружности, опирающегося на рассматриваемую дугу.

На основании определения радианной меры угла
имеем
:

Последнее равенство
позволяет выразить длину 
l  дуги окружности через  α  и  R:

l = R α.

Длина окружности равна
длине радиуса этой окружности, умноженной на радианную меру центрального угла,
опирающегося на эту дугу.

ЗАДАЧА:

Найдите
градусну
ю
м
еру
дуги
окружности,
длина
которой
равна  π
см,
если
рад
иус
окружности
равен  12 см.

РЕШЕНИЕ:

ЗАДАЧА:

Найдите
градусну
ю
м
еру
дуги
окружности,
длина
которой
равна  2π см, если радиус окружности равен 
6
см.

РЕШЕНИЕ:

ЗАДАЧА:

Концы хорды окружности делят её на две дуги, градусные меры которых относятся как 
1 : 17. Найдите  градусную меру меньшей дуги.

РЕШЕНИЕ:

Пусть  х – градусная мера одной дуги, тогда  17х
другой.

х
+ 17х = 360
°,

18х = 360°х = 20°.

ЗАДАЧА:

Найдите
длину дуги окружности, градусная мера которой равна 
60°, если
радиус окружности –
7 см.

РЕШЕНИЕ:

Длина окружности равна

2π
  7 = 14π
см.

Длина дуги окружности равна

14π : 360°
60° = 7π/3
см.

ЗАДАЧА:

Найдите
длину  1/3 
дуги
окружности
рад
иуса  12
см.

РЕШЕНИЕ:

l = 2πr = 2π12 = 24π см,

1/3 l =1/324π = 8π см.

ЗАДАЧА:

Точки  M  и  N  делят окружность на две дуги, разность
градусных мер которых равна 
90°. Чему равны градусные меры каждой из дуг ?

РЕШЕНИЕ:

Сумма градусных мер дуг равна  360°, а разность равна  90°. Обозначим градусные меры этих дуг  х  и  у. Имеем:

Решая эту систему, получим:

х = 225°, у = 135°.

ЗАДАЧА:

Найти длину  l  дуги окружности
радиуса 
20
см, если эта дуга стягивает центральный угол, равный 
48°42.

РЕШЕНИЕ:

Мы знаем, что один радиан равен:

1 рад = 57°18.

Значит, радианная мера угла  48°42  будет равна:

48°42 : 57°18 ≈ 0,8467 ≈ 0,8500.

Тогда имеем:

l 20 0,8500 17 см.

ЗАДАЧА:

Найти длину  l  дуги окружности,
радиус которой 
R, равен  25 см, если дуга содержит 
42°24.

РЕШЕНИЕ:

Радианная мера данной дуги равна  0,7400.
Тогда дуга вычисляется так:

l = 25 ∙ 0,7400 ≈ 18,5 см.

– угол, вершина которого лежит в середине
окружности, измеряется полу суммой двух дуг, на которые опираются данный и
вертикальный
c ним углы;

– угол, стороны которого
пересекают окружность, а вершина лежит вне окружности, измеряется полуразностью
дуг этой окружности, которые лежат внутри угла
;


– угол между касательной и хордой, которая
проходит через точку касания, измеряется половиной дуги, которая лежит между
его сторонами.

– если две хорды
окружности пересекаются, то произведение отрезков одной хорды равно
произведению отрезков другой хорды.



ПРИМЕР:

Если  АВ  и  СD – хорды окружности, пересекающиеся в точке  К,
то

АК × ВК = СК × DК.

– отрезки касательных к
окружности, приведенные из одной точки, равны и составляют равные углы с
прямой, проходящей через точку и центр окружности.

Задания к уроку 5

  • Задание 1
  • Задание 2
  • Задание 3  

Другие уроки:

  • Урок 1. Точка и прямая
  • Урок 2. Угол
  • Урок 3. Параллельные и перпендикулярные прямые
  • Урок 4. Окружность
  • Урок 6. Треугольник (1)
  • Урок 7. Треугольник (2)
  • Урок 8. Прямоугольный треугольник (1)
  • Урок 9. Прямоугольный треугольник (2)
  • Урок 10. Равнобедренный треугольник (1)
  • Урок 11. Равнобедренный треугольник (2)
  • Урок 12. Периметр треугольника
  • Урок 13. Периметр равнобедренного (равностороннего) треугольника
  • Урок 14. Треугольник и окружность
  • Урок 15. Прямоугольный треугольник и окружность
  • Урок 16. Равнобедренный треугольник и окружность
  • Урок 17. Четырёхугольники
  • Урок 18. Параллелограмм
  • Урок 19. Периметр параллелограмма
  • Урок 20. Прямоугольник
  • Урок 21. Периметр прямоугольника
  • Урок 22. Квадрат
  • Урок 23. Ромб
  • Урок 24. Периметр ромба
  • Урок 25. Трапеция
  • Урок 26. Равнобедренная трапеция
  • Урок 27. Периметр трапеции
  • Урок 28. Четырёхугольник и окружность (1)
  • Урок 29. Четырёхугольник и окружность (2)
  • Урок 30. Многоугольник
  • Урок 31. Правильный многоугольник
  • Урок 32. Осевая и центральная симметрии

Понравилась статья? Поделить с друзьями:
  • Как найти высота равнобедренного прямоугольного треугольника
  • Как в дебиан найти файл
  • Как найти где сохранены контакты
  • Как найти сайты в tor browser
  • This application has encountered a critical error wow как исправить