Комплексные числа в тригонометрической
и показательной формах
Тригонометрическая форма комплексного числа
Каждому комплексному числу геометрически соответствует точка на плоскости . Но положение точки на плоскости, кроме декартовых координат , можно зафиксировать другой парой — ее полярных координат в полярной системе (рис. 1.3,a).
Величина является неотрицательной и для данной точки определяется единственным образом, а угол может принимать бесчисленное множество значений (при этом ): если точке соответствует некоторое значение , то ей также соответствуют значения . Например, если для точки (см. рис. 1.1) выбрать , то ей соответствует любое , в частности при . Если же выбрать , то , а при получаем .
Используя связь декартовых и полярных координат точки (рис. 1.3,б), из алгебраической формы записи комплексного числа получаем тригонометрическую форму:
(1.3)
Показательная форма комплексного числа
Если обозначить комплексное число , у которого , а , через , то есть , то из (1.3) получим показательную форму записи комплексного числа:
(1.4)
Равенство называется формулой Эйлера.
Заметим, что геометрически задание комплексного числа равносильно заданию вектора , длина которого равна , то есть , а направление — под углом к оси (рис. 1.3,б).
Модуль комплексного числа
Число — длина радиуса-вектора точки называется модулем комплексного числа . Обозначение: .
Из рис. 1.3,б получаем формулу для нахождения модуля числа, заданного и алгебраической форме
(1.5)
Очевидно, что и только для числа .
С помощью правила вычитания запишем модуль числа , где и
А это, как известно, есть формула для расстояния между точками и .
Таким образом, число есть расстояние между точками и на комплексной плоскости.
Пример 1.13. Найти модули комплексных чисел:
Решение
Аргумент комплексного числа
Полярный угол точки называется аргументом комплексного числа . Обозначение: .
В дальнейшем, если нет специальных оговорок, под будем понимать значение , удовлетворяющее условию . Так, для точки (см. рис. 1.1) .
Формулу для нахождения аргумента комплексного числа , заданного в алгебраической форме, получаем, используя связь декартовых и полярных координат точки (см. рис. 1.3,б). Для точек, не лежащих на мнимой оси, т.е. для , у которых , получаем ; для точек мнимой положительной полуоси, т.е. для , у которых , имеем ; для точек мнимой отрицательной полуоси, т.е. для , у которых , соответственно .
Аргумент числа — величина неопределенная.
Нахождение аргумента при сводится к решению тригонометрического уравнения . При , т.е. когда — число действительное, имеем при и при . При решение уравнения зависит от четверти плоскости . Четверть, в которое расположена точка , определяется по знакам и . В результате получаем:
(1.6)
При решении примеров удобно пользоваться схемой, которая изображена на рис. 1.5.
Пример 1.14. Найти аргументы чисел из примера 1.13.
Решение
Пример 1.15. Найти модуль и аргумент числа .
Решение. Находим . Так как , т.е. точка расположена в четвертой четверти, то из равенства получаем (рис. 1.5).
Главное значение аргумента комплексного числа
Аргумент комплексного числа определяется неоднозначно. Это следует из неоднозначности задания величины угла для данной точки, а также из тригонометрической формы записи комплексного числа и свойства периодичности функций и .
Всякий угол, отличающийся от на слагаемое, кратное , обозначается и записывается равенством:
(1.7)
где — главное значение аргумента, .
Пример 1.16. Записать и для чисел .
Решение. Числа и — действительные, расположены на действительной оси (рис. 1.6), поэтому
числа и — чисто мнимые, расположены на мнимой оси (рис. 1.6), поэтому
Пример 1.17. Записать комплексные числа из примера 1.16:
а) в тригонометрической форме;
б) в показательной форме.
Решение
Модули всех чисел, очевидно, равны 1. Поэтому, используя решение предыдущего примера и формулы (1.3) и (1.4), получаем:
а)
б) .
Пример 1.18. Записать в тригонометрической форме числа .
Решение
Числа и записаны в алгебраической форме (заметим, что заданная запись числа не является тригонометрической формой записи (сравните с (1.3)). Находим модули чисел по формуле (1.5):
Далее находим аргументы. Для числа имеем и, так как (точка расположена в третьей четверти), получаем (см. рис. 1.5). Для числа имеем , или , и, так как (точка расположена в четвертой четверти (см. рис. 1.5)), получаем .
Записываем числа и в тригонометрической форме
Заметим, что для числа решение можно найти иначе, а именно используя свойства тригонометрических функций: .
Число является произведением двух чисел. Выполнив умножение, получим алгебраическую форму записи (найдем и ): . Здесь, как и для числа , при решении удобно использовать преобразования тригонометрических выражений, а именно .
Рассуждая, как выше, найдем . Для числа , записанного в алгебраической форме, получаем тригонометрическую форму:
Равенство комплексных чисел в тригонометрической форме
Условия равенства комплексных чисел получаем, используя геометрический смысл модуля и аргумента комплексного числа, заданного в тригонометрической форме. Так, для чисел из условия . очевидно, следует:
или
(1.8)
Аргументы равных комплексных чисел либо равны (в частности равны главные значения), либо отличаются на слагаемое, кратное .
Для пары сопряженных комплексных чисел и справедливы следующие равенства:
(1.9)
Умножение комплексных чисел в тригонометрической форме
Зададим два комплексных числа в тригонометрической форме и и перемножим их по правилу умножения двучленов:
или
Получили новое число , записанное в тригонометрической форме: , для которого .
Правило умножения. При умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножаются, а аргументы складываются:
(1.10)
В результате умножения чисел может получиться аргумент произведения, не являющийся главным значением.
Пример 1.19. Найти модули и аргументы чисел:
Решение
Каждое из заданных чисел записано в виде произведения. Найдем модули и аргументы сомножителей и воспользуемся правилом (1.10) умножения чисел, заданных в тригонометрической форме:
Для чисел и находим модули и аргументы: . Используя формулы (1.10), получаем
б) . Для числа имеем: ; для числа , и так как (точка расположена в четвертой четверти), то . Используя формулы (1.10), получаем .
Заметим, что для решения этой задачи можно раскрыть скобки, записать каждое число в алгебраической форме, а затем найти и , используя формулы (1.5), (1.6).
Деление комплексных чисел в тригонометрической форме
Рассмотрим частное комплексных чисел , заданных в тригонометрической форме. Из определения частного имеем и, применяя к произведению правило умножения (формулы (1.10)), получаем .
Правило деления. Модуль частного, полученного в результате деления чисел, заданных в тригонометрической форме, равен частному от деления модуля числителя на модуль знаменателя, а аргумент частного равен разности аргументов делимого и делителя:
(1.11)
В результате деления чисел по формуле (1.11) может получиться аргумент честного, не являющийся главным значением.
Пример 1.20. Записать в тригонометрической форме комплексное число .
Решение. Обозначим . Для чисел и находим модули и аргументы: (см. пример 1.19). По формуле (1.11) получаем и
Возведение в степень комплексного числа в тригонометрической форме
Из определения степени и правила умножения чисел, записанных в тригонометрической форме (формула (1.10)), получаем
, где .
Правило возведения в степень. При возведении в степень комплексного числа в эту степень возводится модуль числа, а аргумент умножается на показатель степени:
(1.12)
Записывая число в тригонометрической форме , получаем формулу возведения в степень:
(1.13)
При это равенство принимает вид и называется формула Муавра
(1.14)
Пример 1.21. Найти модуль и аргумент комплексного числа .
Решение. Обозначим . Находим модуль и аргумент числа . Поэтому и . Так как по определению для главного значения аргумента выполняется условие , то .
Пример 1.22. Записать в тригонометрической форме число .
Решение
Пример 1.23. Используя формулу Муавра, найти выражения для и через тригонометрические функции угла .
Решение
Из формулы (1.14) при имеем . Возведем левую часть в степень, учитывая, что (см. пример 1.8):
Используя условие равенства комплексных чисел, получаем:
Извлечение корня из комплексного числа в тригонометрической форме
Рассмотрим задачу извлечения корня из комплексного числа, заданного в показательной или тригонометрической форме , или . Искомое число также запишем в показательной форме: . Используя определение операции извлечения корня и условия (1.8), получаем соотношения
или
(1.15)
Правило извлечения корня. Чтобы извлечь корень из комплексного числа, нужно извлечь корень (арифметический) той же степени из модуля данного числа, а аргумент разделить на показатель корня:
(1.16)
Теперь можно записать число в показательной форме:
Если записать это соотношение в тригонометрической форме, то, учитывая периодичность тригонометрических функций, нетрудно убедиться, что выражение принимает только различных значений. Для их записи достаточно в формуле (1.15) взять последовательных значений , например . В результате получаем формулу извлечения корня из комплексного числа в тригонометрической форме, где :
(1.17)
Замечания 1.1
1. Рассмотренная задача извлечения корня степени из комплексного числа равносильна решению уравнения вида , где, очевидно, .
Для решения уравнения нужно найти значений , а для этого необходимо найти и использовать формулу извлечения корня.
2. Исследование формулы (1.17) показывает, что все комплексные числа (значения ) имеют равные модули, т.е. геометрически расположены на окружности радиуса . Аргументы двух последовательных чисел отличаются на , так как , т.е. каждое последующее значение может быть получено из предыдущего поворотом радиуса-вектора точки на .В этом заключается геометрический смысл формулы (1.17), что можно сформулировать следующим образом.
Точки, соответствующие значениям , расположены в вершинах правильного n-угольника, вписанного в окружность с центром в начале координат, радиус которой , причем аргумент одного из значений равен (рис. 1.7).
Алгоритм решения комплексных уравнений вида z^n-a=0
1. Найти модуль и аргумент числа .
2. Записать формулу (1.17) при заданном значении .
3. Выписать значения корней уравнения , придавая значения .
Пример 1.24. Решить уравнения: a) ; б) .
Решение
Задача равносильна задаче нахождения всех значений корня из комплексного числа. Решаем в каждом случае по алгоритму.
а) Найдем .
1. Определим модуль и аргумент числа .
2. При полученных значениях и записываем формулу (1.17):
Заметим, что справа стоит — арифметический корень, его единственное значение равно 1.
3. Придавая последовательно значения от 0 до 5, выписываем решения уравнения:
Геометрически соответствующие точки расположены в вершинах правильного шестиугольника, вписанного в окружность радиуса , одна из точек (соответствует ) . Строим шестиугольник (рис. 1.8,в). Отметим свойства корней этого уравнения с действительными коэффициентами — его комплексные корни являются попарно сопряженными: и — действительные числа.
б) Найдем .
1. Определим модуль и аргумент числа .
2. По формуле (1.17) имеем
3. Выписываем корни .
Для геометрического представления решения уравнения достаточно изобразить одно значение, например (при ) — это точка окружности , лежащая на луче . После этого строим правильный треугольник, вписанный в окружность (рис. 1.8,б).
Пример 1.25. Найти корень уравнения , для которого .
Решение
Задача равносильна задаче нахождения при условие .
1. Находим модуль и аргумент числа .
2. По формуле (1.17) имеем: .
3. Для нахождения искомого решения нет необходимости выписывать все значения корня. Нужно выбрать значение , при котором выполняется условие (соответствующая точка — точка второй четверти). Удобно при этом использовать чертеж (рис. 1.9).
Условию поставленной задачи удовлетворяет корень (при ): .
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Тригонометрическая форма комплексных чисел
29 ноября 2021
Второй урок по комплексным числам. Если вы только начинаете изучать эту тему (что такое комплексная единица, модуль, сопряжённые), см. первый урок: «Что такое комплексное число».
Сегодня мы узнаем:
- Что такое тригонометрическая форма
- Умножение и деление комплексных чисел в тригонометрической форме
- Формула Муавра (возведение в степень)
- Дополнение 1. Геометрический подход, чтобы не путать, где синус, а где косинус
- Дополнение 2. Как быстро и надёжно искать аргумент комплексного числа?
Начнём с ключевого определения.
1. Тригонометрическая форма
Определение. Тригонометрическая форма комплексного числа — это выражение вида
[z=left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right)]
где $left| z right|$ — модуль комплексного числа, $text{ }!!varphi!!text{ }$ — некоторый угол, который называется аргумент комплексного числа (пишут $text{ }!!varphi!!text{ }=arg left( z right)$).
Любое число $z=a+bi$, отличное от нуля, можно записать с тригонометрической форме. Для этого нужно вычислить модуль и аргумент. Например:
Записать в тригонометрической форме число $z=sqrt{3}+i$.
Переписываем исходное число в виде $z=sqrt{3}+1cdot i$ и считаем модуль:
[left| z right|=sqrt{{{left( sqrt{3} right)}^{2}}+{{1}^{2}}}=2]
Выносим модуль за скобки:
[z=sqrt{3}+1cdot i=2cdot left( frac{sqrt{3}}{2}+frac{1}{2}cdot i right)]
Вспоминаем тригонометрию, 10-й класс:
[frac{sqrt{3}}{2}=cos frac{text{ }!!pi!!text{ }}{6};quad frac{1}{2}=sin frac{text{ }!!pi!!text{ }}{6}]
Окончательный ответ:
[z=2cdot left( cos frac{text{ }!!pi!!text{ }}{6}+icdot sin frac{text{ }!!pi!!text{ }}{6} right)]
Понятно, что вместо $frac{text{ }!!pi!!text{ }}{6}$ с тем же успехом можно взять аргумент $frac{13text{ }!!pi!!text{ }}{6}$. Синус и косинус не поменяется. Главное — выбрать такой аргумент, чтобы в тригонометрической форме не осталось никаких минусов. Все минусы должны уйти внутрь синуса и косинуса. Сравните:
Записать в тригонометрической форме число $z=-1-i$.
Правильно:
[z=sqrt{2}cdot left( cos frac{5text{ }!!pi!!text{ }}{4}+isin frac{5text{ }!!pi!!text{ }}{4} right)]
Неправильно:
[begin{align} & z=-sqrt{2}cdot left( cos frac{text{ }!!pi!!text{ }}{4}+isin frac{text{ }!!pi!!text{ }}{4} right) \ & z=sqrt{2}cdot left( -cos frac{text{ }!!pi!!text{ }}{4}-isin frac{text{ }!!pi!!text{ }}{4} right) \ & z=sqrt{2}cdot left( cos frac{3text{ }!!pi!!text{ }}{4}-isin frac{3text{ }!!pi!!text{ }}{4} right) \ end{align}]
2. Умножение и деление комплексных чисел
Комплексные числа, записанные в тригонометрической форме, очень удобно умножать и делить.
Теорема. Пусть даны два комплексных числа:
[begin{align} & {{z}_{1}}=left| {{z}_{1}} right|cdot left( cos alpha +isin alpha right) \ & {{z}_{2}}=left| {{z}_{2}} right|cdot left( cos beta +isin beta right) \ end{align}]
Тогда их произведение равно
[{{z}_{1}}cdot {{z}_{2}}=left| {{z}_{1}} right|cdot left| {{z}_{2}} right|cdot left( cos left( alpha +beta right)+isin left( alpha +beta right) right)]
А если ещё и $left| {{z}_{2}} right|ne 0$, то их частное равно
[frac{{{z}_{1}}}{{{z}_{2}}}=frac{left| {{z}_{1}} right|}{left| {{z}_{2}} right|}cdot left( cos left( alpha -beta right)+isin left( alpha -beta right) right)]
Получается, что при умножении комплексных чисел мы просто умножаем их модули, а аргументы складываем. При делении — делим модули и вычитаем аргументы. И всё!
Найти произведение и частное двух комплексных чисел:
[begin{align} & {{z}_{1}}=2cdot left( cos frac{pi }{3}+isin frac{pi }{3} right) \ & {{z}_{2}}=5cdot left( cos frac{pi }{6}+isin frac{pi }{6} right) \ end{align}]
Считаем произведение:
[begin{align} {{z}_{1}}cdot {{z}_{2}} & =2cdot 5cdot left( cos left( frac{pi }{3}+frac{pi }{6} right)+isin left( frac{pi }{3}+frac{pi }{6} right) right)= \ & =10cdot left( cos frac{pi }{2}+isin frac{pi }{2} right) \ end{align}]
Считаем частное:
[begin{align} frac{{{z}_{1}}}{{{z}_{2}}} & =frac{2}{5}cdot left( cos left( frac{pi }{3}-frac{pi }{6} right)+isin left( frac{pi }{3}-frac{pi }{6} right) right)= \ & =0,4cdot left( cos frac{pi }{6}+isin frac{pi }{6} right) \ end{align}]
По сравнению со стандартной (алгебраической) формой записи комплексных чисел экономия сил и времени налицо.:)
3. Формула Муавра
Пусть дано комплексное число в тригонометрической форме:
[z=left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right)]
Возведём его в квадрат, умножив на само себя:
[begin{align} {{z}^{2}} & =zcdot z = \ & =left| z right|left| z right|cdot left( cos left( text{ }!!varphi!!text{ + }!!varphi!!text{ } right)+isin left( text{ }!!varphi!!text{ + }!!varphi!!text{ } right) right)= \ & ={{left| z right|}^{2}}cdot left( cos 2text{ }!!varphi!!text{ }+isin 2text{ }!!varphi!!text{ } right) \ end{align}]
Затем возведём в куб, умножив на себя ещё раз:
[{{z}^{3}}={{left| z right|}^{3}}cdot left( cos 3varphi +isin 3varphi right)]
Несложно догадаться, что будет дальше — при возведении в степень $n$. Это называется формула Муавра.
Формула Муавра. При возведении всякого комплексного числа
[z=left| z right|cdot left( cos varphi +isin varphi right)]
в степень $nin mathbb{N}$ получим
[{{z}^{n}}={{left| z right|}^{n}}cdot left( cos left( nvarphi right)+isin left( nvarphi right) right)]
Простая формула, которая ускоряет вычисления раз в десять! И кстати: эта формула работает при любом $nin mathbb{R}$, а не только натуральном. Но об этом позже. Сейчас примеры:
Вычислить:
[{{left( sqrt{3}-i right)}^{16}}]
Представим первое число в тригонометрической форме:
[begin{align} sqrt{3}-i & = 2cdot left( frac{sqrt{3}}{2}+icdot left( -frac{1}{2} right) right)= \ & =2cdot left( cos left( -frac{pi }{6} right)+isin left( -frac{pi }{6} right) right) \ end{align}]
По формуле Муавра:
[begin{align} & {{left( 2cdot left( cos frac{11pi }{6}+isin frac{11pi }{6} right) right)}^{16}}= \ & ={{2}^{16}}cdot left( cos frac{88pi }{3}+isin frac{88pi }{3} right)= \ & ={{2}^{16}}cdot left( cos frac{4pi }{3}+isin frac{4pi }{3} right) \ end{align}]
Последним шагом мы воспользовались периодичностью синуса и косинуса, уменьшив аргумент сразу на 28π.
Следующую задачу в разных вариациях любят давать на контрольных работах и экзаменах:
Вычислить:
[{{left( left( -frac{sqrt{2}}{2} right)+left( -frac{sqrt{2}}{2} right)i right)}^{2022}}]
Теперь второе число запишем в комплексной форме:
[begin{align} & left( -frac{sqrt{2}}{2} right)+left( -frac{sqrt{2}}{2} right)i= \ & =1cdot left( cos frac{5pi }{4}+isin frac{5pi }{4} right) \ end{align}]
По формуле Муавра:
[begin{align} & {{left( 1cdot left( cos frac{5pi }{4}+isin frac{5pi }{4} right) right)}^{2022}}= \ & ={{1}^{2022}}cdot left( cos frac{5055pi }{2}+isin frac{5055pi }{2} right)= \ & =1cdot left( cos frac{3pi }{2}+isin frac{3pi }{2} right)=-i \ end{align}]
Вот так всё просто! Следующие два раздела предназначены для углублённого изучения. Для тех, кто хочет действительно разобраться в комплексных числах.
4. Дополнение 1. Геометрический подход
Многие путают местами косинус и синус. Почему комплексная единица стоит именно у синуса? Вспомним, что есть декартова система координат, где точки задаются отступами по осям $x$ и $y$:
А есть полярная система координат, где точки задаются поворотом на угол $varphi $ и расстоянием до центра $r$:
А теперь объединим эти картинки и попробуем перейти из декартовой системы координат в полярную:
Комплексное число $z=a+bi$ задаёт на плоскости точку $C$, удалённую от начала координат на расстояние
[AC=sqrt{{{a}^{2}}+{{b}^{2}}}=left| z right|]
Треугольник $ABC$ — прямоугольный. Пусть $angle BAC=varphi $. Тогда:
[begin{align} & AB=ACcdot cos varphi =left| z right|cdot cos varphi \ & BC=ACcdot sin varphi =left| z right|cdot sin varphi \ end{align}]
С другой стороны, длины катетов $AB$ и $BC$ — это те самые отступы $a$ и $b$, с помощью которых мы задаём комплексное число. Поэтому:
[begin{align} a+bi & =left| z right|cos varphi +icdot left| z right|sin varphi = \ & =left| z right|left( cos varphi +isin varphi right) \ end{align}]
Итак, мы перешли от пары $left( a;b right)$ к паре $left( left| z right|;varphi right)$, где $left| z right|$ — модуль комплексного числа, $varphi $ — его аргумент (проще говоря, угол поворота).
Важное замечание. А кто сказал, что такой угол $varphi $ существует? Возьмём число $z=a+bi$ и вынесем модуль за скобку:
[begin{align} z & =a+bi= \ & =sqrt{{{a}^{2}}+{{b}^{2}}}cdot left( frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}}+icdot frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)= \ & =left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right) \ end{align}]
Осталось подобрать такой угол $varphi $, чтобы выполнялось два равенства:
[begin{align} & frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}}=cos text{ }!!varphi!!text{ } \ & frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}}=sin text{ }!!varphi!!text{ } \ end{align}]
Такой угол обязательно найдётся, поскольку выполняется основное тригонометрическое тождество:
[begin{align} {{sin }^{2}}text{ }!!varphi!!text{ } & +{{cos }^{2}}text{ }!!varphi!!text{ }= \ & ={{left( frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)}^{2}}+{{left( frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)}^{2}}= \ & =frac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}+frac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=1 \ end{align}]
На практике основная трудность заключается именно в поиске подходящего аргумента.
5. Дополнение 2. Как найти аргумент?
В учебниках пишут много разной дичи, типа вот этой:
Формула правильная, но пользы от неё — ноль. Запомнить сложно, а применять и вовсе невозможно. Мы пойдём другим путём.
5.1. Точки на координатных осях
Для начала рассмотрим точки, лежащие осях координат.
Тут всё очевидно:
- На положительной полуоси абсцисс $varphi =0$ (фиолетовая точка $A$).
- На отрицательной — $varphi =pi $ (синяя точка $B$).
- На положительной полуоси ординат $varphi =frac{pi }{2}$ (зелёная точка $B$).
- На отрицательной — $varphi =frac{3pi }{2}$ (красная точка $C$). Однако ничто не мешает рассмотреть $varphi =-frac{pi }{2}$ — результат будет тем же самым.:)
5.2. Точки с арктангенсом
А если точки не лежат на осях, то в записи комплексного числа $a+bi$ числа $ane 0$ и $bne 0$. Рассмотрим вспомогательный угол
[{{varphi }_{1}}=operatorname{arctg}left| frac{b}{a} right|]
Очевидно, это острый угол:
[0 lt operatorname{arctg}left| frac{a}{b} right| lt frac{pi }{2}]
Зная знаки чисел $a$ и $b$, мы немедленно определим координатную четверть, в которой располагается искомая точка. И нам останется лишь отложить вспомогательный угол ${{varphi }_{1}}$ от горизонтальной оси в эту четверть.
В правой полуплоскости мы откладываем от «нулевого» луча:
Точка $Aleft( 3;4 right)$ удалена от начала координат на расстояние 5:
[begin{align} 3+4i & =5cdot left( cos varphi +isin varphi right) \ varphi & =operatorname{arctg}frac{4}{3} end{align}]
Для точки $Bleft( 6;-6 right)$ арктангенс оказался табличным:
[6-6i=6sqrt{2}cdot left( cos left( -frac{pi }{4} right)+isin left( -frac{pi }{4} right) right)]
В левой полуплоскости откладываем от луча, соответствующего углу $pi $:
Итого для точки $Cleft( -2;5 right)$ имеем:
[begin{align} -2+5i & =sqrt{29}cdot left( cos varphi +isin varphi right) \ varphi & =pi -operatorname{arctg}frac{5}{2} end{align}]
И, наконец, для точки $Dleft( -5;-3 right)$:
[begin{align} -5-3i & =sqrt{34}cdot left( cos varphi +isin varphi right) \ varphi & =pi +operatorname{arctg}frac{3}{5} end{align}]
Звучит просто, выглядит красиво, работает идеально! Но требует небольшой практики. Пробуйте, тренируйтесь и берите на вооружение.
А в следующем уроке мы научимся извлекать корни из комплексных чисел.:)
Смотрите также:
- Как извлекать корни из комплексных чисел
- Комплексные числа — первый и самый важный уок
- Тест к параграфу «Что такое логарифм» (легкий)
- Тест к уроку «Площади многоугольников без координатной сетки» (средний)
- Четырехугольная пирамида: как найти координаты вершин
- Задача C1: тригонометрические уравнения и формула двойного угла
Расчетное комплексное число(радианы или градусы) |
Точность вычисления от 1 до 14 |
Синус числа |
Косинус числа |
Тангенс числа |
Котангенс числа |
Если исходное число было в градусах, то |
Синус числа (если заданное число было в градусах) |
Косинус числа (если заданное число было в градусах) |
Тангенс числа (если заданное число было в градусах) |
Котангенс числа (если заданное число было в градусах) |
В статье рассматривается способы расчета и выдача значений основных тригонометрических функций
Синус комплексного числа
Если представить комплексное число как (z=x+iy)
То синус числа, выраженный через гиперболические функции
(sin(z)=sin(x)ch(y)+icos(x)sh(y))
Косинус комплексного числа
Если представить (z=x+iy)
То косинус числа, выраженный через гиперболические функции
(cos(z)=cos(x)ch(y)-isin(x)sh(y))
Введите в поле число, комплексное или вещественное и программа выдаст результат
Тангенс комплексного числа
Если представить (z=x+iy)
То тангенс числа, выраженный через синус и косинус
(operatorname{tg}z{}=cfrac{sin(z)}{cos(x)})
или
(operatorname{tg},z{}=cfrac{sin(2x)}{cos(2x)+ch(2y)}+icfrac{sh(2y)}{cos(2x)+ch(2y)})
Котангенс комплексного числа
Котангенс комплексного числа также легко решается
(operatorname{ctg},z{}=cfrac{cos(z)}{sin(x)})
Тригонометрическая и показательная форма комплексного числа
В
данном параграфе больше речь пойдет о
тригонометрической форме комплексного
числа. Показательная форма в практических
заданиях встречается значительно реже.
Рекомендую закачать и по возможности
распечатать тригонометрические
таблицы,
методический материал можно найти на
странице Математические
формулы и таблицы.
Без таблиц далеко не уехать.
Любое
комплексное число (кроме нуля)
можно
записать в тригонометрической форме:
,
где
–
это модуль
комплексного числа,
а
– аргумент
комплексного числа.
Не разбегаемся, всё проще, чем кажется.
Изобразим
на комплексной плоскости число
.
Для определённости и простоты объяснений
расположим его в первой координатной
четверти, т.е. считаем, что
:
Модулем
комплексного числа
называется
расстояние от начала координат до
соответствующей точки комплексной
плоскости. Попросту говоря, модуль
– это длинарадиус-вектора,
который на чертеже обозначен красным
цветом.
Модуль
комплексного числа
стандартно
обозначают:
или
По
теореме Пифагора легко вывести формулу
для нахождения модуля комплексного
числа:
.
Данная формула справедлива для
любых значений
«а» и «бэ».
Аргументом
комплексного
числа
называется угол
между положительной
полуосьюдействительной
оси
и
радиус-вектором, проведенным из начала
координат к соответствующей точке.
Аргумент не определён для единственного
числа:
.
Аргумент
комплексного числа
стандартно
обозначают:
или
Из
геометрических соображений получается
следующая формула для нахождения
аргумента:
. Внимание! Данная
формула работает только в правой
полуплоскости! Если комплексное число
располагается не в 1-ой и не 4-ой координатной
четверти, то формула будет немного
другой. Эти случаи мы тоже разберем.
Но
сначала рассмотрим простейшие примеры,
когда комплексные числа располагаются
на координатных осях.
Пример
7
Представить
в тригонометрической форме комплексные
числа:
,
,
,
.
Выполним
чертёж:
На
самом деле задание устное. Для наглядности
перепишу тригонометрическую форму
комплексного числа:
Запомним
намертво, модуль – длина (которая
всегда неотрицательна),
аргумент – угол.
1)
Представим в тригонометрической форме
число
.
Найдем его модуль и аргумент. Очевидно,
что
.
Формальный расчет по формуле:
.
Очевидно,
что
(число
лежит непосредственно на действительной
положительной полуоси). Таким образом,
число в тригонометрической форме:
.
Ясно,
как день, обратное проверочное действие:
2)
Представим в тригонометрической форме
число
.
Найдем его модуль и аргумент. Очевидно,
что
.
Формальный расчет по формуле:
.
Очевидно,
что
(или
90 градусов). На чертеже угол обозначен
красным цветом. Таким образом, число в
тригонометрической форме:
.
Используя таблицу
значений тригонометрических функций,
легко обратно получить алгебраическую
форму числа (заодно выполнив проверку):
3)
Представим в тригонометрической форме
число
.
Найдем его модуль и аргумент. Очевидно,
что
.
Формальный расчет по формуле:
.
Очевидно,
что
(или
180 градусов). На чертеже угол обозначен
синим цветом. Таким образом, число в
тригонометрической форме:
.
Проверка:
4)
И четвёртый интересный случай. Представим
в тригонометрической форме число
.
Найдем его модуль и аргумент. Очевидно,
что
.
Формальный расчет по формуле:
.
Аргумент
можно записать двумя способами: Первый
способ:
(270
градусов), и, соответственно:
.
Проверка:
Однако
более стандартно следующее правило: Если
угол больше 180 градусов,
то его записывают со знаком минус и
противоположной ориентацией («прокруткой»)
угла:
(минус
90 градусов), на чертеже угол отмечен
зеленым цветом. Легко заметить, что
и
–
это один и тот же угол.
Таким
образом, запись принимает вид:
Внимание! Ни
в коем случае нельзя использовать
четность косинуса, нечетность синуса
и проводить дальнейшее «упрощение»
записи:
Кстати,
полезно вспомнить внешний вид и свойства
тригонометрических и обратных
тригонометрических функций, справочные
материалы находятся в последних
параграфах страницы Графики
и свойства основных элементарных
функций.
И комплексные числа усвоятся заметно
легче!
В
оформлении простейших примеров так и
следует записывать:
«очевидно, что модуль равен… очевидно,
что аргумент равен…».
Это действительно очевидно и легко
решается устно.
Перейдем
к рассмотрению более распространенных
случаев. Как я уже отмечал, с модулем
проблем не возникает, всегда следует
использовать формулу
.
А вот формулы для нахождения аргумента
будут разными, это зависит от того, в
какой координатной четверти лежит
число
.
При этом возможны три варианта (их
полезно переписать к себе в тетрадь):
1)
Если
(1-ая
и 4-ая координатные четверти, или правая
полуплоскость), то аргумент нужно
находить по формуле
.
2)
Если
(2-ая
координатная четверть), то аргумент
нужно находить по формуле
.
3)
Если
(3-я
координатная четверть), то аргумент
нужно находить по формуле
.
Пример
8
Представить
в тригонометрической форме комплексные
числа:
,
,
,
.
Коль
скоро есть готовые формулы, то чертеж
выполнять не обязательно. Но есть один
момент: когда вам предложено задание
представить число в тригонометрической
форме, точертёж
лучше в любом случае выполнить.
Дело в том, что решение без чертежа часто
бракуют преподаватели, отсутствие
чертежа – серьёзное основание для
минуса и незачета.
Эх,
сто лет от руки ничего не чертил,
держите:
Как
всегда, грязновато получилось =)
Я
представлю в комплексной форме
числа
и
,
первое и третье числа будут для
самостоятельного решения.
Представим
в тригонометрической форме число
.
Найдем его модуль и аргумент.
Поскольку
(случай
2), то
–
вот здесь нечетностью арктангенса
воспользоваться нужно. К сожалению, в
таблице отсутствует значение
,
поэтому в подобных случаях аргумент
приходится оставлять в громоздком
виде:
–
число
в
тригонометрической форме.
Расскажу
о забавном способе проверки. Если вы
будете выполнять чертеж на клетчатой
бумаге в том масштабе, который у меня
(1 ед. = 1 см), то можно взять линейку и
измерить модуль в сантиметрах. Если
есть транспортир, то можно непосредственно
по чертежу измерить и угол.
Перечертите
чертеж в тетрадь и измерьте линейкой
расстояние от начала координат до
числа
.
Вы убедитесь, что действительно
.
Также транспортиром можете измерить
угол и убедиться, что действительно
.
Представим
в тригонометрической форме число
.
Найдем его модуль и аргумент.
Поскольку
(случай
1), то
(минус
60 градусов).
Таким
образом:
–
число
в
тригонометрической форме.
А
вот здесь, как уже отмечалось, минусы не
трогаем.
Кроме
забавного графического метода проверки,
существует и проверка аналитическая,
которая уже проводилась в Примере 7.
Используем таблицу
значений тригонометрических функций,
при этом учитываем, что угол
–
это в точности табличный угол
(или
300 градусов):
–
число
в
исходной алгебраической форме.
Числа
и
представьте
в тригонометрической форме самостоятельно.
Краткое решение и ответ в конце урока.
В
конце параграфа кратко о показательной
форме комплексного числа.
Любое
комплексное число (кроме нуля)
можно
записать в показательной форме:
,
где
–
это модуль комплексного числа, а
–
аргумент комплексного числа.
Что
нужно сделать, чтобы представить
комплексное число в показательной
форме? Почти то же самое: выполнить
чертеж, найти модуль и аргумент. И
записать число в виде
.
Например,
для числа
предыдущего
примера у нас найден модуль и аргумент:
,
.
Тогда данное число в показательной
форме запишется следующим образом:
.
Число
в
показательной форме будет выглядеть
так:
Число
–
так:
И
т.д.
Единственный
совет – не
трогаем показатель экспоненты,
там не нужно переставлять множители,
раскрывать скобки и т.п. Комплексное
число в показательной форме
записывается строго по
форме
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Вычислить аргумент и модуль комплексного числа.
Аргументом комплексного числа z называется угол φ в радианах радиус-вектора точки, соответствующей данному комплексному числу и обозначается Arg(z) = φ
Аргументом комплексного числа z называется угол φ в радианах радиус-вектора точки,
соответствующей данному комплексному числу и обозначается Arg(z) = φ
Из определения следуют следующие формулы:
Для числа z = 0 аргумент не определен.
Главным значением аргумента называется такое значение φ, что .
Обозначается: arg(z).
Свойства аргумента:
Модулем комплексного числа z = x + iy называется вещественное число |z| равное:
Для любых комплексных чисел z, z1, z2 имеют место следующие свойства модуля:
для пары комплексных чисел z1 и z2 модуль их разности |z1 − z2| равен расстоянию между соответствующими точками комплексной плоскости. |