Как найти грань куба если известно ребро

Как найти площадь грани куба

Под кубом подразумевается правильный многогранник, у которого все грани образованы правильными четырехугольниками — квадратами. Для того, чтобы найти площадь грани любого куба, не потребуется тяжелых расчетов.

Как найти площадь грани куба

Инструкция

Для начала стоит заострить внимание на само определение куба. Из него видно, что любая из граней куба представляет собой квадрат. Таким образом, задача по нахождению площади грани куба сводится к задаче по нахождению площади любого из квадратов (граней куба). Можно взять именно любую из граней куба, так как длины всех его ребер равны между собой.

Для того, чтобы найти площадь грани куба, требуется перемножить между собой пару любых из его сторон, ведь все они между собой равны. Формулой это можно выразить так:

S = a², где а — сторона квадрата (ребро куба).

Пример: Длина ребра куба 11 см, требуется найти ее площадь.

Решение: зная длину грани, можно найти ее площадь:

S = 11² = 121 см²

Ответ: площадь грани куба с ребром 11 см равна 121 см²

Обратите внимание

Любой куб имеет 8 вершин, 12 ребер, 6 граней и 3 грани при вершине.
Куб — это такая фигура, которая встречается в быту невероятно часто. Достаточно вспомнить игровые кубики, игральные кости, кубики в различны детских и подростковых конструкторах.
Многие элементы архитектуры имеют кубическую форму.
Кубическими метрами принято измерять объемы различных веществ в различных сферах жизни общества.
Говоря научным языком, кубический метр — это мера измерения объема вещества, которое способно поместиться в куб с длиной ребра 1 м
Таким образом, можно ввести и иные единицы измерения объема: кубические миллиметры, сантиметры, дециметры и т.п.
Помимо различных кубических единиц измерения объема, в нефтяной и газовой промышленности возможно применение иной единицы — баррель (1м³ = 6.29 баррелей)

Полезный совет

Если у куба известна длина ее ребра, то, помимо площади грани можно найти и другие параметры данного куба, например:
Площадь поверхности куба: S = 6*a²;
Объем: V = 6*a³;
Радиус вписанной сферы: r = a/2;
Радиус сферы, описанной вокруг куба: R = ((√3)*a))/2;
Диагональ куба (отрезок, соединяющие две противоположные вершины куба, который проходит через его центр): d = a*√3

Источники:

  • площадь куба если ребра равны 11 см

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Куб или как его еще называют гексаэдр — это правильный многогранник, каждая из граней которого имеет форму квадрата. Куб — это частный случай призмы и параллелепипеда.

Разные дисциплины используют значение этого термина по отношению к различным свойствам геометрического прототипа. Например, в аналитике применяют аналитические многомерные кубы, которые позволяют наглядно сопоставить данные из разных таблиц.

Свойства куба

  1. В куб можно вписать тетраэдр двумя вариантами, причем вершины тетраэдра, а их четыре, будут совпадать с четырьмя вершинами куба. Все шесть ребер тетраэдра будут располагаться на всех шести гранях куба и будут равны диагонали грани квадрата.
  2. Четыре сечения куба это правильные шестиугольники, они проходят по центру куба перпендикулярно четырем диагоналям.
  3. В куб вписывается октаэдр, причем все шесть вершин октаэдра совместятся с центрами шести граней куба.
  4. Куб вписывается в октаэдр, причем все восемь вершин куба расположатся в центрах восьми граней октаэдра.
  5. В куб можно вписать икосаэдр, так, что шесть взаимно параллельных ребер икосаэдра расположатся на шести гранях куба, остальные двадцать четыре ребра внутри куба, все 12 вершин икосаэдра лягут по шести граням куба.

Формулы для куба

  • Поверхность куба: A = 6*a2
  • Объем куба: V = a3
  • Диагональ куба: d = a*√3

Инструкция

Если длина ребра куба
(a) известна из условий задачи, формулу расчета длины диагонали грани (l) можно вывести из теоремы Пифагора. В кубе любые два смежных ребра образуют прямой угол, поэтому треугольник, составленный из них грани, является прямоугольным. Ребра в этом случае — катеты, а рассчитать вам нужно длину гипотенузы. Согласно упомянутой выше теореме она равна квадратному корню из суммы квадратов длин , а так как в данном случае они одинаковые размеры, просто умножьте длину ребра на квадратный корень из двойки: l = √(a²+a²) = √(2*a²) = a*√2.

Люди с каждым днем люди развиваются, но какие бы достижения ни были совершены, человечество не в бороться с различными климатическими капризами или же с природными катастрофами. Природа всегда готовит какие-то сюрпризы. Вот снег в Африке, последствием чего стало огромное количество жертв. Люди просто замерзали, ведь их оказался совершенно не приспособлен к таким условиям.

Именно поэтому человечество оказывается просто не в силах бороться с силами природы, а ее причуды уносят все новые и новые жизни.

Из всего этого следует вывод: конечно же, человечество находится на грани своего развития, но и благодаря тому, что он , увеличивается и риск оказаться на грани вымирания. Поэтому не следует думать, что с проблемами нужно бороться по мере их поступления, лучше думать заранее, так, чтобы не допустить в будущем глобальной катастрофы.

Видео по теме

Или гексаэдр) представляет собой объемную фигуру, каждая грань — это квадрат, у которого, как нам известно, все стороны равны. Диагональю куба является отрезок, который проходит через центр фигуры и соединяет симметричные вершины. В правильном гексаэдре имеется 4 диагонали, и все они будут равны. Очень важно не путать диагональ самой фигуры с диагональю ее грани или квадрата, который лежит на его основании. Диагональ грани куба проходит через центр грани и соединяет противоположные вершины квадрата.

Формула, по которой можно найти диагональ куба

Диагональ правильного многогранника можно найти по очень простой формуле, которую необходимо запомнить. D=a√3, где D обозначаем диагональ куба, а — это ребро. Приведем пример задачи, где необходимо найти диагональ, если известно, что длина его ребра равна 2 см. Здесь все просто D = 2√3, даже считать ничего не надо. Во втором примере, пусть ребро куба будет равно √3 см, то тогда получаем D = √3√3=√9=3. Ответ: D равен 3 см.

Формула, по которой можно найти диагональ грани куба

наль грани можно также найти по формуле. Диагоналей, которые лежат на гранях, всего 12 штук, и они все равны между собой. Теперь запоминаем d=a√2, где d — это диагональ квадрата, а — это также ребро куба или сторона квадрата. Понять откуда взялась эта формула, очень просто. Ведь две стороны квадрата и диагональ образуют В этом трио диагональ играет роль гипотенузы, а стороны квадрата — это катеты, которые имеют одинаковую длину. Вспомним теорему Пифагора, и все тут же встанет на свои места. Теперь задача: ребро гексаэдра равняется √8 см, необходимо найти диагональ его грани. Вставляем в формулу, и у нас получается d=√8 √2=√16=4. Ответ: диагональ грани куба равняется 4 см.

Если известна диагональ грани куба

По условию задачи, нам дана только диагональ грани правильного многогранника, которая равна, предположим, √2 см, а нам необходимо найти диагональ куба. Формула решения этой задачи немного сложнее предыдущей. Если нам известно d, то мы можем найти ребро куба, исходя из нашей второй формулы d=a√2. Получаем а= d/√2= √2/√2=1см (это наше ребро). А если известна эта величина, то найти диагональ куба не составит труда: D = 1√3= √3. Вот так мы решили нашу задачку.

Если известна площадь поверхности

Следующий алгоритм решения строится на нахождении диагонали по Предположим, что она равна 72 см 2 . Для начала найдем площадь одной грани, а всего их 6. Значит, 72 необходимо поделить на 6, получаем 12 см 2 . Это площадь одной грани. Чтобы найти ребро правильного многогранника, необходимо вспомнить формулу S=a 2 , значит a=√S. Подставляем и получаем a=√12 (ребро куба). А если мы знаем это значение, то и диагональ найти не сложно D= a√3= √12 √3 = √36 = 6. Ответ: диагональ куба равна 6 см 2 .

Если известна длина ребер куба

Бывают такие случаи, когда в задаче дана только длина всех ребер куба. Тогда необходимо это значение разделить на 12. Именно столько сторон в правильном многограннике. Например, если сумма всех ребер равна 40, то одна сторона будет равна 40/12=3,333. Вставляем в нашу первую формулу и получаем ответ!

Если шесть граней квадратной формы ограничивают некоторый объем пространства, то геометрическую форму этого пространства можно назвать кубической или гексаэдрической. Все двенадцать ребер такой пространственной фигуры имеют одинаковую длину, что значительно упрощает вычисления параметров многогранника. Длина диагонали куба
— не исключение, ее можно найти многими способами.

Инструкция

  • Если длина ребра куба
    (a) известна из условий задачи, формулу расчета длины диагонали грани (l) можно вывести из теоремы Пифагора. В кубе любые два смежных ребра образуют прямой угол, поэтому треугольник, составленный из них и диагонали грани, является прямоугольным. Ребра в этом случае — катеты, а рассчитать вам нужно длину гипотенузы. Согласно упомянутой выше теореме она равна квадратному корню из суммы квадратов длин катетов, а так как в данном случае они имеют одинаковые размеры, просто умножьте длину ребра на квадратный корень из двойки: l = √(a²+a²) = √(2*a²) = a*√2.
  • Площадь квадрата тоже может быть выражена через длину диагонали, а так как каждая грань куба
    имеет именно такую форму, знания площади грани (s) достаточно для вычисления ее диагонали (l). Площадь каждой боковой поверхности куба
    равна возведенной в квадрат длине ребра, поэтому сторону квадрата грани можно выразить через нее как √s. Подставьте это значение в формулу из предыдущего шага: l = √s*√2 = √(2*s).
  • Куб составлен из шести граней одинаковой формы, поэтому, если в условиях задачи дана общая площадь поверхности (S), для вычисления диагонали грани (l) достаточно немного изменить формулу предыдущего шага. Замените в ней площадь одной грани одной шестой общей площади: l = √(2*S/6) = √(S/3).
  • Длину ребра куба
    можно выразить и через объем этой фигуры (V), а это позволяет формулу расчета длины диагонали грани (l) из первого шага использовать и в этом случае, внеся в нее некоторые поправки. Объем такого многогранника равен третей степени длины ребра, поэтому замените в формуле длину стороны грани кубическим корнем из объема: l = ³√V*√2.
  • Радиус описанной около куба
    сферы (R) связан с длиной ребра коэффициентом, равным половине корня из тройки. Выразите сторону грани через этот радиус и подставьте выражение во все ту же формулу вычисления длины диагонали грани из первого шага: l = R*2/√3*√2 = R*√8/√3.
  • Формула расчета диагонали грани (l) с использованием радиуса вписанной в куб сферы (r) будет еще проще, так как этот радиус составляет половину длины ребра: l = 2*r*√2 = r*√8.

Диагональ куба — это один из элементов, который потребуется знать при решении заданий по стереометрии во время выполнения итоговой работы по математике за курс основной школы.

Немного теории о кубе

Этот многогранник относится сразу к прямым параллелепипедам и призмам. Он — частный случай того и другого. В основании куба лежит квадрат, и боковые ребра его равны стороне данного квадрата. Таким образом, все три измерения имеют одинаковые значения.

Все шесть граней куба представляют собой квадраты. Длина каждого из 12 ребер одинаковая.

В каждой из граней можно провести диагональ, длину которой легко найти по формуле Пифагора. Кроме того, сам куб имеет диагонали. Их всего четыре. Проводится диагональ куба так, чтобы начинаться из вершины нижнего основания. Конец этого отрезка оказывается в вершине верхнего основания, но так, чтобы не совпасть с диагональю квадрата.

Важные формулы

В них потребуется ввести одинаковое обозначение. Чаще всего буква «а» — это сторона куба. «V» приходится на объем. «S» и «d» соответственно площадь и диагональ. «R» и «r» радиусы описанной и вписанной сфер.

V= a³
(№1)
используется для нахождения объема;

S= a²
(№2)
формула для площади грани;

S= 6a²
(№3)
необходима для расчета площади всей поверхности куба;

если требуется узнать диагональ куба, формула будет такой d=
а

3 (№4);

для поиска радиусов пригодятся: R=
(а/2)*
√3

и
r=
а/2 (№5) и (№6)
.

Несколько слов о симметрии куба

У этого геометрического тела есть два вида симметрии: относительно точки и оси. Для нахождения первой потребуется провести диагональ куба, потом вторую, чтобы найти точку их пересечения. Она будет центром симметрии.

Все прямые, которые проходят через эту точку и являются перпендикулярными к граням, оказываются осями симметрии.

Примеры заданий из ЕГЭ

Они используются в части В, то есть там, где нужно выполнить развернутое решение задания. Просто выбрать ответ здесь не удастся. Поэтому придется знать формулы и уметь их применять в различных ситуациях.

Первая группа заданий.
В ней известна длина диагонали куба. Требуется вычислить его объем или узнать площадь поверхности.

К примеру, известная величина может быть равна единице. Тогда, чтобы узнать объем и площадь, нужно воспользоваться формулами № 1 и 3. Но в них идет речь о ребре, а дана диагональ. Потребуется записать еще одну формулу.

Если посмотреть на чертеж куба и проведенную в нем диагональ, то можно увидеть, что образуется прямоугольный треугольник. Один его катет совпадает с ребром, второй — с диагональю грани, а гипотенузой оказывается диагональ куба.

Тогда можно записать теорему Пифагора: квадрат гипотенузы (d 2) равен квадрату перового катета (а 2), сложенному с квадратом второго (а√2) 2 . После выполнения преобразований получается, что ребро куба а так связано с диагональю, что равно d, деленному на корень квадратный из 3.

Теперь можно начала узнать ребро, а потом подсчитать объем и площадь. В конкретной задаче а=1/√3=(√3)/3. Тогда объем получается равным (√3)/9. Площадь же — два.

Вторая группа заданий.
Обратная предыдущей, когда известны площадь или объем, а требуется вычислить значение диагонали куба.

Примером может служить задача, в которой известна площадь поверхности, и она равна 8. Необходимо будет воспользоваться формулой №3 и той зависимостью, которая выведена в предыдущей задаче.

Сначала потребуется узнать длину ребра. Она равна квадратному корню из частного S на 6. После подстановки известной величины а=√(8/6)=√(4/3). Теперь осталось вычислить диагональ куба, возведя это число в квадрат и умножив его на 3. Получится 2.

Третья группа заданий
содержит данные о диагонали грани куба. В них необходимо узнавать объем или площадь тела. Возможен также вариант, в котором потребуется вычислить диагональ самого куба. В таких задачах рассуждения идут тем же путем, который рассмотрен в предыдущих случаях.

Содержание

  • Как найти площадь грани в кубе?
  • Как решить площадь куба?
  • Где находится грань у куба?
  • Как найти площадь диагонального сечения куба?
  • Как найти площадь куба с ребром 6 см?
  • Как найти периметр и площадь куба?
  • Какая фигура находится в основании куба?
  • Как называется грань куба?
  • Чем грань отличается от стороны?

Площадь каждой грани считается так: S = a ⋅ a = a2. Всего у куба 6 граней, а значит, площадь его поверхности равняется шести площадям одной грани: S = 6 ⋅ a2.

Как найти площадь грани в кубе?

Для того, чтобы найти площадь грани куба, требуется перемножить между собой пару любых из его сторон, ведь все они между собой равны. Формулой это можно выразить так: S = a², где а — сторона квадрата (ребро куба).

Как решить площадь куба?

Площадь поверхности куба равна квадрату длины его грани умноженному на шесть (куб имеет шесть одинаковых граней). где S — площадь куба, a — длина грани куба.

Где находится грань у куба?

Глоссарий по теме: Куб — это многогранник, поверхность которого состоит из шести квадратов. Грани куба – это стороны куба, которые представляют собой квадрат.

Как найти площадь диагонального сечения куба?

Малая диагональ куба по теореме Пифагора. d = √2*a — диагональ — сторона сечения. S = d*a = 2√2 см² — площадь сечения — ответ.

Как найти площадь куба с ребром 6 см?

Из условия задачи нам известно, что длина ребра рассматриваемого куба составляет: a = 6 см. Подставим данное значение в формулу (1) и получим, что площадь поверхности куба составит: S = 6 * a^2 = 6 * 6^2 = 6 * 36 = 216 см. кв.

Как найти периметр и площадь куба?

Чтобы найти периметр куба, определите длину одного из его ребер и умножьте это число на 12. В виде формулы это правило можно записать следующим образом:P. = 12 * a,где:Р – периметр куба,а – длина его стороны. Подобная формула может понадобиться если нужно собрать каркас куба, равного существующему.

Какая фигура находится в основании куба?

Куб является частным случаем параллелепипеда и призмы. Куб или правильный гексаэдр – это правильный многогранник, у которого все грани это квадраты. шестиугольников — это сечения через центр куба перпендикулярно 4-м главным диагоналям.

Как называется грань куба?

Куб (др. … κύβος); иногда гекса́эдр или правильный гекса́эдр — правильный многогранник, каждая грань которого представляет собой квадрат.

Чем грань отличается от стороны?

Поверхности многогранника называют гранями. По-сути грани представляют собой плоскости, ограниченные сторонами многоугольников, из которых состоит многогранник. Сами стороны многоугольников называются ребрами. По-сути они представляют собой отрезки.

Интересные материалы:

Когда котенок перестает мяукать?
Когда ловить карпа?
Когда лучше начинать продавать квартиру по лунному календарю?
Когда лучше наносить тканевые маски?
Когда лучше покупать авто в 2020?
Когда лучше покупать авто в салоне?
Когда лучше покупать автомобиль в автосалоне новый?
Когда лучше покупать летнюю резину для автомобиля?
Когда лучше покупать летнюю резину на авто?
Когда лучше покупать новый автомобиль в салоне?

В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).

  • Определение куба

  • Свойства куба

    • Свойство 1

    • Свойство 2

    • Свойство 3

  • Формулы для куба

    • Диагональ

    • Диагональ грани

    • Площадь полной поверхности

    • Периметр ребер

    • Объем

    • Радиус описанного вокруг шара

    • Радиус вписанного шара

Определение куба

Куб – это правильный многогранник, все грани которого являются квадратами.

Куб

  • Вершины куба – это точки, являющиеся вершинами его граней.
    Всего их 8: A, B, C, D, A1, B1, C1 и D1.
  • Ребра куба – это стороны его граней.
    Всего их 12: AB, BC, CD, AD, AA1, BB1, CC1, DD1, A1B1, B1C1, C1D1 и A1D1.
  • Грани куба – это квадраты, из которого состоит фигура.
    Всего их 6: ABCD, A1B1C1D1, AA1B1B, BB1C1C, CC1D1D и AA1D1D.

Примечание: куб является частным случаем параллелепипеда или призмы.

Свойства куба

Свойство 1

Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:

  • ABCD || A1B1C1D1
  • AA1B1B || CC1D1D
  • BB1C1C || AA1D1D

Свойство 2

Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.

Пересечение диагоналей куба

  • AC1 = BD1 = A1C = B1D (диагонали куба).
  • О – точка пересечения диагоналей:
    AO = OC1 = BO = OD1 = A1O = OC = B1O = OD.

Свойство 3

Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.

Прямой двугранный угол куба

Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.

Формулы для куба

Примем следующие обозначения, которые будут использоваться далее:

  • a – ребро куба;
  • d – диагональ куба или его грани.

Диагональ

Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.

Формула для расчета диагонали куба через длину его ребра

Диагональ грани

Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.

Формула для расчета диагонали грани куба через длину его ребра

Площадь полной поверхности

Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.

Формула расчета площади полной поверхности куба через длину его ребра/диагонали

Периметр ребер

Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.

Формула расчета периметра куба через длину его ребра/диагонали

Объем

Объем куба равен длине его ребра, возведенной в куб.

Формула расчета объема куба через длину его ребра/диагонали

Радиус описанного вокруг шара

Радиус шара, описанного около куба, равняется половине его диагонали.

Формула расчета радиуса шара описанного вокруг куба через длину его ребра/диагонали

Радиус вписанного шара

Радиус вписанного в куб шара равен половине длины его ребра.

Формула расчета радиуса вписанного в куб шара через длину его ребра/диагонали

Куб. Формулы, признаки и свойства куба

Определение.

Куб (гексаедр) — это трехмерная фигура, которая состоит из шести динаковых квадратов так, что каждый квадрат полностью соприкасается своими четырьмя сторонами к сторонам остальных четырех квадратов под прямым углом. Куб является правильным многогранником, у которого грани образованы из квадратов. Также кубом можно назвать прямоугольный параллелепипед, у которого все ребра равны.

Определение. Грань куба — это часть плоскости, ограниченная сторонами квадрата.

— куб имеет шесть граней;

— каждая грань куба пересекается с четырьмя другими гранями под прямым углом и параллельная шестой грани;

— грани имеют одинаковую площадь, которую можно найти, используя формулы для вычисления площади квадрата.

Определение. Ребро куба — это отрезок, образованный пересечением двух граней куба.

— куб имеет двенадцать ребер;

— каждый конец ребра соединен с двумя соседними ребрами под прямым углом;

— ребра куба имеют одинаковую длину.

Определение. Вершина куба — это самая отдаленная от центра куба точка, которая лежит на пересечения трех граней куба.

— куб имеет восемь вершин;

— каждая вершина образована только тремя гранями и тремя ребрами.

Определение. Центр грани куба (O1) — это равноудалена точка от всех ребер грани куба.

Определение. Центр куба (O) — это равноудалена точка от всех граней куба.

Определение. Ось куба (i) — это прямая, проходящая через центр куба и центры двух параллельных граней куба.

— куб имеет три оси;

— оси куба взаимно перпендикулярны.

Определение. Диагональ куба (d1) — отрезок, который соединяет противоположные вершины куба и проходит через центр куба.

— куб имеет четыре диагонали;

— диагонали куба пересекаются и делятся пополам в центре куба;

— диагонали куба имеют одинаковую длину.

Формула. Диагональ куба d1 через длину ребра a:

d1 = a3

Определение. Диагональ грани куба (d2) -отрезок, который соединяет противоположные углы грани куба и проходит через центр грани куба.

Формула. Диагональ грани d2 через длину ребра a:

d2 = a2

Определение. Объём куба — это совокупность всех точек в пространстве, ограниченные гранями куба.

Формула. Объём куба через длину ребра a:

V = a3

Формула. Объём куба через длину диагонали куба d1:

Определение. Площадь поверхности куба — это совокупность плоскостей всех граней.

Формула. Площадь поверхности куба через длину ребра a:

S = 6a2

Определение. Периметр куба — это совокупность длин всех ребер куба.

Формула. Периметр куба P через длину ребра a:

P = 12a

сфера вписана в куб с обозначениями

Определение. Сферой вписанной в куб называется сфера, центр которой совпадает с центром куба и которая касается центров граней куба.

— все шесть граней куба являются касательными плоскостями к вписанной сферы;

— радиус вписанной сферы равен половине длины ребра a.

Формула. Радиус вписанной сферы r через длину ребра a:

Формула. Объема вписанной сферы V через длину ребра a:

Сфера описана вокруг куба с обозначениями

Определение. Сферой описанной вокруг куба называется сфера, центр которой совпадает с центром куба и которая соприкасается с восьмью вершинами куба.

— радиус описанной сферы равен половине длины диагонали (d1) куба.

Формула. Радиус описанной сферы R через длину ребра a:

Формула. Объема сферы описанной вокруг куба V через длину ребра a:

Свойства куба

1. В куб можно вписать тетраэдр так, чтобы все четыре вершины тетраэдра лежали на четырех вершинах куба, а все шесть ребер тетраэдра будут лежать на шести гранях куба и ребра будут равны диагонали грани куба.

2. В куб можно вписать правильный шестиугольник так, что все шесть вершин лежат в центрах граней куба.

Координаты вершин куба

Координаты вершин куба

1. Координаты вершин куба со стороной a и вершиной D в начале декартовой системы координат так, что ребра этой вершины лежат на осях координат:

A(a, 0, 0),
B(a, a, 0),
C(0, a, 0),
D(0, 0, 0),
E(a, 0, a),
F(a, a, a),
G(0, a, a),
H(0, 0, a).

координаты вершин куба

2. Координаты вершин куба с длиной стороны 2a, у которого центр куба находится в начале декартовой системы координат так, что ребра куба параллельны осям координат:

A(a, —a, —a),
B(a, a, —a),
C(-a, a, —a),
D(-a, —a, —a),
E(a, —a, a),
F(a, a, a),
G(-a, a, a),
H(-a, —a, a).

Определение. Единичный куб — это куб, у которого длина ребер равна единице.

Пересечение куба плоскостью

Пересечение куба плоскостью

1. Если пересечь куб плоскостью, проходящей через центр куба и центры двух противоположных граней, то в сечении будет квадрат, длина стороны которого будет равна длине ребра куба. Эта плоскость делит куб два равных прямоугольных параллелепипеда.

Пересечение куба плоскостью

2. Если пересечь куб с ребром a плоскостью, проходящей через центр куба и два параллельных ребра, то в сечении будет прямоугольник со сторонами a и a2, площадью сечения a22. Эта плоскость делит куб две равные призмы.

Пересечение куба плоскостью

3. Если пересечь куб плоскостью, проходящей через центр и середины шести граней, то в сечении будет правильный шестиугольник со стороной a2/2, площадью сечения a2(3√3)/4. У куба одна из диагоналей (FC) каждой грани, что пересекаются, перпендикулярна стороне шестиугольника.

Пересечение единичного куба плоскостью

4. Если пересечь куб плоскостью, проходящей через три вершины куба, то в сечении будет правильный треугольник со стороной a2, площадью сечения a23/2 и объемом большей части — 5a3/6 и меньшей — a3/6. Одна из диагоналей куба (EC) перпендикулярна к плоскости сечения и проходит через центр треугольника (M) и делится плоскостью в отношении MC:EМ = 2:1.

Понравилась статья? Поделить с друзьями:
  • Составьте уравнения реакций по следующим данным применяемый как примочка
  • Как найти крепость пигленов
  • Как найти число вершин треугольника
  • Как найти отрицательный вектор
  • Как в телефоне найти загрузки с телеграмма