Как найти химический элемент по электронам


Download Article


Download Article

Every atom in the universe is a particular element. But how do we tell which of the 100+ elements it is? A larger pile of stuff might give us helpful clues: we can tell that iron is heavy, and grey, and magnetic. As you study chemistry, you’ll learn that all of those qualities come from small differences in the structure of atoms. This understanding of atomic structure is the foundation for the tools actual scientists use to identify elements.

  1. Image titled Identify an Element Step 1

    An element is defined by the number of protons in one atom. For example, every single atom of hydrogen has exactly one proton. We say that hydrogen has a proton number or atomic number of 1.[1]
    The periodic table is arranged in order of proton number, which is why hydrogen is in the very first box with a 1 next to it.

  2. Advertisement

  1. Image titled Identify an Element Step 2

    The total electron count equals the atomic number. In a neutral atom, the number of electrons is exactly equal to the number of protons. This number is the atomic number of the element, which you can look up on the periodic table. If you are a little further in your chemistry studies, you might be given an electron configuration to read. All of the superscript numbers (like this) are electron counts, so add all these together to find the total number of electrons.[2]

  1. Image titled Identify an Element Step 3

    Memorize the periodic table structure to read electron configurations quickly. The structure of the periodic table is closely related to how electron orbitals are filled. With a little practice you can jump directly to the right region of the periodic table.[4]
    Note that the electron configuration must be in its ground state for this to work.

  2. Advertisement

  1. Image titled Identify an Element Step 4

    Compare the spectra to the known spectra of elements. In spectroscopy, scientists examine how light interacts with an unknown material. Each element releases a unique pattern of light, which you can see on the spectroscopy results, called «spectra».[6]

    • For example, a lithium spectrum has a very bright, thick green line, and several other fainter ones in different colors. If your spectrum has all those same lines on it, the light came from the element lithium.[7]
      (Some types of spectra will show dark gaps instead of bright lines, but you can compare these the same way.)
    • Want to know why this works? Electrons only absorb and emit light at very specific wavelengths (meaning specific colors). Different elements have different arrangements of electrons, which leads to different colors of bands.[8]
    • A more advanced spectroscope shows a detailed graph instead of a few lines. You can match the x-axis value at each peak to a table of known values to identify molecules. As you learn about different types of molecules, you’ll learn to focus on just a few useful spots on the graph to save time.[9]
  1. Image titled Identify an Element Step 5

    Look for elements whose atomic masses match the graph. A mass spectrometer sorts the components of a sample by mass. To read the bar graph showing the results, check the «m/z» axis for the values of the taller bars. Some values will match the atomic mass of an element that was part of the sample. Others (usually the larger ones) represent compounds, so that mass will equal the sum of masses of multiple atoms.[10]

    • Let’s say the tallest bar is at m/z 18, with short bars at 1, 16, and 17. Only two of these match the atomic mass of an element: hydrogen (atomic mass 1) and oxygen (atomic mass 16). Adding these atoms together gives you the compounds HO (mass 1 + 16 = 17) and H2O (mass 1 + 1 + 16 = 18). This sample was water![11]
    • Technically, a mass spectrometer ionizes the sample and sorts by the ratio of mass to charge (or m/z). But most ions will have a charge of 1, and so you can ignore the division problem and just look at mass. The smallest bars often represent small amounts of more charged particles that you can ignore for identification purposes.[12]
  2. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Mass spectrometer readings get complicated when you sample large molecules that can break into many parts.[13]
    If you can narrow down the sample to a few possibilities, you can look up the mass spectra of each one and compare that to your actual results.

  • Electron configurations can also be written in noble gas notation, which uses a noble gas element symbol to stand in for that element’s electron shell.[14]
    For instance, {displaystyle [Ne]3s^{2}3p^{4}} can be expanded with neon’s electron configuration into {displaystyle 1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}}. To identify the element by electron count, add the electrons in the expanded configuration.[15]
    In this case there are 2+2+6+2+4 = 16 electrons, so this must be the sixteenth element, sulfur.

  • Most periodic tables show two numbers next to each element. The smaller one (that always goes up by 1 as you go left to right) is the atomic number or proton number. The larger number is the atomic mass.

Thanks for submitting a tip for review!

Advertisement

  • If you are given an electron configuration in an excited state, you can’t use the highest energy electron to identify the element. Identify the ground state for that number of electrons first.

Advertisement

References

About This Article

Thanks to all authors for creating a page that has been read 19,269 times.

If you buy through links on our site, we may earn a commission.

Did this article help you?


Загрузить PDF


Загрузить PDF

Электрон является частицей с отрицательным зарядом и входит в состав атома. Все основные элементы состоят из электронов, протонов и нейтронов. В химии важно уметь определять, сколько электронов содержит атом. Это можно сделать с помощью периодической системы химических элементов (таблицы Менделеева). Также необходимо знать, как найти число нейтронов и валентных электронов (электронов на внешней оболочке атома).

  1. Изображение с названием Find Electrons Step 1

    1

    Возьмите таблицу Менделеева. Это цветная таблица, в которой все известные элементы упорядочены согласно их атомной структуре. Каждый элемент обозначается символом в виде одной, двух или трех латинских букв, наряду с атомным весом и атомным номером элемента.[1]

    • Таблицу Менделеева можно найти в учебниках по химии или в интернете.
  2. Изображение с названием Find Electrons Step 2

    2

    Найдите нужный элемент в таблице Менделеева. Элементы упорядочены по атомному номеру и разделены на три основные группы: металлы, неметаллы и металлоиды (полуметаллы). Некоторые группы носят несистематические названия, такие как щелочные металлы, галогены и благородные газы.[2]
    . Каждый столбец таблицы называется группой, а каждая строка — периодом.

    • Если вы знаете, в какой группе или периоде находится нужный элемент, вам будет легче найти его.
    • Если вы знаете только символ элемента, просто просмотрите таблицу и найдите в ней этот символ.
  3. Изображение с названием Find Electrons Step 3

    3

    Выясните атомный номер элемента. Атомный номер указывается в верхнем левом углу (над символом элемента). Атомный номер равен количеству протонов в атоме элемента.[3]
    Протоны являются частицами с положительным зарядом. Так как электроны — это частицы с отрицательным зарядом, нейтральный атом включает равное количество протонов и электронов.

    • Например, атомный номер бора (B) равен 5, то есть в атоме бора 5 протонов и 5 электронов.

    Реклама

  1. Изображение с названием Find Electrons Step 4

    1

    Выясните атомный номер элемента. Атомный номер указывается в верхнем левом углу (над символом элемента). Атомный номер равен количеству протонов в атоме элемента.[4]
    Протоны являются частицами с положительным зарядом. Так как электроны — это частицы с отрицательным зарядом, то нейтральный атом включает равное количество протонов и электронов.

    • Например, атомный номер бора (B) равен 5, то есть в атоме бора 5 протонов и 5 электронов.
  2. Изображение с названием Find Electrons Step 4

    2

    Выясните заряд иона. Если добавить или удалить электрон из атома, элемент не поменяется на другой, но зато изменится его заряд. В этом случае получится ион, такой как K+, Ca2+ или N3-. Обычно заряд указывается сверху справа от символа элемента.

    • Электрон — это частица с отрицательным зарядом, поэтому если в атом добавить электрон, получится ион с отрицательным зарядом.
    • Если из атома удалить электрон, получится ион с положительным зарядом.
    • Например, заряд N3- равен -3, а заряд Ca2+ равен +2.
  3. Изображение с названием Find Electrons Step 6

    3

    Если дан ион с положительным зарядом, вычтите заряд из атомного номера. Если ион имеет положительный заряд, атом потерял электроны. Чтобы определить оставшееся количество электронов, вычтите заряд из атомного номера. У иона с положительным зарядом протонов больше, чем электронов.

    • Например, заряд Ca2+ равен +2, то есть у этого иона на 2 электрона меньше, чем у нейтрального атома кальция. Атомный номер кальция равен 20, поэтому у этого иона 18 электронов.
  4. Изображение с названием Find Electrons Step 7

    4

    Если дан ион с отрицательным зарядом, прибавьте заряд к атомному номеру. Если ион имеет отрицательный заряд, атом получил дополнительные электроны. Чтобы определить получившееся количество электронов, прибавьте заряд к атомному номеру. У иона с отрицательным зарядом протонов меньше, чем электронов.

    • Например, заряд N3- равен -3, то есть у этого иона на 3 электрона больше, чем у нейтрального атома азота. Атомный номер азота равен 7, поэтому у этого иона 10 электронов.

    Реклама

Об этой статье

Эту страницу просматривали 46 737 раз.

Была ли эта статья полезной?

Элемент А

Найти элемент по количеству протонов очень легко, потому что число протонов равно порядковому номеру в периодической таблице. Значит, элемент А занимает 7 место и зовётся азотом. Находится он во 2-ом периоде V-ой А группы. Азот — газ, неметалл. Высший оксид азота, когда он имеет степень окисления +5, — N2O5.

Элемент Б

Порядковый номер соответствует числу протонов, а оно — числу электронов, потому что так атом имеет нулевой заряд. Следовательно, у элемента Б 13-тый номер, это алюминий. 3-ий период, III-я группа и А подгруппа. Алюминий — металл. Al2O3 — формула высшего оксида алюминия.

Химический элемент

Химический элемент — совокупность атомов с одним и тем же зарядом ядра, числом протонов в ядре и электронов
в электронной оболочке. Закономерную связь химических элементов отражает периодическая таблица Д.И. Менделеева.

Химический элемент

Изучая подобную карточку химического элемента, можно узнать о нем многое:

  • Обозначение химического элемента
  • Русское наименование
  • Порядковый номер = заряд атома = число электронов = число протонов
  • Атомная масса
  • Распределение электронов по энергетическим уровням
  • Электронная конфигурация внешнего уровня

Надо заметить, что на экзамене часто из карточки элемента скрывают распределение электронов и конфигурацию внешнего
уровня. Тем не менее, если вы успешно освоили предыдущую тему, то для вас не составит труда написать электронную
конфигурацию атома зная его порядковый номер в таблице Д.И. Менделеева (номер уж точно не тронут!))

Протоны, нейтроны и электроны

Вы уже знаете, что порядковый номер элемента в периодической таблице Д.И. Менделеева равен числу протонов, а число протонов
равно числу электронов.

Протоны, нейтроны и электроны

Для того чтобы найти число нейтронов в атоме алюминия, необходимо вычесть из атомной массы число протонов:

27 — 13 = 14

Получается, что в атоме алюминия 14 нейтронов. Посчитайте число нейтронов, электронов и протонов самостоятельно для атомов бериллия,
кислорода, меди. Решение вы найдете ниже.

Протоны, нейтроны и электроны

Если вы поняли суть и научились считать протоны, нейтроны и электроны, самое время приступать к следующей теме.

Изотопы

Изотопы (греч. isos — одинаковый + topos — место) — общее название разновидностей одного и того же химического элемента,
имеющих одинаковый заряд ядра (число протонов), но разное число нейтронов.

Вероятно, вы не задумывались, но вся таблица Д.И. Менделеева и представленные в ней химические элементы — это самые распространенные
на земле изотопы.

Лучше всего объяснить, что такое изотопы наглядным примером. Широко известны три изотопа водорода: протий, дейтерий и тритий.

Изотопы водорода

В таблице Д.И. Менделеева представлен самый распространенный из трех — протий. Он содержит 1 протон и 1 электрон, нейтроны отсутствуют. У
дейтерия 1 протон, 1 нейтрон и 1 электрон. У трития 1 протон, 2 нейтрона, 1 электрон.

Теперь очевидно, что изотопы — атомы одного и того же химического элемента, различающиеся числом нейтронов.

Рассмотрим пример с изотопами лития. Самостоятельно посчитайте количество нейтронов у каждого изотопа. Найдите тот, который
включен в таблицу Д.И. Менделеева.

Изотопы лития

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

На этой странице вы узнаете: 

  • Чем общежития электронов отличаются от студенческих?
  • В атомах химических элементов есть свои уровни комфортности?
  • Химические элементы делятся на семейства? Это что, биология какая-то?

Сейчас в обществе все больше набирает оборот модный тренд — минималистичный образ жизни. Как в фильме «Сто вещей и ничего лишнего». Главные герои — два закадычных друга — решили на спор отказаться от всех своих вещей (абсолютно всех, включая одежду и телефон). Спустя время и преодолев череду проблем, они поняли, что вещи — это не главное в жизни.

Видимо, по такому принципу «живет» хорошо нам знакомый товарищ — водород. У него всего один электрон, который всегда на своем месте. А как быть, например, с атомом хлора, у которого их аж 17, ведь их надо содержать в порядке? Сейчас мы с вами узнаем, как располагаются электроны в электронной оболочке атома и многое другое.

Строение электронной оболочки атома

Представим, что электрон — это студент, а электронная оболочка атома — общежитие. Как будет жить наш студент в общежитии?

Разберемся сначала с «планом помещения».

  • В нём есть отдельные комнаты, которые называются атомными орбиталями — в них могут проживать максимум 2 электрона.
  • Несколько комнат объединяются в блок с общей кухней — их мы назовем энергетическими подуровнями.
  • Этажи общежития — энергетические уровни. Определенный этаж содержит определенное количество блоков. 

Таким образом, все электроны «живут» на энергетических уровнях-этажах, каждый из которых имеет энергетические подуровни-блоки со своими орбиталями-комнатами.

То, что мы видим с вами на рисунке — электронно-графическая формула для отдельных атомов химических элементов — это расположение всех его электронов на орбиталях.

Чем общежития электронов отличаются от студенческих?

1. Энергетические уровни (этажи) имеют порядковую нумерацию. Причем на первом уровне располагается всего один подуровень (блок), на втором — два, на третьем — три, на четвертом и последующих — по 4.

2. Подуровни (блоки) обозначают в следующем порядке по мере отдаления от ядра: s (имеет одну орбиталь) → p (три орбитали) → d (пять орбиталей)→ f (семь орбиталей).

3. Орбиталь (комната) специального обозначения не имеет. Может содержать максимум 2 электрона (студента).

Как нам поможет Периодическая таблица химических элементов Д.И. Менделеева при заполнении схемы строения электронных оболочек атомов?

  • Число электронов в атоме химического элемента равно его порядковому номеру в Периодической системе Д. И. Менделеева.
  • Количество уровней совпадает с номером периода, в котором располагается элемент: 1, 2, 3…
  • Количество электронов на внешнем энергетическом уровне для элементов главных (A) подгрупп можно также легко узнать — в какой группе по номеру расположен химический элемент, столько электронов и будет находиться на его внешнем уровне. 
  • Для элементов побочных подгрупп количество электронов на внешнем энергетическом уровне равно двум. Исключениями являются медь, серебро, хром, золото и некоторые другие элементы.
  • Количество валентных электронов для элементов главных (A) подгрупп равно номеру группы, для элементов побочных подгрупп — числу электронов на внешнем энергетическом уровне и незаполненном предвнешнем подуровне.

Это можно использовать для проверки своих действий при распределении электронов по уровням.

Уже сейчас, используя полученную информацию, мы можем решить задание №2 ОГЭ по химии

На приведенном рисунке изображена модель атома химического элемента.

Запишите в таблицу порядковый номер в Периодической системе (Х) химического элемента, модель атома которого изображена на рисунке, и номер группы (Y), в которой этот элемент расположен в Периодической системе.

X Y

Решение: 
1) Порядковый номер химического элемента в Периодической системе можно определить по числу электронов в атоме. Сосчитав все электроны, получаем, что их 14 штук, следовательно, X — 14.

2) Номер группы Периодической системы, в которой расположен химический, элемент можно узнать по числу электронов на его внешнем электронном уровне. Сосчитав их, получим, что их 4 штуки, следовательно, Y — 4.

Ответ: 144

Электронная конфигурация атома

Для изображения строения электронных слоев атома (электронной конфигурации) пользуются условной записью.

Удобно представлять атомные орбитали в виде ячеек, в которых располагаются два электрона, их обозначаем в виде двух стрелочек, первая направлена вверх, а вторая — вниз. Это называется принципом Паули.

Он гласит, что два электрона не могут иметь одинаковые спины. Спин — характеристика электрона, проще всего его можно представить как вращение электрона по часовой стрелке и против часовой, поэтому в ячейке они расположены в противоположном направлении (то есть +1/2 и -1/2). 

При заполнении этих ячеек удобно пользоваться правилом Хунда (или правилом «трамвайного вагона»): 

При наличии свободных орбиталей на подуровне электроны занимают именно их, а не «подсаживаются» к другим электронам: 

Ты приглядись, решив присесть,
К местам трамвайного вагона:
Когда ряды пустые есть,
Подсаживаться нет резона.

В нашем с вами примере студентов заселяют по одному в комнату пока это возможно. 

Важное замечание: в комнате не больше двух студентов — атомная орбиталь вмещает максимально два электрона. 

Например, на изображении представлена электронно-графическая формула атома углерода. Стрелочками обозначены электроны, которые занимают атомные орбитали. Несколько атомных орбиталей на одном энергетическом уровне образуют подуровни. 

Можно составить общую табличку с информацией о том, как распределяются электроны по энергетическим уровням и подуровням электронно-графической формулы: 

В атомах химических элементов есть свои уровни комфортности?

Да, проанализировав таблицу, мы увидим, что на s-подуровне (блоке) может находиться не больше двух электронов, на p-подуровне — не больше шести электронов, на d-подуровне — не больше десяти электронов, на f-подуровне — не больше четырнадцати электронов.

Электроны, как и студенты, стремятся занять более комфортные места, так система стремится к минимуму энергии. Порядок заполнения подуровней в атомах химических элементов следующий:

1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → … 

Согласитесь, если студентам заселиться в блок вдвоем, им будет проще найти друг с другом общий язык, чем если бы их было в блоке четырнадцать.

Схематично порядок заполнения энергетических подуровней электронно-графической формулы представлен на картинке: 

После того, как мы расположили все электроны по своим местам, мы можем составить электронную конфигурацию атома, которая будет отражать порядок заполнения электронов по подуровням в текстовом виде. 

Потренируемся в написании электронной конфигурации на примере атомов хлора и титана.

Химический элемент титан располагается в IVB группе IV периода, имеет порядковый номер, равный 22. Исходя из этого, мы можем сказать, что в его атоме:

— четыре энергетических уровня (IV период), из которых первый и второй уровни полностью заполнены;
— четыре электрона на внешнем энергетическом уровне и предвнешнем подуровне;
— всего двадцать два электрона (порядковый номер).

В соответствии с порядком заполнения орбиталей распределим электроны:

22Ti 1s22s22p63s23p64s23d2 — как мы видим, сначала заполняется 4s-подуровень, а затем 3d-подуровень, это соответствует порядку заполнения орбиталей, описанному выше.

Проверим себя. В сумме все верхние цифры (обозначающие число электронов на подуровне), должны образовать ровно 22: 2 + 2 + 6 + 2 + 6 + 2 + 2 = 22, следовательно, электронная конфигурация атома хлора составлена верно.

Химические элементы делятся на семейства? Это что, биология какая-то?

К счастью, с биологией у атомов химических элементов мало общего, иначе, представьте, что в качестве домашнего питомца у вас был бы атом хлора, а в зоопарке бы показывали семью атомов золота. Что-то из области фантастики, не так ли?

Однако, да, химические элементы разделяют на семейства по строению их электронных оболочек. Таких семейств выделяют четыре:

s-элементы — это элементы IA и IIA групп, в их атомах последний электрон занимает место на s-подуровне внешнего энергетического уровня;
p-элементы — это элементы IIIA-VIIA групп, в их атомах последний электрон занимает место на p-подуровне внешнего энергетического уровня; 
d-элементы — это элементы побочных подгрупп, в их атомах последний электрон занимает место на d-подуровне предвнешнего энергетического уровня; 
f-элементы — это лантаноиды и актиноиды, 4f- и 5f-элементы соответственно, в их атомах последний электрон занимает место на f-подуровне предпредвнешнего энергетического уровня.  

Таким образом, мы с вами узнали, что электроны располагаются в атомах химических элементов в определенном порядке и выявили связь между положением химического элемента в Периодической системе химических элементов Д. И. Менделеева и строением его атома. Теперь для нас не составит труда описать строение атома любого химического элемента.

Фактчек

  • Электроны располагаются на электронных уровнях, причем их число определяется положением элемента в Периодической системе (по номеру периода).
  • Энергетические уровни, в свою очередь, состоят из подуровней.
  • Энергетические подуровни состоят из атомных орбиталей, которые для удобства обозначаются ячейками.
  • По принципу Паули на каждой атомной орбитали могут располагаться максимально два электрона, причем их спины должны быть противонаправлены.
  • Электроны располагаются по подуровням так, чтобы энергия системы была минимальна.
  • Химические элементы делятся на s-, p-, d- и f-семейства по тому, на какой подуровень пишем последний электрон при составлении электронной конфигурации атома.

Проверь себя 

Задание 1.
Сколько электронов может максимально располагаться на орбитали? 

  1. 1 электрон
  2. 2 электрона
  3. 3 электрона
  4. 4 электрона

Задание 2. 
Как атомные подуровни заполняются электронами? 

  1. в порядке увеличения их энергии
  2. в порядке уменьшения их энергии
  3. в периодическом порядке

Задание 3.
Сколько атомных орбиталей содержит d-подуровень? 

Задание 4.
Какую форму имеет s-орбиталь? 

  1. шара
  2. гантели
  3. эллипса
  4. нескольких гантелей

Ответы: 1. —  2; 2. — 1; 3. — 3; 4. — 1.

Понравилась статья? Поделить с друзьями:
  • Как исправить неверно пробитый чек
  • Как найти значение стороны прямоугольного треугольника
  • Как найти стишок на день рождения
  • График работы ночного сторожа как составить
  • Как найти выключенный смартфон дома