Как найти холодильник в кпд

Холодильная машина

Рис. 1. Холодильная машина

Отдельным подвидом тепловых машин являются, так называемые, холодильные машины. Холодильная машина — тепловая машина, работающая по обратному циклу, т.е. круговому циклу, в котором рабочее тело совершает отрицательную работу. Визуализации таких машин условно одинакова (рис. 1).

Классически, холодильная машина состоит нагревательного элемента, рабочего тела и холодильной установки. Каждый из этих элементов может инженерно выглядит как угодно, рабочее тело чаще всего газ. Рабочее тело, совершая работу (displaystyle {{Q}_{2}}), забирает энергию у холодильника (displaystyle {{Q}_{1}}) и передаёт её нагревателю (displaystyle {{Q}_{1}}). Нагревателем в данной системе также может быть окружающее пространство. Примером такой холодильной машины может служить обычных домашний холодильник. Электрический ток совершает работу по охлаждению внутренней камеры холодильника, передавая избыток теплоты на внешний радиатор (ребристая стенка из прутьев на задней стенке холодильника).

Тогда, исходя из закона сохранения энергии:

displaystyle A+{{Q}_{2}}={{Q}_{1}} (1)

  • где

Аналогом КПД (коэффициента полезного действия) для холодильной установки является холодильный коэффициент. Логика у него точно такая же: отношение полезной работы к затраченной. Полезной теплотой в нашей системе является displaystyle A (т.к. нам необходимо охладить тело), тратим вы внешнюю работу (displaystyle A). Тогда:

displaystyle k=frac{{{Q}_{2}}}{A}=frac{{{Q}_{2}}}{{{Q}_{1}}-{{Q}_{2}}} (2)

  • где
    • displaystyle k — холодильный коэффициент машины.

Вывод: задачи на холодильную машину вводятся именной этой фразой. Единственное соотношение, которое может помочь в решении таких задач, это соотношение (1). Поиск соответствующих энергий чаще всего вопрос первого начала термодинамики и анализа процессов.

Коэффициент полезного действия холодильникаКоэффициент полезного действия – очень важная характеристика, которая одной из первых учитывается при приобретении оборудования. Это параметр работы любого устройства, для которого особое значение имеет эффективность преобразования энергии.

По определению, полезность оборудования определяется формулой соотношения полезно используемой энергии к максимальной и выражается в виде коэффициента η (эта).

Это в упрощенном понимании и есть искомый коэффициент, КПД холодильника и нагревателя, который можно найти в любой технической инструкции.

Содержание

  1. Коэффициент полезного действия холодильника
  2. При этом нужно знать некоторые технические моменты
  3. Коэффициент полезного действия устройства и комплектующих
  4. Показателем эффективности работы
  5. НЕМНОГО ФИЗИКИ

Коэффициент полезного действия холодильника

При этом нужно знать некоторые технические моменты

Условно можно сказать, что ее внутренний объем представляет собой резервуар с холодным воздухом, а окружающая среда имеет более высокую температуру. Для отведения теплоты из внутреннего пространства во внешнюю среду используется электрическая энергия. Коэффициент полезного действия будет зависеть от протекающих процессов. Поэтому КПД холодильной машины – это отношение выработанного холода к затраченной работе.

Коэффициент полезного действия устройства и комплектующих

Коэффициент полезного действия холодильника рассматривается как КПД установленного компрессора или двигателя.

КПД двигателя вашего холодильного устройства связан с мощностью и энергопотреблением. Очевидно, что чем меньше коэффициент, тем больше количество электричества модель потребляет, тем менее оно эффективно. То есть максимальный коэффициент можно косвенно определить по классу энергопотребления – А+++.

по какой формуле вычисляется кпд холодильника, Коэффициент полезного действия холодильника

Рабочее тело холодильной машины называют хладагентом. Мы условно будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент – это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации). Холодильник в холодильной машине – это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты, в результате чего газ расширяется. В ходе сжатия газ отдаёт теплоту более нагретому телу – нагревателю.

Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы, совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)).

Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника. Основное назначение холодильной машины – охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда – в неё рассеивается отводимое от резервуара тепло.

ПРИМЕР: холодильник Ariston MB40D2NFE (2003), в котором установлен фирменный компрессор Danfoss NLE13KK.3 R600a, с мощностью 219W при рабочих температурных условиях -23.3°C. В случае с холодильными компрессорами может зависеть от параметра RC (рабочий конденсатор, run capacitor), в нашем случае равен 1.51 (без RC, -23.3°C) и 1.60 (с RC, -23.3°C). Эти данные можно найти в технических параметрах. Влияние конденсатора на работу устройства в том, что он позволяет быстрее достигнуть рабочей скорости и, таким образом, повысить его полезное действие.

Показателем эффективности работы

холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника. Часто люди путают два совершенно разных понятия – коэффициент полезного действия и холодильный коэффициент. Эти параметры можно легко отличить. КПД не может быть выше 100% или единицы. Он измеряется в процентах или дробных величинах. Значение холодильного коэффициента никогда не измеряется только в безразмерных величинах и чаще всего составляет больше единицы – эффективные агрегаты могут похвастаться показателем около трех.

Среднее значение КПД большинства современных компрессоров составляет порядка 60-70%. Чем выше, тем лучше.  С вентиляторами вопрос с КПД также остается актуальным. Специалисты рекомендуют по возможности останавливать выбор с ЕС-двигателем, так как они считаются самыми эффективными из всего предлагаемого ассортимента. В реальных холодильниках холодильный коэффициент принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение – нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда – холодильником. Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника. Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

по какой формуле вычисляется кпд холодильника, Коэффициент полезного действия холодильника

НЕМНОГО ФИЗИКИ

Работа холодильника не опровергает второй закон термодинамики, а протекает в полном соответствии с ним. Холодильник и воздух комнаты не составляют замкнутой системы. Холодильник необходимо подключить к электрической сети. Электрическая энергия с помощью электродвигателя превращается в механическую энергию, затем механическая энергия в результате работы компрессора холодильника превращается, в конечном счете, в энергию теплового движения молекул деталей холодильника и окружающих его тел. Следовательно, переход тепла от холодного тела к горячему не является единственным результатом работы холодильника, так как этот процесс сопровождается превращением энергии электрического тока в энергию теплового движения КПД холодильной машины.

В реальных холодильных машинах в качестве холодного резервуара выступает морозильная камера, в качестве «горячего» резервуара – воздух в помещении, в качестве рабочего тела – хладагент который циркулирует в закольцованной системе трубок, в качестве источника внешней работы – электродвигатель, подключенный к электрической сети, из которой и черпается энергия для работы холодильника. Чтобы поддерживать постоянной температуру в морозильной камере, нужно отнимать у нее тепло, которое просачивается извне в результате необратимого теплообмена. Избыток энтропии рабочего вещества выбрасывается в окружающую среду вместе с теплом.

В любом случае задачу подбора оборудования, расчетов коэффициента полезного действия и холодопроизводительности лучше оставить специалистам. Так как самостоятельно просчитать все необходимые параметры не имея специального образования будет крайне тяжело.

Одним из важных параметров работы любого устройства, для которого особое значение имеет эффективность преобразования энергии, является коэффициент полезного действия. По определению, полезность оборудования определяется формулой соотношения полезно используемой энергии к максимальной и выражается в виде коэффициента η. Это в упрощенном понимании и есть искомый коэффициент, КПД холодильника и нагревателя, который можно найти в любой технической инструкции. При этом нужно знать некоторые технические моменты.

Холодильник

Холодильник

Коэффициент полезного действия устройства и комплектующих

Коэффициент полезного действия, который интересует чаще читателей, будет касаться не всего холодильного устройства. Чаще всего – установленного компрессора, который обеспечивает нужные параметры охлаждения, или двигателя. Именно поэтому, задаваясь вопросом, какой КПД холодильника, рекомендуем поинтересоваться установленным компрессором и количеством процентов.

Компрессор холодильника

Компрессор холодильника

Лучше этот вопрос рассмотреть на примере. Например, имеется в наличии холодильник Ariston MB40D2NFE (2003), в котором установлен фирменный компрессор Danfoss NLE13KK.3 R600a, с мощностью 219W при рабочих температурных условиях -23.3°C. В случае с холодильными компрессорами может зависеть от параметра RC (рабочий конденсатор, run capacitor), в нашем случае равен 1.51 (без RC, -23.3°C) и 1.60 (с RC, -23.3°C). Эти данные можно найти в технических параметрах. Влияние конденсатора на работу устройства в том, что он позволяет быстрее достигнуть рабочей скорости и, таким образом, повысить его полезное действие.

Компактный холодильник

Компактный холодильник

КПД двигателя вашего холодильного устройства связан с мощностью и энергопотреблением. Очевидно, что чем меньше коэффициент, тем больше количество электричества модель потребляет, тем менее оно эффективно. То есть максимальный коэффициент можно косвенно определить по классу энергопотребления – А+++.

Коэффициент полезности компрессора выше 1 – как и почему?

Часто вопрос полезного коэффициента действия волнует людей, которые немного помнят школьный курс физики, и не могут понять, почему полезное действие больше 100%. Этот вопрос требует небольшого экскурса в физику. Вопрос касается, может ли коэффициент полезности теплового генератора быть больше 1?

Компрессор с указанными параметрами

Компрессор с указанными параметрами

Этот вопрос среди профессионалов явно был поднят в 2006 году, когда в «Аргументах и фактах» номер 8 было опубликовано, что вихревые теплогенераторы способны давать 172%. Несмотря на отголоски знаний по курсу физики, где КПД всегда меньше 1, такой параметр возможен, но при определенных условиях. Речь идет именно о свойствах цикла Карно.

В 1824 году французским инженером С. Карно был рассмотрен и описан один круговой процесс, который впоследствии сыграл решающую роль в развитии термодинамики и использовании тепловых процессов в технике. Цикл Карно состоит из двух изотерм и двух адиабат.

Он совершается газом в цилиндре с поршнем, а коэффициент полезности выражается через параметры нагревателя и холодильника и составляет соотношение. Особенностью является тот факт, что тепло может переходить между теплообменниками и без совершения работы поршнем, по этой причине цикл Карно считается самым эффективным процессом, который можно смоделировать в условиях необходимого теплообмена. Иными словами полезное действие холодильной установки при реализованном цикле Карно будет самым высоким или точнее сказать максимальным.

Камера холодильника

Камера холодильника

Если эту часть теории помнят многие из школьного курса, то остальное часто теряется за кадром. Основной смысл в том, что данный цикл может быть пройден в любом направлении. Тепловой двигатель обычно работает по прямому циклу, а холодильные установки – по обратному, когда теплота уменьшается в холодном резервуаре и передается горячему за счет внешнего источника работы – компрессора.

Ситуация, когда коэффициент полезности больше 1, возникает, если он вычисляется из другого коэффициента полезности, а именно соотношением W(полученной)/W(затраченной) при одном условии. Оно состоит в том, что под затраченной энергией понимается только полезная энергия, которая используется на реальные затраты. В итоге, в термодинамических циклах тепловых насосов можно определить затраты энергии, которые будут меньше объема производимой теплоты. Таким образом, при полезном оборудования меньше 1, КПД теплового насоса может быть больше.

Термодинамический коэффициент полезного действия всегда меньше 1

В холодильных (тепловых) машинах по формуле обычно рассматривается термодинамический КПД и холодильный коэффициент. В холодильных агрегатах этот коэффициент подразумевает эффективность цикла получения полезной работы при подводе к рабочему устройству теплоты от внешнего источника (теплоотдатчика) и отводе на другом участке цепи тепла с целью передачи другому внешнему приемнику.

Две модели холодильника

Две модели холодильника

В совокупности рабочее тело совершает два процесса – расширения и сжатия, которым соответствует параметр работы. Наиболее эффективным устройством считается, когда подведенная теплота меньше отведенной – тем будет более выраженной эффективность цикла.

Степень совершенства термодинамического прибора, преобразовывающим теплоту в механическую работу, оценивается термическим коэффициентом в процентах, который может интересовать в данном случае. Термический КПД обычно составляет и показывает, какое количество тепла нагревателя и холодильника машина преобразует в работу в конкретных условиях, которые считаются идеальными. Значение термического параметра всегда меньше 1 и не может быть выше, как это в случае с компрессорами. При 40° температуре устройство будет работать с минимальной эффективностью.

В итоге

В современных бытовых холодильных установках применяется именно обратный процесс Карно, при этом температура холодильника можно определить в зависимости от количества теплоты, переданного от нагревающего элемента. Параметры охлаждающей камеры и нагревателей могут быть на практике совершенно разными, а также зависящими от внешней работы двигателя с компрессором, имеющим свой параметр полезности действия. Соответственно, данные параметры (КПД холодильника в процентах) при принципиально одинаковом термодинамическом процессе, будут зависеть от технологии, реализованной производителем.

Так как по формуле коэффициент полезности зависит от  температур теплообменников, то в технических параметрах указывается, какой процент полезности можно получить при некоторых идеальных условиях. Именно эти данные можно использовать для сравнения моделей разных марок не только по фото, в том числе, работающих в нормальных условиях или при жаре до 40°.

Тепловые машины

  • Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

  • Тепловые двигатели

  • Холодильные машины

  • Тепловая машина Карно

  • Тепловые двигатели и охрана окружающей среды

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

к оглавлению ▴

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты Q_1. Именно за счёт этого тепла двигатель совершает полезную работу A.

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае A=Q_1.

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу A_1. В процессе сжатия над газом совершается положительная работа A_2 (а сам газ совершает отрицательную работу -A_2). В итоге полезная работа газа за цикл: A=A_1-A_2.

Разумеется, должно быть A>0, или A_2 < A_1 (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на pV-диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции V_11a2V_2. Аналогично, работа газа при сжатии равна площади криволинейной трапеции V_11b2V_2 со знаком минус. В результате работа A газа за цикл оказывается положительной и равной площади цикла 1a2b1.

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты Q_2.

Суммарное количество теплоты, полученное газом за цикл, оказывается равным Q_1-Q_2. Согласно первому закону термодинамики:

Q_1 - Q_2 = A + Delta U,

где Delta U — изменение внутренней энергии газа за цикл. Оно равно нулю: Delta U = 0, так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

A = Q_1 - Q_2. (1)

Как видите, A < Q_1: не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы A к количеству теплоты Q_1, поступившему от нагревателя:

С учётом соотношения (1) имеем также

eta = frac{displaystyle A}{displaystyle Q_1 vphantom{1^a}}. (2)

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно 25 %, а КПД двигателей внутреннего сгорания около 40 %.

к оглавлению ▴

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты Q_2, в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту Q_1 более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы {A}, совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину {A}:

Q_1 = Q_2 + {A}

Таким образом, на pV-диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа {A}, совершаемая внешним источником (рис. 4).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

alpha  = frac{displaystyle Q_2}{displaystyle {A}

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

beta  = frac{displaystyle Q_1}{displaystyle {A}

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

к оглавлению ▴

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя T_1 и температуры холодильника T_2?

Пусть, например, максимальная температура рабочего тела двигателя равна 1000 K, а минимальная — 300 K. Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5). В этом случае машина функционирует как тепловой двигатель.

Рис. 5. Цикл Карно

Изотерма 1rightarrow 2. На участке 1rightarrow 2 газ приводится в тепловой контакт с нагревателем температуры T_1 и расширяется изотермически. От нагревателя поступает количество теплоты Q_1 и целиком превращается в работу на этом участке: A_{12} = Q_1.

Адиабата 2rightarrow 3. В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке 2rightarrow 3.

При расширении газ совершает положительную работу A_{23}, и за счёт этого уменьшается его внутренняя энергия: Delta U_{23} = -A_{23}.

Изотерма 3rightarrow 4. Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры T_2. Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты Q_2 и совершает отрицательную работу A_{34} = -Q_2.

Адиабата 4rightarrow 1. Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу A_{41}, а изменение внутренней энергии положительно: Delta U_{41} = -A_{41}. Газ нагревается до исходной температуры T_1.

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

eta  = frac{displaystyle T_1 - T_2}{displaystyle T_1 vphantom{1^a}}. (3)

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя T_1 и температурой холодильника T_2.

Так, в приведённом выше примере (T_1 = 1000 K, T_2 = 300 K) имеем:

eta_{max}  = frac{displaystyle 1000 - 300}{displaystyle 1000 vphantom{1^a}}=0,7(=70 %).

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

к оглавлению ▴

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тепловые машины» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Автор статьи

Сергей Сергеевич Соев

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Исторически появление термодинамики как науки было связано с практической задачей создания эффективного теплового двигателя (тепловой машины).

Тепловая машина

Тепловым двигателем называют устройство, которое совершает работу за счет поступающей к двигателю теплоты. Данная машина является периодической.

Тепловая машина включает в себя следующие обязательные элементы:

  • рабочее тело (обычно газ или пар);
  • нагреватель;
  • холодильник.

Цикл работы тепловой машины. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Цикл работы тепловой машины. Автор24 — интернет-биржа студенческих работ

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

На рис.1 изобразим цикл, по которому может работать тепловая машина. В этом цикле:

  • газ расширяется от объема $V_1$ до объема $V_2$;
  • газ сжимается от объема $V_2$ до объема $V_1$.

Для того чтобы получить работу, которую выполняет газ, большей чем ноль, давление (следовательно, температура) в процессе расширения должно быть больше, чем в процессе сжатия. С этой целью газ в процессе расширения теплоту получает, а при сжатии у рабочего тела тепло отбирают. Отсюда сделает вывод о том, что кроме рабочего тела в тепловом двигателе должны присутствовать еще два внешних тела:

  • нагреватель, отдающий рабочему телу теплоту;
  • холодильник, тело, которое забирает от рабочего тела тепло в ходе сжатия.

После выполнения цикла рабочее тело и все механизмы машины возвращаются в прежнее состояние. Это означает, что изменение внутренней энергии рабочего тела — ноль.

На рис.1 указано, что в процессе расширения рабочее тело получает количество теплоты, равное $Q_1$. В процессе сжатия рабочее тело отдает холодильнику количество теплоты, равное $Q_2$. Следовательно, за один цикл количество теплоты, полученное рабочим телом равно:

«КПД теплового двигателя с формулой» 👇

$Delta Q=Q_1-Q_2 (1).$

Из первого начала термодинамики, учитывая то, что в замкнутом цикле $Delta U=0$, работа, совершаемая рабочим телом равна:

$A=Q_1-Q_2 (2).$

Для организации повторных циклов тепловой машины необходимо, чтобы она часть своей теплоты отдавала холодильнику. Данное требование находится в согласии со вторым началом термодинамики:

Невозможно создать вечный двигатель, который периодически трансформировал полностью теплоту, получаемую от некоего источника полностью в работу.

Так, даже у идеального теплового двигателя количество теплоты, передаваемое холодильнику, не может равняться нулю, существует нижний предел величины $Q_2$.

КПД тепловой машины

Понятно, что насколько эффективно работает тепловая машина, следует оценивать, учитывая полноту превращения теплоты, полученной от нагревателя в работу рабочего тела.

Параметром, который показывает эффективность теплового двигателя, является коэффициент полезного действия (КПД).

Определение 1

КПД теплового двигателя называют отношение работы, выполняемой рабочим телом ($A$) к количеству теплоты, которое это тело получает от нагревателя ($Q_1$):

$eta=frac{A}{Q_1}(3).$

Принимая во внимание выражение (2) КПД тепловой машины найдем как:

$eta=frac{Q_1-Q_2}{Q_1}(4).$

Соотношение (4) показывает, что КПД не может быть больше единицы.

КПД холодильной машины

Обратим цикл, который отображен на рис. 1.

Замечание 1

Обратить цикл – это значит, изменить направление обхода контура.

В результате обращения цикла получим цикл холодильной машины. Эта машина получает от тела с низкой температурой теплоту $Q_2$ и передает ее нагревателю, имеющему более высокую температуру количество теплоты $Q_1$, причем $Q_1>Q_2$. Над рабочим телом совершается работа $A’$ за цикл.

Эффективность нашего холодильника определяется коэффициентом, который вычисляют как:

$tau =frac{Q_2}{A’}=frac{Q_2}{Q_1-Q_2}left (5right).$

КПД обратимой и необратимой тепловой машины

КПД необратимого теплового двигателя всегда меньше, чем КПД обратимой машины, при работе машин с одинаковыми нагревателем и холодильником.

Рассмотрим тепловую машину, состоящую из:

  • цилиндрического сосуда, который закрыт поршнем;
  • газа под поршнем;
  • нагревателя;
  • холодильника.

В ней:

  1. Газ получает некоторое количество теплоты $Q_1$ от нагревателя.
  2. Газ расширяется и толкает поршень, выполняет работу $A_+0$.
  3. Газ сжимают, холодильнику передается теплота $Q_2$.
  4. Работа совершается над рабочим телом $A_-

Работа, которую выполнят рабочее тело за цикл, равна:

$A=A_+-A_-(6).$

Для выполнения условия обратимости процессов их надо проводить очень медленно. Кроме этого необходимо, чтобы отсутствовало трение поршня о стенки сосуда.

Обозначим работу, совершаемую за один цикл обратимым тепловым двигателем как $A_{+0}$.

Выполним тот же цикл с большой скоростью и при наличии трения. Если провести расширение газа быстро, давление его около поршня будет меньше, чем если газ расширяют медленно, поскольку возникающее под поршнем разрежение распространяется на весь объем с конечной скоростью. В этой связи, работа газа в необратимом увеличении объема меньше, чем в
обратимом:

$A_{+n}$

Если выполнить сжатие газа быстро давление около поршня больше, чем при медленном сжатии. Значит, величина отрицательной работы рабочего тела в необратимом сжатии больше, чем в обратимом:

$A_{-n}A_{+o}$.

Получим, что работа газа в цикле $A$ необратимой машины, вычисляемая по формуле (5), выполняемая за счет теплоты, полученной от нагревателя будет меньше, чем работа, выполненная в цикле обратимым тепловым двигателем:

$A_n$

Трение, имеющееся в необратимом тепловом двигателе, ведет к переходу части работы выполненной газом в теплоту, что уменьшает КПД двигателя.

Так, можно сделать вывод о том, что коэффициент полезного действия теплового двигателя обратимой машины больше, чем необратимой.

Замечание 2

Тело, с которым обменивается теплом рабочее тело, станем называть тепловым резервуаром.

Обратимая тепловая машина совершает цикл, в котором имеются участки, где рабочее тело совершает обмен теплотой с нагревателем и холодильником. Процесс обмена теплом является обратимым, только если при получении теплоты и возвращении ее при обратном ходе, рабочее тело обладает одной и той же температурой, равной температуре теплового резервуара. Если говорить более точно, то температура тела, которое получает теплоту, должная быть на очень малую величину менее температуры резервуара.

Таким процессом может быть изотермический процесс, который происходит при температуре резервуара.

Для функционирования теплового двигателя у него должно быть два тепловых резервуара (нагреватель и холодильник).

Обратимый цикл, который выполняется в тепловом двигателе рабочим телом, должен быть составлен из двух изотерм (при температурах тепловых резервуаров) и двух адиабат.

Адиабатические процессы происходят без обмена теплом. В адиабатных процессах происходит расширение и сжатие газа (рабочего тела).

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как найти игрока в clash of kings
  • Как найти углы в геометрии урок
  • Как найти телефон по email почта
  • Как найти свой пункт для голосования
  • Как исправить раздел 8 ндс