Как найти икс в уравнении с делением

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Решение линейных уравнений с одной переменной

В данной статье рассмотрим принцип решения таких уравнений как линейные уравнения. Запишем определение этих уравнений, зададим общий вид. Разберем все условия нахождения решений линейных уравнений, используя, в том числе, практические примеры.

Обратим внимание, что материал ниже содержит информацию по линейным уравнениям с одной переменной. Линейные уравнения с двумя переменными рассматриваются в отдельной статье.

Что такое линейное уравнение

Линейное уравнение – это уравнение, запись которого такова:
a · x = b , где x – переменная, a и b – некоторые числа.

Такая формулировка использована в учебнике алгебры ( 7 класс) Ю.Н.Макарычева.

Примерами линейных уравнений будут:

3 · x = 11 (уравнение с одной переменной x при а = 5 и b = 10 );

− 3 , 1 · y = 0 (линейное уравнение с переменной y, где а = — 3 , 1 и b = 0 );

x = − 4 и − x = 5 , 37 (линейные уравнения, где число a записано в явном виде и равно 1 и — 1 соответственно. Для первого уравнения b = — 4 ; для второго — b = 5 , 37 ) и т.п.

В различных учебных материалах могут встречаться разные определения. К примеру, Виленкин Н.Я. к линейным относит также те уравнения, которые возможно преобразовать в вид a · x = b при помощи переноса слагаемых из одной части в другую со сменой знака и приведения подобных слагаемых. Если следовать такой трактовке, уравнение 5 · x = 2 · x + 6 – также линейное.

А вот учебник алгебры ( 7 класс) Мордковича А.Г. задает такое описание:

Линейное уравнение с одной переменной x – это уравнение вида a · x + b = 0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

Примером линейных уравнений подобного вида могут быть:

3 · x − 7 = 0 ( a = 3 , b = − 7 ) ;

1 , 8 · y + 7 , 9 = 0 ( a = 1 , 8 , b = 7 , 9 ) .

Но также там приведены примеры линейных уравнений, которые мы уже использовали выше: вида a · x = b , например, 6 · x = 35 .

Мы сразу условимся, что в данной статье под линейным уравнением с одной переменной мы будем понимать уравнение записи a · x + b = 0 , где x – переменная; a , b – коэффициенты. Подобная форма линейного уравнения нам видится наиболее оправданной, поскольку линейные уравнения – это алгебраические уравнения первой степени. А прочие уравнения, указанные выше, и уравнения, приведенные равносильными преобразованиями в вид a · x + b = 0 , определим, как уравнения, сводящиеся к линейным уравнениям.

При таком подходе уравнение 5 · x + 8 = 0 – линейное, а 5 · x = − 8 — уравнение, сводящееся к линейному.

Принцип решения линейных уравнений

Рассмотрим, как определить, будет ли заданное линейное уравнение иметь корни и, если да, то сколько и как их определить.

Факт наличия корней линейного уравнения определятся значениями коэффициентов a и b . Запишем эти условия:

  • при a ≠ 0 линейное уравнение имеет единственный корень x = — b a ;
  • при a = 0 и b ≠ 0 линейное уравнение не имеет корней;
  • при a = 0 и b = 0 линейное уравнение имеет бесконечно много корней. По сути в данном случае любое число может стать корнем линейного уравнения.

Дадим пояснение. Нам известно, что в процессе решения уравнения возможно осуществлять преобразование заданного уравнения в равносильное ему, а значит имеющее те же корни, что исходное уравнение, или также не имеющее корней. Мы можем производить следующие равносильные преобразования:

  • перенести слагаемое из одной части в другую, сменив знак на противоположный;
  • умножить или разделить обе части уравнения на одно и то же число, не равное нулю.

Таким образом, преобразуем линейное уравнение a · x + b = 0 , перенеся слагаемое b из левой части в правую часть со сменой знака. Получим: a · x = − b .

Далее мы разделим обе части равенства на число а , при этом условившись, что это число отлично от нуля, иначе деление станет невозможным. Случай, когда а = 0 , рассмотрим позже.

Итак, производим деление обеих частей уравнения на не равное нулю число а, получив в итоге равенство вида x = — b a . Т.е., когда a ≠ 0 , исходное уравнение a · x + b = 0 равносильно равенству x = — b a , в котором очевиден корень — b a .

Методом от противного возможно продемонстрировать, что найденный корень – единственный. Зададим обозначение найденного корня — b a как x 1 . Выскажем предположение, что имеется еще один корень линейного уравнения с обозначением x 2 . И конечно: x 2 ≠ x 1 , а это, в свою очередь, опираясь на определение равных чисел через разность, равносильно условию x 1 − x 2 ≠ 0 . С учетом вышесказанного мы можем составить следующие равенства, подставив корни:
a · x 1 + b = 0 и a · x 2 + b = 0 .
Свойство числовых равенств дает возможность произвести почленное вычитание частей равенств:

a · x 1 + b − ( a · x 2 + b ) = 0 − 0 , отсюда: a · ( x 1 − x 2 ) + ( b − b ) = 0 и далее a · ( x 1 − x 2 ) = 0 . Равенство a · ( x 1 − x 2 ) = 0 является неверным, поскольку ранее условием было задано, что a ≠ 0 и x 1 − x 2 ≠ 0 . Полученное противоречие и служит доказательством того, что при a ≠ 0 линейное уравнение a · x + b = 0 имеет лишь один корень.

Обоснуем еще два пункта условий, содержащие a = 0 .

Когда a = 0 линейное уравнение a · x + b = 0 запишется как 0 · x + b = 0 . Свойство умножения числа на нуль дает нам право утверждать, что какое бы число не было взято в качестве x, подставив его в равенство 0 · x + b = 0 , получим b = 0 . Равенство справедливо при b = 0 ; в прочих случаях, когда b ≠ 0 , равенство становится неверным.

Таким образом, когда a = 0 и b = 0 , любое число может стать корнем линейного уравнения a · x + b = 0 , поскольку при выполнении этих условий, подставляя вместо x любое число, получаем верное числовое равенство 0 = 0 . Когда же a = 0 и b ≠ 0 линейное уравнение a · x + b = 0 вовсе не будет иметь корней, поскольку при выполнении указанных условий, подставляя вместо x любое число, получаем неверное числовое равенство b = 0 .

Все приведенные рассуждения дают нам возможность записать алгоритм, дающий возможность найти решение любого линейного уравнения:

  • по виду записи определяем значения коэффициентов a и b и анализируем их;
  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число станет корнем заданного уравнения;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , отличном от нуля, начинаем поиск единственного корня исходного линейного уравнения:
  1. перенесем коэффициент b в правую часть со сменой знака на противоположный, приводя линейное уравнение к виду a · x = − b ;
  2. обе части полученного равенства делим на число a , что даст нам искомый корень заданного уравнения: x = — b a .

Собственно, описанная последовательность действий и есть ответ на вопрос, как находить решение линейного уравнения.

Напоследок уточним, что уравнения вида a · x = b решаются по похожему алгоритму с единственным отличием, что число b в такой записи уже перенесено в нужную часть уравнения, и при a ≠ 0 можно сразу выполнять деление частей уравнения на число a .

Таким образом, чтобы найти решение уравнения a · x = b , используем такой алгоритм:

  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число может стать его корнем;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , не равном нулю, обе части уравнения делятся на число a , что дает возможность найти единственный корень, который равен b a .

Примеры решения линейных уравнений

Необходимо решить линейное уравнение 0 · x − 0 = 0 .

Решение

По записи заданного уравнения мы видим, что a = 0 и b = − 0 (или b = 0 , что то же самое). Таким образом, заданное уравнение может иметь бесконечно много корней или любое число.

Ответ: x – любое число.

6.5.1. Линейное уравнение с одной переменной

У очень многих школьников возникает вопрос — как решить уравнение с x. Что значит решить уравнение и как найти корень уравнения. Давайте рассмотрим основную схему решения обычного уравнения, называемого линейным, с одной переменной.

Правила и определения

Основные правила и определения для линейного уравнения с одной переменной.

  • Равенство с переменной называют уравнением.
  • Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
  • Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
  • Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
  • Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  • Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Примеры. Решить уравнение.

Уравнение 1

  1. 1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  2. 1,2х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
  3. х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.
  4. х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:
  5. чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число: 6 : 1,2 = 60 : 12 = 5.

Ответ: 5.

Уравнение 2

3(2х-9) = 4(х-4).

  1. 6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.
  2. 6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  3. 2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
  4. х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 5,5.

Уравнение 3

  1. 7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.
  2. 7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  3. 4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
  4. х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: -1,5.

Уравнение 4

  1. 3 (х-5) = 7 12 — 4 (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.
  2. 3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.
  3. 3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  4. 11х = 143. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
  5. х = 143 : 11. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 13.

Уравнения для самостоятельного решения

Решить самостоятельно уравнения:

а) 3-2,6х = 5х+1,48;

б) 1,6 · (х+5) = 4 · (4,5-0,6х);

в) 9х- (6х+2,5) = — (х-5,5);

5а) 0,2; 5б) 2,5; 5в) 2; 5г) -1.

Важные выводы

Итак, для того, чтобы решить уравнение — надо определить его переменную, перенести неизвестную переменную в левую часть уравнения, а известные — в праву. При необходимости упростить левую и правую части и затем найти корень уравнения.

источники:

http://zaochnik.com/spravochnik/matematika/systems/reshenie-linejnyh-uravnenij-s-odnoj-peremennoj/

http://mathematics-repetition.com/reshit-uravnenie-kak-nayti-koren-uravneniya/

Для решения линейных уравнений используют два основных правила (свойства).

Свойство № 1
или
правило переноса

Запомните!
!

При переносе из одной части уравнения в другую
член уравнения меняет свой знак на противоположный.

Давайте разберём правило переноса на примере. Пусть нам требуется решить линейное уравнение.

пример решения линейного уравнения x + 3 = 5

Вспомним, что у любого уравнения есть левая и правая часть.

левая и правая часть уравнения

Перенесем число «3» из левой части уравнения в правую.

Так как
в левой части уравнения у числа «3»
был знак «+», значит в правую часть уравнения
«3» перенесется со знаком «».

правило переноса для уравнений

Полученное числовое значение «x = 2» называют корнем уравнения.

Важно!
Галка

Не забывайте после решения любого уравнения записывать ответ.

Рассмотрим другое уравнение.

5x = 4x + 9

По правилу переноса перенесем «4x» из правой
части уравнения в левую, поменяв знак на противоположный.

Несмотря на то, что перед «4x» не стоит никакого знака,
мы понимаем, что перед «4x» стоит знак «+».

5x = 4x + 9
5x = +4x + 9
5x 4x = 9

Теперь приведем подобные и решим уравнение до конца.


5x 4x = 9
x = 9

Ответ: x = 9

Свойство № 2
или
правило деления

Запомните!
!

В любом уравнении можно разделить левую и правую часть на одно и то же число.

Но нельзя делить на неизвестное!

Разберемся на примере, как использовать правило деления при решении линейных уравнений.

пример решения уравнения 4x = 8

Число «4», которое стоит при «x»,
называют числовым коэффициентом при неизвестном.

числовой коэффициент при неизвестном

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.

Чтобы решить уравнение необходимо сделать так, чтобы при «x» стоял коэффициент
«1».

Давайте зададим себе вопрос: «На что нужно разделить «4», чтобы
получить
«1»?».
Ответ очевиден, нужно разделить на «4».

Используем правило деления и разделим левую и правую части уравнения на «4».
Не забудьте, что делить нужно и левую, и правую части.

правило деления в урванениях

Используем сокращение дробей и решим линейное уравнение до конца.

решение линейного уравнения до конца

Как решить уравнение, если «x» отрицательное

Часто в уравнениях встречается ситуация, когда при «x» стоит отрицательный коэффициент.
Как, например, в уравнении ниже.

−2x = 10

Чтобы решить такое уравнение, снова зададим себе вопрос:
«На что нужно разделить «−2»,
чтобы получить «1»?». Нужно разделить на «−2».


−2x = 10         |:(−2)

=
                 
x = −5                 

Ответ: x = −5           

Примеры решения линейных уравнений

Рассмотрим другие примеры решения линейных уравнений. Обычно для решения уравнений нужно
применять оба свойства (правило переноса и правило деления).

Также требуется вспомнить правило раскрытия скобок и
правило приведения подобных.


  • 25x − 1 = 9
    25x = 9 + 1
    25x = 10        |: 25

    =

    x =

    Ответ: x =



  • 11(y − 4) + 10(5 − 3y) − 3(4 − 3y) = −6

    11y44 +
    50
    30y12
    + 9y = −6

    11y30y +
    9y
    44 + 5012 = −6

    20y − 30y + 6 − 12 = −6
    −10y − 6 = −6
    −10y = −6 + 6
    −10y = 0         |:(−10)
    =

    y = 0


    Ответ: y = 0


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

4 июня 2021 в 18:53

Одинахон Иномова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Одинахон Иномова
Профиль
Благодарили: 0

Сообщений: 1

Найдите корень уравнения:√39-2х=5

0
Спасибоthanks
Ответить

2 февраля 2022 в 23:15
Ответ для Одинахон Иномова

Лопух-Бурьянович Травкин
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Лопух-Бурьянович Травкин
Профиль
Благодарили: 0

Сообщений: 1


√39-2x = 5
√39-5 = 2x
x = ((√39)-5):2
x = (6.2449979984 — 5):2
x = 1.2449979984: 2
x = 0.62249899919

или по формуле Герона √(a2 + b) = a + 

 

√39-2x = 5
√39-5 = 2x
x = ((√39)-5)/2
x = (√(36+3) — 5)/2
x = (√(62+3) — 5)/2
x = ((6 +

 ) — 5)/2
x = (6  — 5)/2
x = 1  / 2
x =  
x = 

0
Спасибоthanks
Ответить

20 апреля 2020 в 19:08

Егор Семенов
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Егор Семенов
Профиль
Благодарили: 0

Сообщений: 1

Найти наименьшее значение выражения: (4х²+6x+9)/3x,  при x>0, 

0
Спасибоthanks
Ответить

18 августа 2020 в 1:23
Ответ для Егор Семенов

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


f(x) =  +  + 2 ≥ f(1,5) = 6.

0
Спасибоthanks
Ответить

26 марта 2020 в 16:35

Антон Манукян
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Антон Манукян
Профиль
Благодарили: 0

Сообщений: 1

Найдите сумму коэффициентов линейного уравнения с двумя неизвестными 3x-2y-4=0.

0
Спасибоthanks
Ответить

20 мая 2020 в 9:40
Ответ для Антон Манукян

Сергей Глазов
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Сергей Глазов
Профиль
Благодарили: 0

Сообщений: 1


3-2-4=-3

0
Спасибоthanks
Ответить

21 декабря 2016 в 14:00

Даня Буйновский
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Даня Буйновский
Профиль
Благодарили: 0

Сообщений: 1

0,6x+0.42=0 решите пж уравнение

0
Спасибоthanks
Ответить

11 февраля 2017 в 16:25
Ответ для Даня Буйновский

Алексей Карапов
(^-^)
Профиль
Благодарили: 0

Сообщений: 9

(^-^)
Алексей Карапов
Профиль
Благодарили: 0

Сообщений: 9


0.6 ·  ?0.7 +0.42 =0
Так как 0.6 · ?0.7 = ?0.42, а ?0.42 +0.42 =0

0
Спасибоthanks
Ответить

11 сентября 2016 в 23:15

Антон Ершов
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Антон Ершов
Профиль
Благодарили: 0

Сообщений: 2

?ЗАДАНИЕ: Найдите корень уравнения?
(P.S) Мне нужно полностью всё решение. Заранее — спасибо.

1) 0,9x ? 0,6 (x ? 3) = 2 (0,2x ? 1,3)
2) ? 0,4 (3x ? 1) + 8  (0,8x ? 0,3) = 5 ? (3,8x + 4)
? ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?
Спасибо! Решено!

0
Спасибоthanks
Ответить

19 сентября 2016 в 14:52
Ответ для Антон Ершов

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


1)0,9x ? 0,6x + 1,8 = 0,4x ? 2,6
0,1x=4,4
x=44
2) ?1,2 +0,4 +6,4x ?2,4 =5 ?3,8x ?4
9x =3
x= 

0
Спасибоthanks
Ответить

16 сентября 2015 в 11:06

Макс Простов
(^-^)
Профиль
Благодарили: 0

Сообщений: 4

(^-^)
Макс Простов
Профиль
Благодарили: 0

Сообщений: 4

?2x ? 3y=1
?3x + y=7
Помогите Пожалуйста!) 

0
Спасибоthanks
Ответить

5 сентября 2016 в 15:32
Ответ для Макс Простов

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


2 уравнения, 2 неизвестных. Выразим y через x и подставим в первое выражение. Найдя ответ, подставим в полученное значение x.
3x +y=7
y=7 ? 3x
2x ?3(7 ?3x)=1
2x ?21 +9x=1
11x=22
x=2
y=7 ?3 · 2 = 1

Проверка:
2 · 2 ?3 · 1=1
3 · 2 +1=7
Верно
Ответ: x=2, y=1.

0
Спасибоthanks
Ответить

16 сентября 2015 в 10:32

Макс Простов
(^-^)
Профиль
Благодарили: 0

Сообщений: 4

(^-^)
Макс Простов
Профиль
Благодарили: 0

Сообщений: 4

1.  2x? ?7x +3

2.  3x? +5x ?2

0
Спасибоthanks
Ответить

5 сентября 2016 в 15:28
Ответ для Макс Простов

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


1) D=49 ? 4 · 3 · 2 = 25
x1= =  = 3
x2===0,5
Проверка: 
2 · 0,52 ? 7 · 0,5 + 3 = 0
0=0
2 · 32 ? 7 · 3 + 3 = 0
0=0
 2) D=25 ?4 · 3 · (-2) = 25 + 24 = 49
x1=
x2=-2
проверка аналогично.
 

0
Спасибоthanks
Ответить

13 сентября 2015 в 12:33

Киара Артуровна
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Киара Артуровна
Профиль
Благодарили: 0

Сообщений: 1

2х-1

 2х+1=2х+1

 2х-1 + 8

 1-4х2

0
Спасибоthanks
Ответить

5 сентября 2016 в 13:39
Ответ для Киара Артуровна

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


4x2 + 2x ? 1 ? 2x + 1 ? 2x ? 1 + 2x + 1 ? 8 + 1 = 0
4x2? 7 = 0
4x2=7
x2=
x=±?() 

0
Спасибоthanks
Ответить

28 апреля 2015 в 13:19

Дарья Баширова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Дарья Баширова
Профиль
Благодарили: 0

Сообщений: 1

Как решить?
х+3х=9.7*3хembarassed

0
Спасибоthanks
Ответить

16 апреля 2016 в 8:42
Ответ для Дарья Баширова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


X+3X=9,7 · 3X
4X=29,1X
33,1Х=0
Х=0
Проверка:
0+3 · 0 = 9,7 · 3 · 0
0=0
Ответ: Х=0

0
Спасибоthanks
Ответить


Уравнение с делением” — так называется тема, которую команда WoM Вам сегодня объяснит. Вспомним определение уравнения, компоненты деления и узнаем, как находить значение переменной в уравнении с делением.

Уравнение — это равенство, содержащее неизвестное число, которое обозначается буквой. Эта буква носит название “переменная”. 
Решить уравнение — найти значение неизвестного числа, скрытого под переменной. 

Вспомним, из каких компонентов состоит пример на деление:

10 : 2 = 5

10 — делимое;
2 — делитель;
5 — частное.

А теперь посмотрим, как может выглядеть уравнение с делением:

14 : х = 7

В данном уравнении неизвестен делитель. Чтобы его найти, надо знать правило:

Если мы хотим найти неизвестный делитель, необходимо делимое разделить на частное.

Делимое — 14, частное — 7. Вычисляем.

х = 14 : 7;
х = 2.

Следующее действие — обязательная проверка. Вместо переменной ставим найденное число.

14 : 2 = 7

Всё сходится, значит,

решение выполнено верно.

А вот несколько иной пример:

х : 5 = 3

Здесь под переменной скрывается делимое. Для его нахождения правило, которым мы руководствовались в первом примере, не подойдёт. Потому что…

Для нахождения неизвестного делимого необходимо частное умножить на делитель. 

х = 3 * 5;
х = 15.

Делаем проверку:

15 : 5 = 3.

Решение выполнено верно.

Чтобы закрепить знания по теме “Уравнение с делением”, предлагаем Вам решить следующие уравнения. Не забудьте про проверку!

х : 5 = 2              9 : х = 3
х : 6 = 3             21 : х = 7

Решить уравнения на умножение и деление Ваш ребёнок может в онлайн-школе математики World of Math. Педагоги с многолетним стажем, интерактивные уроки, подход к каждому ученику и заинтересованность в его прогрессе — положительные отзывы и результаты наших школьников подтверждают успешность принципов работы WoM.

Если Вы ещё не с нами — присоединяйтесь, как это сделали более 1400 учеников! Первый урок абсолютно бесплатный. Записаться на него можно здесь.    

Определение

Рассмотрим произвольное уравнение вида

[a_nx^n+a_{n-1}x^{n-1}+dots+a_1x+a_0=0 qquad qquad (1)]

где (a_n, a_{n-1},dots,a_0) – некоторые числа, причем (a_nne 0), называемое алгебраическим уравнением (с одной переменной) (n)-ой степени.

Обозначим (P_n(x)=a_nx^n+a_{n-1}x^{n-1}+dots+a_1x+a_0). Таким образом, сокращенно уравнение ((1)) можно записать в виде (P_n(x)=0).

Замечание

Заметим, что квадратное уравнение — это алгебраическое уравнение, степень которого равна (2), а линейное — степень которого равна (1).
Таким образом, все свойства алгебраических уравнений верны и для квадратных уравнений, и для линейных.

Теорема

Если уравнение ((1)) имеет корень (x=x_0), то оно равносильно уравнению

[(x-x_0)cdot P_{n-1}(x)=0]

где (P_{n-1}(x)) – некоторый многочлен степени (n-1).

Для того, чтобы найти (P_{n-1}(x)), необходимо найти частное от деления многочлена (P_n(x)) на ((x-x_0))
(т.к. (P_n(x)=(x-x_0)cdot P_{n-1}(x))).

Следствие: количество корней уравнения

Любое алгебраическое уравнение степени (n) может иметь не более (n) корней.

Замечание

В частности, квадратное уравнение действительно имеет всегда не более двух корней: два, один (или два совпадающих) или ни одного корня.

Для того, чтобы найти частное от деления одного многочлена на другой, удобно пользоваться следующим способом, который мы рассмотрим на примере.

Пример

Известно, что (x=2) является корнем уравнения (2x^3-9x^2+x^4-x+6=0). Найдите частное от деления (2x^3-9x^2+x^4-x+6) на (x-2).

Решение.
Будем делить многочлен на многочлен в столбик. Запишем

[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6&&negthickspaceunderline{qquad x-2 qquad}\
&&\
end{array}]

Заметим, что записывать слагаемые в делимом необходимо по убыванию их степеней: в данном случае сначала (x^4), затем (2x^3) и т.д.
Подбирать слагаемые в частном будем таким образом, чтобы при вычитании уничтожить сначала четвертую степень, затем третью и т.д.
Т.к. делитель (x-2) состоит из двух слагаемых, то при делении в столбик будем сносить по два слагаемых.

Посмотрим, на что необходимо домножить (x-2), чтобы после вычитания из (x^4+2x^3) полученного многочлена уничтожилось слагаемое (x^4,).
На (x^3). Тогда после вычитания (x^4+2x^3-x^3(x-2)) останется (4x^3). Снесем слагаемое (-9x^2):

[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6&&negthickspaceunderline{qquad x-2 qquad}\
underline{x^4-2x^3,} phantom{000000000000}&&negthickspace quad
x^3\[-3pt]
4x^3 -9x^2phantom{0000000}&&\
end{array}]

Теперь посмотрим, на что необходимо домножить (x-2), чтобы после вычитания из (4x^3-9x^2) полученного многочлена уничтожилось слагаемое (4x^3).
На (4x^2): (quad 4x^3-9x^2-4x^2(x-2)=-x^2).
Опять снесем следующее слагаемое (-x):

[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6&&negthickspaceunderline{qquad x-2 qquad}\
underline{x^4-2x^3,} phantom{000000000000}&&negthickspace quad
x^3+4x^2\[-3pt]
4x^3 -9x^2phantom{0000000}&&\
underline{4x^3 — 8x^2,};phantom{000000}&&\[-3pt]
-x^2 — xphantom{000};&&\
end{array}]

Рассуждая аналогично, определяем, что третье слагаемое в частном должно быть (-x)

[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6phantom{0}&&negthickspaceunderline{qquad x-2 qquad}\
underline{x^4-2x^3,} phantom{0000000000000}&&negthickspace quad
x^3+4x^2-x\[-3pt]
4x^3 -9x^2phantom{00000000}&&\
underline{4x^3 — 8x^2,}phantom{0000000};;&&\[-3pt]
-x^2 — ,xphantom{0000};&&\
underline{-x^2+2x},phantom{000};&&\[-3pt]
-;3x+6&&\
end{array}]

Четвертое слагаемое в частном должно быть (-3):

[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6phantom{0}&&negthickspaceunderline{qquad x-2 qquad}\
underline{x^4-2x^3,} phantom{0000000000000}&&negthickspace quad
x^3+4x^2-x-3\[-3pt]
4x^3 -9x^2phantom{00000000}&&\
underline{4x^3 — 8x^2,}phantom{0000000};;&&\[-3pt]
-x^2 — ,xphantom{0000};&&\
underline{-x^2+2x},phantom{000};&&\[-3pt]
-;3x+6&&\
underline{-;3x+6}&&\[-3pt]
0&&\
end{array}]

Таким образом, можно сказать, что (x^4+2x^3-9x^2-x+6=(x-2)(x^3+4x^2-x-3)).

Замечание

1) Если (x=x_0) действительно является корнем уравнения, то после такого деления в остатке должен быть (0). В противном случае это означает, что деление в столбик выполнено неверно.

2) Если многочлен делится без остатка (то есть остаток равен (0)) на (x+a), то он также будет делиться без остатка на (c(x+a)) для любого числа (cne 0). Например, в нашем случае, если бы мы поделили многочлен, к примеру, на (2x-4), то получили бы в частном (frac12
x^3+2x^2-frac12x-frac32)
.
Заметим, что также происходит и с числами: если мы разделим (10) на (2), то получим (5); а если разделим (10) на (3cdot 2), то получим (frac53).

3) Деление в столбик помогает найти другие корни уравнения: теперь для того, чтобы найти остальные корни уравнения (x^4+2x^3-9x^2-x+6=0), необходимо найти корни уравнения (x^3+4x^2-x-3=0).
Поэтому рассмотрим несколько фактов, часто помогающих подобрать корни алгебраического уравнения.

Теорема

Если число (x=1) является корнем уравнения ((1)), то сумма всех коэффициентов уравнения равна нулю:

[a_n+a_{n-1}+dots+a_1+a_0=0]

Доказательство

Действительно, так как (x=1) является корнем уравнения ((1)), то после подстановки (x=1) в него мы получим верное равенство. Так как (1) в любой степени равен (1), то слева мы действительно получим сумму коэффициентов (a_i), которая будет равна нулю.

Пример

У уравнения (x^2-6x+5=0) сумма коэффициентов равна нулю: (1-6+5=0). Следовательно, (x=1) является корнем этого уравнения. Это можно проверить просто подстановкой: (1^2-6cdot
1+5=0quadLeftrightarrowquad 0=0)
.

Теорема

Если число (x=-1) является корнем уравнения ((1)), то сумма коэффициентов при четных степенях (x) равна сумме коэффициентов при нечетных степенях (x).

Доказательство

1) Пусть (n) – четное. Подставим (x=-1):

(a_ncdot (-1)^n+a_{n-1}cdot (-1)^{n-1}+a_{n-2}cdot
(-1)^{n-2}+dots+a_1cdot (-1)+a_0=0 quadRightarrow)

 
(a_n-a_{n-1}+a_{n-2}-dots-a_1+a_0=0 quad Rightarrow)
 
(a_n+a_{n-2}+dots+a_0=a_{n-1}+a_{n-3}+dots+a_1)

2) Случай, когда (n) – нечетное, доказывается аналогично.

Пример

В уравнении (x^3+2x^2-8x+5=0) сумма коэффициентов равна нулю:

[1+2-8+5=0]

Значит, число (x=1) является корнем данного уравнения.

Можно разделить в столбик (x^3+2x^2-8x+5) на (x-1):

[begin{array}{rr|l}
x^3+2x^2-8x+5&&negthickspaceunderline{qquad x-1 qquad}\
underline{x^3- x^2,} phantom{00000000}&&negthickspace
quad x^2 + 3x -5\[-3pt]
3x^2 — 8x,phantom{000}&&\
underline{3x^2 — 3x,}phantom{000}&&\[-3pt]
-5x + 5&&\
underline{-5x +5}&&\[-3pt]
0&&\
end{array}]

Таким образом, (x^3+2x^2-8x+5=(x-1)(x^2 + 3x -5)). Значит, остальные корни исходного уравнения — это корни уравнения (x^2+3x-5=0).

А это (x_{1,2}=-dfrac 32pm dfrac{sqrt{29}}2).

Таким образом мы нашли все корни исходного уравнения.

Пример

В уравнении (x^3-x^2+x+3=0) сумма коэффициентов при четных степенях (-1+3=2), а при нечетных: (1+1=2). Таким образом, число (x=-1) является корнем данного уравнения.

Можно разделить в столбик (x^3-x^2+x+3) на (x+1):

[begin{array}{rr|l}
x^3-,x^2+ x+3phantom{0}&&negthickspaceunderline{qquad x+1 qquad}\
underline{x^3+x^2;} phantom{00000000}&&negthickspace
quad x^2 -2x +3\[-3pt]
-2x^2 + xphantom{0000}&&\
underline{-2x^2 -! 2x},phantom{000}&&\[-3pt]
3x + 3&&\
underline{3x +3}&&\[-3pt]
0&&\
end{array}]

Таким образом, (x^3-x^2+x+3=(x+1)(x^2 — 2x +3)). Значит, остальные корни исходного уравнения — это корни уравнения (x^2-2x+3=0).
Но это уравнение не имеет корней ((D<0)), значит, исходное уравнение имеет всего один корень (x=-1).

Замечание

Подбор корней таким образом, деление в столбик и разложение многочлена на множители помогают найти корни уравнения.

Существует еще одна очень важная теорема, позволяющая подобрать рациональный корень алгебраического уравнения, если таковой имеется.

Теорема

Если алгебраическое уравнение

[a_nx^n+a_{n-1}x^{n-1}+dots+a_1x+a_0=0,] где (a_n, dots, a_0)целые числа,
имеет рациональный корень (x=dfrac pq), то число (p) является делителем свободного члена (a_0), а число (q) — делителем старшего коэффициента (a_n).

Пример

Рассмотрим уравнение (2x^4-5x^3-x^2-5x-3=0).

В данном случае (a_0=-3, a_n=2). Делители числа (-3) — это (pm 1,
pm 3)
. Делители числа (2) – это (pm 1, pm 2). Комбинируя из полученных делителей дроби, получаем все возможные варианты рациональных корней:

[pm 1, pm dfrac12, pm 3, pmdfrac32]

По предыдущим теоремам можно быстро понять, что (pm1) не являются корнями. Подставив (x=-dfrac12) в уравнение, получим:

[2cdot dfrac1{16}+5cdot dfrac18-dfrac 14+5cdot dfrac12-3=0
quad Leftrightarrow quad 0=0]

Значит, число (x=-frac12) является корнем уравнения.

Можно перебрать остальные варианты: таким образом мы найдем еще один рациональный корень уравнения (x=3). Значит, уравнение можно представить в виде

[left(x+frac12right)(x-3)cdot Q_2(x)=0 quad text{или}quad (2x+1)(x-3)cdot P_2(x)=0] (тогда (P_2(x)=frac12 Q_2(x))). Заметим, что второй вид записи уравнения более удобный, т.к. нам не придется при делении в столбик работать с дробями.

После деления в столбик (2x^4-5x^3-x^2-5x-3) на ((2x+1)(x-3)=2x^2-5x-3):

[begin{array}{rr|l}
2x^4-5x^3- x^2-5x-3phantom{0}&&negthickspaceunderline{qquad 2x^2-5x-3 qquad}\
underline{2x^4-5x^3-3x^2;} phantom{00000000}&&negthickspace
qquad
x^2+0x+1\[-3pt]
0x^3 +2x^2-5xphantom{0000}&&\
underline{0x^3 + 0x^2+0x}phantom{0000}&&\[-3pt]
2x^2 — 5x-3,&&\
underline{2x^2-5x-3};&&\[-3pt]
0&&\
end{array}]

получим, что (P_2(x)=x^2+1). Данный многочлен не имеет корней, значит, уравнение имеет только два корня: (x=-frac12) и (x=3).

Замечание

Заметим, что если, пользуясь предыдущей схемой, не удалось подобрать рациональный корень уравнения, это вовсе не значит, что уравнение не имеет корней.
Например, уравнение (x^3-2=0) имеет корень — это (x=sqrt[3]2), и он не рациональный.
Для подбора иррациональных корней не существует универсального алгоритма.

Пример

Найдите корни уравнения (4x^3-3x^2-frac{23}6x-1=0).

Заметим, что в данном уравнении не все коэффициенты – целые числа (коэффициент при (x) равен (-frac{23}6)). Но мы можем преобразовать данное уравнение к нужному нам виду: необходимо умножить правую и левую части уравнения на (6):

[24x^3-18x^2-23x-6=0]
Делители свободного члена: (pm 1, pm 2, pm 3, pm 6).
Делители старшего коэффициента: (pm 1, pm 2, pm 3, pm4, pm 6,
pm 8,
pm 12, pm 24)
.
Получилось достаточно много (:))
Выпишем некоторые возможные рациональные корни уравнения:

[pm 1, pm dfrac12, pm dfrac13, pm dfrac 16, pmdfrac18,
pm2, pmdfrac23, pm dfrac14, pm3quad text{small{и
т.д.}}]

Перебирая варианты, убеждаемся, что (frac32) подходит. Значит, многочлен (24x^3-18x^2-23x-6) должен без остатка поделиться на (x-frac32). Для удобства разделим на (2(x-frac32)=2x-3) (чтобы не работать с дробями):

[begin{array}{rr|l}
24x^3-18x^2-23x-6phantom{0}&&negthickspaceunderline{qquad 2x-3 qquad}\
underline{24x^3-36x^2};; phantom{000000000}&&negthickspace
quad 12x^2 +9x +2\[-3pt]
18x^2 -23xphantom{0000}&&\
underline{18x^2 -27x},;phantom{000}&&\[-3pt]
4x -6&&\
underline{4x -6}&&\[-3pt]
0&&\
end{array}]

Таким образом, (24x^3-18x^2-23x-6=(2x-3)(12x^2 +9x +2)). Уравнение (12x^2 +9x +2=0) в свою очередь корней не имеет. Значит, (x=frac32) – единственный корень исходного уравнения.

Теорема

Любой многочлен (P_n(x)=a_nx^n+a_{n-1}x^{n-1}+dots+a_1x+a_0) можно разложить на произведение множителей: линейных ((ax+b, ane 0)) и квадратичных ((cx^2+px+q, cne 0)) с отрицательным дискриминантом.

Следствие

Кубическое уравнение (Ax^3+Bx^2+Cx+D=0) всегда имеет как минимум один вещественный корень, т.к. его левую часть всегда можно представить как

[Ax^3+Bx^2+Cx+D=A(x+r)(x^2+px+q)=0]

Замечание

На самом деле, такой вывод можно сделать о любом алгебраическом уравнении нечетной степени. Но, как правило, в школьном курсе математики крайне редко встречаются уравнения степени выше (4).

Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид  

aх + b = 0, где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.

Например, все уравнения:

2х + 3= 7 – 0,5х;  0,3х = 0;  x/2 + 3 = 1/2 (х – 2) — линейные.

Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения.

Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.

А значение х = 3 не обращает  уравнение  3х + 7 = 13 в верное равенство, так  как  3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.

Решение любых линейных уравнений сводится к решению уравнений вида

aх + b = 0.

Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим

aх = ‒ b.

Если a ≠ 0, то х = ‒ b/a .

Пример 1. Решите уравнение 3х + 2 =11.

Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим 
3х = 11 – 2.

Выполним вычитание, тогда
3х = 9.

Чтобы найти х надо разделить произведение на известный множитель, то есть     
х = 9 : 3.

Значит, значение х = 3 является  решением или корнем уравнения.

Ответ: х = 3.

Если а = 0 и b = 0, то получим уравнение  0х = 0. Это уравнение имеет бесконечно много  решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения  является любое число.

Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.

Раскроем скобки:
5х – 15 + 2 = 3х – 12 + 2х ‒ 1.

Сгруппируем  в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
5х – 3х ‒ 2х =  – 12  ‒ 1 + 15 ‒ 2.

Приведем подобные члены:
0х = 0.

Ответ: х —  любое число.

Если а = 0 и b ≠ 0, то получим уравнение  0х = — b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но  b ≠ 0 .

Пример 3. Решите уравнение х + 8 = х + 5.

Сгруппируем  в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
х – х = 5 ‒ 8.

Приведем подобные члены: 
0х = ‒ 3.

Ответ: нет решений.

На рисунке 1 изображена схема решения линейного уравнения

undefined

Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.

Пример 4. Пусть надо решить уравнение 

undefined

1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.

undefined

2) После сокращения получим
4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)

3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .

4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.

5) Приведем подобные члены:
‒ 22х = ‒ 154.

6) Разделим на  – 22 , Получим
х = 7.

Как видим, корень уравнения равен семи.

Вообще такие уравнения можно решать по следующей схеме:

а) привести уравнение к целому виду;

б) раскрыть скобки;

в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;

г) привести подобные члены;

д) решить уравнение вида aх = b,которое получили после приведения подобных членов.

Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2),  третьего (Пример. 1, 3) и даже с пятого этапа, как в примере 5.

СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).

Пример 5. Решите уравнение 2х = 1/4.

Находим неизвестное  х = 1/4 : 2,
х = 1/8
.

Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.

Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.

Решение

2х + 6 = 5 – 6х

2х + 6х = 5 – 6

8х = ‒1

х = ‒1 : 8

х = ‒ 0, 125

Ответ: ‒ 0, 125

Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.

Решение

– 30 + 18х = 8х – 7

18х  – 8х =  – 7 +30

10х = 23

х = 23 : 10

х = 2,3

Ответ: 2,3

Пример 8. Решите уравнение

 undefined

Решение:

undefined

3(3х – 4) = 4 · 7х + 24

9х – 12 = 28х + 24

9х – 28х = 24 + 12

-19х = 36

х = 36 : (-19)

х = — 36/19

Ответ: — undefined

Пример 9. Найдите f(6), если f (x + 2) = 37-х

Решение

Так как надо найти f(6), а нам известно f (x + 2),
то х + 2 = 6.

Решаем линейное уравнение х + 2 = 6,
получаем х = 6 – 2, х = 4.

Если х = 4, тогда
f(6) = 37-4 = 33 = 27

Ответ: 27.

Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил.  Но если вдруг что-то еще непонятно — попробуй онлайн-занятие с репетитором (подробности тут + 🎁).

Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ. Буду рада Вам помочь!

Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Понравилась статья? Поделить с друзьями:
  • Составьте как пишется правило
  • Как найти смешное видео по описанию
  • Как найти аффилированные лица компании
  • Как найти книгу рекордов гиннеса
  • Как найти значение выражения арифметический квадратный корень