Как найти импульс системы по импульсам тел

Определение

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

p = mv

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости (p↑↓v), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

10 г = 0,01 кг

Импульс равен:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Определение

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p1отн2 = m1v1отн2 = m1(v1v2)

p1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v1отн2 — скорость первого тела относительно второго, v1 и v2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

15 т = 15000 кг

p1отн2 = m1(v1 – v2) = 15000(20 – 15) = 75000 (кг∙м/с) = 75∙103 (кг∙м/с)

Изменение импульса тела

ОпределениеИзменение импульса тела — векторная разность между конечным и начальным импульсом тела:

p = pp0 = p + (– p0)

p — изменение импульса тела, p — конечный импульс тела, p0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечная скорость после удара:

v = 0.

Конечный импульс тела:

p = 0.

Модуль изменения импульса тела равен модулю его начального импульса:

∆p = p0.

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p.

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

∆p = p0 – p = m(v0 – v)

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p = 2mv0

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Угол падения равен углу отражения:

α = α’

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

Или:

F∆t — импульс силы, ∆p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Определение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Реактивная сила:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

V = a∆t

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Определение

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Закон сохранения импульсаПолный импульс замкнутой системы сохраняется:

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

Важно!

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение  проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

m2v2 = (m1 + m2)v

Отсюда скорость равна:

Задание EF17556

Импульс частицы до столкновения равен p1, а после столкновения равен p2, причём p1 = p, p2 = 2p, p1p2. Изменение импульса частицы при столкновении Δp равняется по модулю:

а) p

б) p√3

в) 3p

г) p√5


Алгоритм решения

1.Записать исходные данные.

2.Построить чертеж, обозначить векторы начального и конечного импульсов, а также вектор изменения импульса. Для отображения вектора изменения импульса использовать правило сложения векторов методом параллелограмма.

3.Записать геометрическую формулу для вычисления длины вектора изменения импульса.

4.Подставить известные значения и вычислить.

Решение

Запишем исходные данные:

 Модуль импульса частицы до столкновения равен: p1 = p.

 Модуль импульса частицы после столкновения равен: p2 = 2p.

 Угол между вектором начального и вектором конечного импульса: α = 90о.

Построим чертеж:

Так как угол α = 90о, вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δp=p21+p22

Подставим известные данные:

Δp=p2+(2p)2=5p2=p5

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17695

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено


Алгоритм решения

1.Записать формулу, связывающую импульс тема с его кинематическими характеристиками движения.

2.Сделать вывод о том, как зависит характер движения от импульса.

3.На основании вывода и анализа графика установить характер движения тела на интервалах.

Решение

Импульс тела есть произведение массы тела на его скорость:

p = mv

Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.

На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.

Верный ответ: б.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22730

Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.


Алгоритм решения

1.Записать исходные данные.

2.Записать закон сохранения импульса применительно к задаче.

3.Записать формулу кинетической энергии тела.

4.Выполнить общее решение.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса камня: m1 = 3 кг.

 Масса тележки с песком: m2 = 15 кг.

 Кинетическая энергия тележки с камнем: Ek = 2,25 Дж.

Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:

m1v1+m2v2=(m1+m2)v

Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:

m1v1cosα=(m1+m2)v

Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:

Ek=(m1+m2)v22

Отсюда скорость равна:

v=2Ekm1+m2

Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:

v1=(m1+m2)vm1cosα=(m1+m2)m1cosα·2Ekm1+m2

Подставим известные данные и произведем вычисления:

v1=(3+15)3cos60o·2·2,253+15=12·0,25=12·0,5=6 (мс)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22520

Снаряд, имеющий в точке О траектории импульсp0, разорвался на два осколка. Один из осколков имеет импульс p1
. Импульс второго осколка изображается вектором:

а) AB

б) BC

в) CO

г) OD


Алгоритм решения

1.Сформулировать закон сохранения импульса и записать его в векторной форме.

2.Применить закон сохранения импульса к задаче.

3.Выразить из закона импульс второго осколка и найти на рисунке соответствующий ему вектор.

Решение

Согласно закону сохранения импульса, импульс замкнутой системы тел сохраняется. Записать его можно так:

p1+p2=p′
1
+p2

Можем условно считать осколки замкнутой системой, так как они не взаимодействуют с другими телами. Применяя к ним закон сохранения импульса, получим:

p0=p1+p2

Отсюда импульс второго осколка равен векторной разности импульса снаряда и импульса первого осколка:

p2=p0p1

Известно, что разностью двух векторов является вектор, начало которого соответствует вычитаемому вектору, а конец — вектору уменьшаемому. В нашем случае вычитаемый вектор — вектор импульса первого осколка. Следовательно, начало вектора импульса второго осколка лежит в точке А. Уменьшаемый вектор — вектор импульса снаряда. Следовательно, конец вектора лежит в точке В. Следовательно, искомый вектор — AB.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18122

Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?

Ответ:

а) 27 г

б) 64 г

в) 81 г

г) 100 г


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.

3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса пластилиновой пули: m = 9 г.

 Скорость пластилиновой пули: v = 20 м/с.

 Максимальный угол отклонения нити: α = 60°.

Переведем единицы измерения величин в СИ:

Сделаем чертеж:

Нулевой уровень — точка А.

После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:

mv=(m+M)V

После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.

Закон сохранения энергии для точки В:

(m+M)V22=(m+M)gh

V22=gh

Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:

V=2glcosα

Подставим это выражение в закон сохранения импульса для точки А и получим:

Выразим массу груза:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 20.2k

Импульс

  • Второй закон Ньютона в импульсной форме

  • Пример вычисления силы

  • Импульс системы тел

  • Закон сохранения импульса

  • Закон сохранения проекции импульса

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: импульс тела, импульс системы тел, закон сохранения импульса.

Импульс тела — это векторная величина, равная произведению массы тела на его скорость:

vec{p} = mvec{upsilon } .

Специальных единиц измерения импульса нет. Размерность импульса — это просто произведение размерности массы на размерность скорости:

[p]=[m]cdot [upsilon ]= frac{displaystyle kgcdot m}{displaystyle c}.

Почему понятие импульса является интересным? Оказывается, с его помощью можно придать второму закону Ньютона несколько иную, также чрезвычайно полезную форму.

к оглавлению ▴

Второй закон Ньютона в импульсной форме

Пусть vec{F} — равнодействующая сил, приложенных к телу массы m. Начинаем с обычной записи второго закона Ньютона:

mvec{a} =vec{F} .

С учётом того, что ускорение тела vec{a} равно производной вектора скорости, второй закон Ньютона переписывается следующим образом:

mfrac{displaystyle dvec{upsilon } }displaystyle {dt}=vec{F} .

Вносим константу m под знак производной:

frac{displaystyle d(mvec{upsilon } )}{displaystyle dt}= vec{F} .

Как видим, в левой части получилась производная импульса:

frac{displaystyle dvec{displaystyle p} }{displaystyle dt}= vec{F} . ( 1)

Соотношение ( 1) и есть новая форма записи второго закона Ньютона.

Второй закон Ньютона в импульсной форме. Производная импульса тела есть равнодействующая приложенных к телу сил.

Можно сказать и так: результирующая сила, действующая на тело, равна скорости изменения импульса тела.

Производную в формуле ( 1) можно заменить на отношение конечных приращений:

frac{displaystyle Delta vec{displaystyle p} }{Delta displaystyle t}= vec{displaystyle F} . ( 2)

В этом случае vec{F} есть средняя сила, действующая на тело в течение интервала времени Delta t. Чем меньше величина Delta t, тем ближе отношение Delta vec{p} /Delta t к производной dvec{p} /dt, и тем ближе средняя сила vec{F} к своему мгновенному значению в данный момент времени.

В задачах, как правило, интервал времени Delta t достаточно мал. Например, это может быть время соударения мяча со стенкой, и тогда vec{F} — средняя сила, действующая на мяч со стороны стенки во время удара.

Вектор Delta vec{p} в левой части соотношения ( 2) называется изменением импульса за время Delta t. Изменение импульса — это разность конечного и начального векторов импульса. А именно, если vec{p} _{0} — импульс тела в некоторый начальный момент времени, vec{p} — импульс тела спустя промежуток времени Delta t, то изменение импульса есть разность:

Delta vec{p} = vec{p} -vec{p} _{0}.

Подчеркнём ещё раз, что изменение импульса — это разность векторов (рис. 1):

Рис. 1. Изменение импульса

Пусть, например, мяч летит перпендикулярно стенке (импульс перед ударом равен vec{p} _{0} ) и отскакивает назад без потери скорости (импульс после удара равен vec{p}= -vec{p} _{0}). Несмотря на то, что импульс по модулю не изменился (p= p _{0}), изменение импульса имеется:

Delta vec{p} = vec{p} -vec{p} _{0}= -vec{p} _{0}-vec{p} _{0}= -2vec{p} _{0}.

Геометрически эта ситуация показана на рис. 2:

Рис. 2. Изменение импульса при отскоке назад

Модуль изменения импульса, как видим, равен удвоенному модулю начального импульса мяча: Delta p= 2p_{0}.

Перепишем формулу ( 2) следующим образом:

Delta vec{p} =vec{F} Delta t, ( 3)

или, расписывая изменение импульса, как и выше:

vec{p} -vec{p} _{0}=vec{F} Delta t.

Величина vec{F} Delta t называется импульсом силы. Специальной единицы измерения для импульса силы нет; размерность импульса силы равна просто произведению размерностей силы и времени:

[FDelta t]= [F]cdot [t]= Hcdot c.

(Обратите внимание, что Hcdot c оказывается ещё одной возможной единицей измерения импульса тела.)

Словесная формулировка равенства ( 3) такова: изменение импульса тела равно импульсу действующей на тело силы за данный промежуток времени. Это, разумеется, снова есть второй закон Ньютона в импульсной форме.

к оглавлению ▴

Пример вычисления силы

В качестве примера применения второго закона Ньютона в импульсной форме давайте рассмотрим следующую задачу.

Задача. Шарик массы m= 100 г, летящий горизонтально со скоростью upsilon = 6 м/с, ударяется о гладкую вертикальную стену и отскакивает от неё без потери скорости. Угол падения шарика (то есть угол между направлением движения шарика и перпендикуляром к стене) равен alpha = 60^{circ}. Удар длится Delta t= 0,01 с. Найти среднюю силу,
действующую на шарик во время удара.

Решение. Покажем прежде всего, что угол отражения равен углу падения, то есть шарик отскочит от стены под тем же углом alpha (рис. 3).

Рис. 3. К задаче (вид сверху)

Тут всё дело в том, что стена — гладкая. Это значит, что трения между шариком и стеной нет. Следовательно, со стороны стены на шарик действует единственная сила vec{N} — сила упругости, направленная перпендикулярно стене (рис. 4).

Рис. 4. К задаче

Согласно ( 3) имеем: Delta vec{p} = vec{N} Delta t. Отсюда следует, что вектор изменения импульса сонаправлен с вектором vec{N} , то есть направлен перпендикулярно стене в сторону отскока шарика (рис. 5).

Рис. 5. К задаче

Векторы vec{p} _{0} и
vec{p} равны по модулю
(так как скорость шарика не изменилась). Поэтому треугольник, составленный из векторов vec{p} _{0}, vec{p} и Delta vec{p} , является равнобедренным. Значит, угол между векторами vec{p} и Delta vec{p} равен alpha , то есть угол отражения действительно равен углу падения.

Теперь заметим вдобавок, что в нашем равнобедренном треугольнике есть угол 60^{circ} (это угол падения); стало быть, данный треугольник — равносторонний. Отсюда:

Delta p= p_{0}= mupsilon = 0,1cdot 6= 0,6~Hcdot c.

И тогда искомая средняя сила, действующая на шарик:

N= frac{displaystyle Delta p}{displaystyle Delta t}= frac{displaystyle 0,6}{displaystyle 0,01}= 60~H.

к оглавлению ▴

Импульс системы тел

Начнём с простой ситуации системы двух тел. А именно, пусть имеются тело 1 и тело 2 с импульсами vec{p} _{1} и vec{p} _{2} соответственно. Импульс vec{p} системы данных тел — это векторная сумма импульсов каждого тела:

vec{p} = vec{p} _{1}+vec{p} _{2}.

Оказывается, для импульса системы тел имеется формула, аналогичная второму закону Ньютона в виде ( 1). Давайте выведем эту формулу.

Все остальные объекты, с которыми взаимодействуют рассматриваемые нами тела 1 и 2, мы будем называть внешними телами. Силы, с которыми внешние тела действуют на тела 1 и 2, называем внешними силами. Пусть vec{F} _{1} — результирующая внешняя сила, действующая на тело 1. Аналогично vec{F} _{2} — результирующая внешняя сила, действующая на тело 2 (рис. 6).

Рис. 6. Система двух тел

Кроме того, тела 1 и 2 могут взаимодействовать друг с другом. Пусть тело 2 действует на тело 1 с силой vec{T} . Тогда тело 1 действует на тело 2 с силой {vec{T} }. По третьему закону Ньютона силы vec{T} и {vec{T} } равны по модулю и противоположны по направлению: {vec{T} }. Силы vec{T} и {vec{T} } — это внутренние силы, действующие в системе.

Запишем для каждого тела 1 и 2 второй закон Ньютона в форме ( 1):

frac{displaystyle dvec{displaystyle p} _ {displaystyle 1}}{displaystyle dt}=vec{F} _{1}+vec{T} , ( 4)

frac{displaystyle dvec{displaystyle p} _{displaystyle 2}}{displaystyle dt}=vec{F} _{2}+{vec{T}}. ( 5)

Сложим равенства ( 4) и ( 5):

frac{displaystyle dvec{displaystyle p} _{displaystyle 1}}{displaystyle dt}+frac{displaystyle dvec{displaystyle p} _{displaystyle 2}}{displaystyle dt}= vec{F} _{1}+vec{F} _{2}+vec{T} +{vec{T}}.

В левой части полученного равенства стоит сумма производных, равная производной суммы векторов vec{p} _{1} и vec{p} _{2}. В правой части имеем vec{T} +{vec{T}} в силу третьего закона Ньютона:

frac{displaystyle d(vec{displaystyle p} _{displaystyle 1}+vec{displaystyle p} _{displaystyle 2})}{displaystyle dt}= vec{F} _{1}+vec{F} _{2}.

Но vec{p} _{1}+vec{p} _{2}= vec{p} — это импульс системы тел 1 и 2. Обозначим также vec{F} _{1}+vec{F} _{2}= vec{F} _{external} — это результирующая внешних сил, действующих на систему. Получаем:

frac{dvec{displaystyle p} }{displaystyle dt}= vec{F} _{external}. ( 6)

Таким образом, скорость изменения импульса системы тел есть равнодействующая внешних сил, приложенных к системе. Равенство ( 6), играющее роль второго закона Ньютона для системы тел, мы и хотели получить.

Формула ( 6) была выведена для случая двух тел. Теперь обобщим наши рассуждения на случай произвольного количества тел в системе.

Импульсом системы тел тел называется векторная сумма импульсов всех тел, входящих в систему. Если система состоит из N тел, то импульс этой системы равен:

vec{p} = vec{p} _{1}+vec{p} _{2}+...+vec{p} _{N}.

Дальше всё делается совершенно так же, как и выше (только технически это выглядит несколько сложнее). Если для каждого тела записать равенства, аналогичные ( 4) и ( 5), а затем все эти равенства сложить, то в левой части мы снова получим производную импульса системы, а в правой части останется лишь сумма внешних сил (внутренние силы, попарно складываясь, дадут нуль ввиду третьего закона Ньютона). Поэтому равенство ( 6) останется справедливым и в общем случае.

к оглавлению ▴

Закон сохранения импульса

Система тел называется замкнутой, если действия внешних тел на тела данной системы или пренебрежимо малы, или компенсируют друг друга. Таким образом, в случае замкнутой системы тел существенно лишь взаимодействие этих тел друг с другом, но не с какими-либо другими телами.

Равнодействующая внешних сил, приложенных к замкнутой системе, равна нулю: vec{F} _{external}= vec{0} . В этом случае из ( 6) получаем:

frac{displaystyle dvec{displaystyle p} }{displaystyle dt}= vec{0} .

Но если производная вектора обращается в нуль (скорость изменения вектора равна нулю), то сам вектор не меняется со временем:

vec{p} = const.

Закон сохранения импульса. Импульс замкнутой системы тел остаётся постоянным с течением времени при любых взаимодействиях тел внутри данной системы.

Простейшие задачи на закон сохранения импульса решаются по стандартной схеме, которую мы сейчас покажем.

Задача. Тело массы m_{1}= 800 г движется со скоростью upsilon _{1}= 3 м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы m_{2}= 200 г со скоростью upsilon _{2}= 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение. Ситуация изображена на рис. 7. Ось X направим в сторону движения первого тела.

Рис. 7. К задаче

Поскольку поверхность гладкая, трения нет. Поскольку поверхность горизонтальная, а движение происходит вдоль неё, сила тяжести и реакция опоры уравновешивают друг друга:

m_{1}vec{g} +vec{N} _{1}= vec{0} ,
m_{2}vec{g} +vec{N} _{2}= vec{0} .

Таким образом, векторная сумма сил, приложенных к системе данных тел, равна нулю. Это значит, что система тел замкнута. Стало быть, для неё выполняется закон сохранения импульса:

vec{p} _{before~hitting}= vec{p} _{after~hitting}. ( 7)

Импульс системы до удара — это сумма импульсов тел:

vec{p} _{before~hitting}= m_{1}vec{upsilon _{1}} +m_{2}vec{upsilon _{2}} .

После неупругого удара получилось одно тело массы m_{1}+m_{2}, которое движется с искомой скоростью vec{upsilon } :

vec{p} _{after~hitting}= (m_{1}+m_{2})vec{upsilon } .

Из закона сохранения импульса ( 7) имеем:

m_{1}vec{upsilon _{1}} +m_{2}vec{upsilon _{2}} = (m_{1}+m_{2})vec{upsilon } .

Отсюда находим скорость тела, образовавшегося после удара:

vec{upsilon} = frac{displaystyle m_{displaystyle 1}vec{displaystyle upsilon _{displaystyle 1}} +displaystyle m_{displaystyle 2}vec{displaystyle upsilon _{displaystyle 2}} }{displaystyle m_{displaystyle 1}+displaystyle m_{displaystyle 2}}.

Переходим к проекциям на ось X:

upsilon _{x}= frac{displaystyle m_{displaystyle 1}displaystyle upsilon _{displaystyle 1x}+displaystyle m_{displaystyle 2}upsilon _{displaystyle 2x}}{displaystyle m_{displaystyle 1}+displaystyle m_{displaystyle 2}}.

По условию имеем: upsilon _{1x}= 3 м/с, upsilon _{2x}= -13 м/с, так что

upsilon _{x}= frac{displaystyle 0,8cdot 3-0,2cdot 13}{displaystyle 0,8+0,2}= -0,2frac{m}{c}.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Искомая скорость: upsilon = 0,2 м/с.

к оглавлению ▴

Закон сохранения проекции импульса

Часто в задачах встречается следующая ситуация. Система тел не является замкнутой (векторная сумма внешних сил, действующих на систему, не равна нулю), но существует такая ось X, сумма проекций внешних сил на ось X равна нулю в любой момент времени. Тогда можно сказать, что вдоль данной оси наша система тел ведёт себя как замкнутая, и проекция импульса системы на ось X сохраняется.

Покажем это более строго. Спроектируем равенство ( 6) на ось X:

frac{displaystyle dp_{displaystyle x}}{displaystyle dt}= F_{external,x}.

Если проекция равнодействующей внешних сил обращается в нуль, F_{external,x}= 0, то

frac{displaystyle dp_{displaystyle x}}{displaystyle dt}= 0.

Следовательно, проекция p_{x} есть константа:

p_{x}= const.

Закон сохранения проекции импульса. Если проекция на ось X суммы внешних сил, действующих на систему, равна нулю, то проекция p_{x} импульса системы не меняется с течением времени.

Давайте посмотрим на примере конкретной задачи, как работает закон сохранения проекции импульса.

Задача. Мальчик массы M, стоящий на коньках на гладком льду, бросает камень массы m со скоростью upsilon под углом alpha к горизонту. Найти скорость u, с которой мальчик откатывается назад после броска.

Решение. Ситуация схематически показана на рис. 8. Мальчик изображён прямогольником.

Рис. 8. К задаче

Импульс системы «мальчик + камень» не сохраняется. Это видно хотя бы из того, что после броска появляется вертикальная составляющая импульса системы (а именно, вертикальная составляющая импульса камня), которой до броска не было.

Стало быть, система, которую образуют мальчик и камень, не замкнута. Почему? Дело в том, что векторная сумма внешних сил Mvec{g} +mvec{g} +vec{N} не равна нулю во время броска. Величина N больше, чем сумма Mg+mg, и за счёт этого превышения как раз и появляется вертикальная компонента импульса системы.

Однако внешние силы действуют только по вертикали (трения нет). Стало быть, сохраняется проекция импульса на горизонтальную ось X. До броска эта проекция была равна нулю. Направляя ось X в сторону броска (так что мальчик поехал в направлении отрицательной полуоси), получим:

-Mu+mupsilon _{0}cos alpha = 0,

откуда

u=frac{mupsilon _{0}cos alpha }{M}.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Импульс» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
07.05.2023

В статье обсуждается, как рассчитать импульс системы по импульсам каждого объекта. 

Импульс системы определяется движением количества объектов, которыми обладает система. Одни из них движутся со своими скоростями внутри системы, другие покоятся. Следовательно, мы можем вычислить импульс системы, суммируя все импульсы объектов в системе. 

Узнать больше о Momentum.

Вычислите импульс системы, содержащей движущиеся объекты, например объект А массой 5 ​​кг, движущийся со скоростью 2 м/с, и объект В массой 3 кг, движущийся со скоростью 5 м/с. 

Данный:

m1 = 5 кг

m2 = 3 кг

u1 = 2 м / с

u2 = 5 м / с

Найти: Псистема =?

Формула:

Σ Pсистема = P1+ Р2 +…

Решения:

Импульс системы рассчитывается путем сложения импульсов двух движущихся объектов.

Pсистема = P1 + Р2

Pсистема = м1u1 + м2u2

Подставляя все значения,

Pсистема = 5 х 2 + 3 х 5

Pсистема = 25

Импульс системы, состоящей из двух движущихся тел, равен 25 кг·м/с.

Узнать больше о Net Force

Как рассчитать импульс системы

Как рассчитать импульс системы

Каков импульс системы?

Импульс системы – это движение всей массы системы, включающей несколько объектов.

Когда система включает в себя движение многих объектов, понятие центр массы вводится. Это среднее положение всех объектов в системе, вес по отношению к их массе. Таким образом, импульс системы есть произведение полной массы и скорости центра масс. 

Общий импульс системы

Общий импульс системы
(Кредит: Shutterstock)

Импульс системы равен Pсм = Мвcm

Где vcm есть скорость центра масс. 

Mvcm = Мд/дтрcm ……… .. (1)

Где rcm это положение центра масс. 

Формула центра масс такова, 

rcm = м1r1/м2р2

Уравнение (1) принимает вид 

Mvcm = Md/dt (m1r1/м2р2)

Mvcm = м1д/дтр1 +m2д/дтр2 + …

Mvcm = м1v1 + м2v2

Mvcm = P1+P2

Р см = Р1+P2

Вот почему мы говорим, импульс системы есть вектор сумма всех импульсов каждого объекта в системе. 

Подробнее о Как рассчитать моментум?

Мы видим три движущихся транспортных средства, таких как автомобиль массой 150 кг, движущийся со скоростью 50 км/ч, мотоцикл массой 80 кг, движущийся со скоростью 80 км/ч, и грузовик массой 250 кг, движущийся со скоростью 30 км/ч. Вычислите импульс системы, в которой автомобиль и мотоцикл движутся в одном направлении, а грузовик — в противоположном.

Данный

m1 = 150 кг

m2 = 80 кг

m3 = 250 кг

v1 = 50 км / ч

v2 = 80 км / ч

v3 = 30 км / ч

Найти: Псистема =?

Формула:

Pcm= P1+P2 +…

Решения:

Импульс системы рассчитывается как

Pcm = P1+P2 +…

Pсистема = P1 + Р2 + Р3

Pсистема = м1v1+ м2v2 + (-м3v3)

Подставляя все значения,

Pсистема = 150 х 50 + 80 х 80 – 250 х 30

Pсистема = 7500 + 6400 – 7500

Pсистема = 6400 кг.км/час

Pсистема = 6400 х 1000/3600

Pсистема = 1777.7 

Импульс системы, состоящей из движущегося автомобиля, мотоцикла и грузовика, равен 1777.7 кг.м/с.

Узнайте больше о начальном импульсе.

Как рассчитать полный угловой момент системы?

Полный угловой момент системы рассчитывается с использованием ее момента инерции и угловой скорости.

При расчете полного углового момента нам нужно предположить только объекты, движущиеся под углом в системе. Инерция вращения и угловая скорость объекта предлагают его угловой момент для расчета полного углового момента путем сложения всех угловых моментов объекта в системе. 

Мы обсуждали только импульс объекта, который движется прямолинейно или линейно со скоростью v. В системе также присутствует объект, движущийся под углом со скоростью ω. Объект имеет линейный импульс (P) или угловой момент (L) в зависимости от движения.

Для линейное движение, линейный импульс объекта равен P = mv. 

Для угловое движение, угловой момент объекта 

L = Iω ………………(*)

Где я = момент инерции определяется как 

«сумма массы объекта с системой с квадратом его расстояния от оси вращения системы ‘

Формулы момента инерции

Момент инерции для различных форм (Кредит: Shutterstock)

я = Σмiri2

я = мистер2

Соотношение между угловая скорость ω и линейная скорость v равна ω = v/r

Подставляя значения I и ω в уравнение (*), получаем

L = v/r мр2

= р *мв or

= г * П ……………… (2)

Из приведенного выше соотношения между угловой момент и импульса, мы можем вычислить угловой момент для неорбитальных движущихся объектов внутри системы. 

Линейный импульс против углового момента

Связь между линейным и угловым моментом
(Фото: Википедия)

Полный угловой момент системы представляет собой сумму углового момента каждого объекта в системе. 

л = л1 + л2 + лN ………………. (3) 

Второй закон движения Ньютона говорит 

Σ F = d/dt P

Дифференцируя уравнение (2) по t, 

д/дт л = V * д/дт П

д/дт л = г* Σ Ф ……… .. (4)

Правая часть представляет собой формулу крутящего момента, которая также называетсямомент силыд., что заставляет тело вращаться вокруг неподвижной оси. 

Σ = г * Σ Ф ……………… .. (5)

Используя уравнения (3), (4) и (5), 

д/дт лidli/дт = Σiτi

Приведенное выше уравнение выражает сумма крутящего момента на каждом объекте в системе дает чистый внешний крутящий момент Στ на систему, чтобы изменить ее полный угловой момент. Следовательно,

dL/dt= Στ

Но если нет крутящий момент, действующий на вращающийся объекты, Στ = 0 , тогда

dL/дт = 0,

Так сохраняется угловой момент системы. 

Это означает, что угловой момент отдельного объекта может измениться во время столкновения, но общий угловой момент системы останется прежним. 

Для системы двух вращающихся тел

Lперед столкновением = лпосле столкновения

I1iω1i + Я2iω2i = Я1fω1f + Я2fω2f ………………….. (6)

Полный угловой момент

Сохранение углового момента (Кредит: Shutterstock)

Подробнее об угловой скорости.

Рассчитайте угловой момент системы, состоящей из двух конькобежцев с моментом инерции 5 кг·м2 и 8 кг·м2, которые скользят под углом со скоростью 10 и 15 рад/с соответственно, тяня их за руки. Кроме того, если они протягивают руки, чтобы уменьшить движение, первый фигурист скользит со скоростью 2 рад/с. Тогда какова скорость второго скольжения фигуриста?  

Данный

I1 = 5кг.м2

I2 = 8кг.м2

ω1i = 10 рад / с

ω2i = 15 рад / с

ω1f = 2 рад/с

Найти:

  1. Lобщий =?
  2. ω2f =?

Формула

  1. Lобщий = л1 + L2
  2. I1iω1i + Я2iω2i = Я1fω1f + Я2fω2f

Решения:

Момент количества движения системы обоих конькобежцев рассчитывается как

Lобщий = л1 + L2

Lобщий = Я1iω1i + Я2iω2i

Подставляя все значения,

Lобщий = 5 х 10 + 8 х 15

Lобщий = 50 + 120

Lобщий = 170

Угловой момент системы конькобежцев 170кг.м.2/ S

Конечная скорость второго фигуриста рассчитывается по формуле закон сохранение момента импульса.

I1iω1i + Я2iω2i = Я1fω1f + Я2fω2f

Подставляя все значения,

5 х 10 + 8 х 15 = 5 х 2 + 8 х ω2f

170 = 10 + 8ω2f

2f = 160

ω2f = 20 

Скорость, с которой скользит второй фигурист после вытягивания рук, составляет 20 рад/с.

Узнайте больше об относительном движении.


Видеоурок 1: Закон сохранения импульса — Физика в опытах и экспериментах

Видеоурок 2: Физика — импульс и закон сохранения импульса

Лекция: Импульс системы тел

Замкнутая система тел

Чаще всего в практическом применении достаточно тяжело рассматривать движение исключительно одного тела, поэтому вводится понятие масса системы тел. Данная ФВ определяется суммой массы всех тел, что входят в данную систему.

Когда система тел достаточно объемная величина, принять её за материальную точку не очень удобно, поскольку любая материальная точка должна иметь свою координату. Чтобы

определить координату центра масс системы тел

, следует воспользоваться следующей

формулой

:

Если система тел двигается с некоторой скоростью, то для определения её импульса следует найти сумму всех импульсов тел данной системы.В школьной программе изучаются только процессы, происходящие в замкнутой системе.

Замкнутая система — это система, в которой тела взаимодействуют только друг с другом.

Закон сохранения импульса

Если некоторые два тела системы двигались с некоторой скоростью, то сумма импульсов данных тел до взаимодействия равняется сумме импульсов после него.

Например, если на движущуюся тележку, массой 2 кг и скоростью 3 м/с, налетает и упруго соударяется вторая тележка, массой 4 кг и скоростью 1 м/с. После взаимодействия обе тележки начинают двигаться в противоположном направлении, причем первая имеет скорость 2 м/с, то по закону сохранения импульса, вторая тележка будет иметь скорость c учетом направления проекций:


m1v1 — m2v2 = m2v3 — m1v4,
v3 = (m1v1 — m2v2 + m1v4) / m2,
v3 = 1,5 м/с.

Все взаимодействия, происходящие в замкнутой системе, принято считать упругими. Это значит, в результате соударений тела не меняют своей формы и свойств. В реальном мире не существует абсолютно упругих взаимодействий. Изменения структуры тела происходят всегда.

Р
азделим
силы на внутренние и внешние:

— внутренние силы, действующие между
телами, включенными в систему (i,j
= 1,2,…, i

j),
F1,F2…-
внешние силы, действующие со стороны
других тел, не включенных в систему.


— теорема об изменении полного импульса
системы материальных точек

(II
закон Ньютона для системы материальных
точек), т.е. импульс системы может
измениться только под действием внешних
сил.

Вопрос 5. Центр масс(центр инерции). Уравнение движения центра масс.

Центром масс
(центром инерции)
называется
воображаемая точка, в которой как бы
сосредоточена вся масса тела или системы
тел. Центр
тяжести

практически совпадает с центром масс.

Перепишем первое
уравнение, дифференцируя, найдем скорость
центра масс и получим:


.


уравнение
движения центра масс.

Тема 6. Закон сохранения импульса.

Вопрос 1. Замкнутая и незамкнутая системы в механике. Закон сохранения импульса.

Система, на которую
не действуют внешние силы или их действие
скомпенсировано, т.е. для которой

,
называется замкнутой
или
изолированной.
Для такой
системы можно записать:

и,
т.к.

,
следовательно,

закон
сохранения импульса
:
«В замкнутой системе полный импульс
материальных точек остается постоянным».

Пространство
однородно

– это означает, что все точки пространства
эквивалентны, т.е. равноправны. В
однородном пространстве нет каких-либо
особых точек, отличных от других. Если
некоторую систему тел перенести в другое
место пространства, а тела в ней поставить
в те же условия, в которых они находились
в прежнем положении, то это никак не
отразится на ходе всех последующих
явлений. Если взять замкнутую систему
тел, для которой полный импульс системы
равен некоторой величине, то и в любом
другом месте полный импульс будет
оставаться тем же самым. Иначе говоря,
закон
сохранения импульса

является следствием однородности
пространства.

Тема 7. Работа. Мощность. Энергия.

Вопрос 1. Определение элементарной работы, различные выражения.


-элементарная
работа, т.е. работа, совершаемая при
таком малом перемещении, в пределах
которого силу можно считать неизменной,
Fr

проекция силы на направление перемещения.




полная работа (это всегда интеграл).

,только
при

,

= 0 и S
=

r.

-работа
на конечном участке, выраженная через
проекции силы и изменения координат.

Н
а
приведенном графике для одномерного
движения 
работа – площадь под кривой зависимости
проекции
силы от перемещения х.Работа
является положительной, если сила
действует в сторону перемещения
(перпендикулярная
сила работы не совершает).

Вопрос 2. Мощность, ее выражение через силу и скорость тела.

Мощность (Дж/с
= Вт) – по смыслу – это работа, совершаемая
за единицу времени.

Используя выражение
для работы, мощность можно выразить как
скалярное произведение вектора силы и
вектора скорости:
.

Вопрос 3. Кинетическая энергия и ее выражение через импульс тела.

Кинетическая
энергия

это энергия, связанная с движением.
Выражение для кинетической энергии
можно получить, если найти работу,
которую должна совершить сила F,
чтобы сообщить неподвижному телу массой
m
скорость v.

Таким образом,
неподвижное тело за счет работы силы
приобрело скорость и кинетическую
энергию.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти картинку рабочего стола windows 10
  • Как найти человека на сайте вов
  • Как найти где обрыв провода
  • Как составить исковое требование в банках
  • Как найти торги на сбербанк аст