Как найти импульс системы после неупругого удара

Закон сохранения импульса на плоскости

  • Теория

  • Задачи

  • Задача 1

  • Задача 2.

  • Задача 3.

  • Задача 4.

Из кодификатора по физике, 2020.
«1.4.3. Закон сохранения импульса: в ИСО

Теория

Импульс тела — векторная физическая величина, равная произведению массы тела m на его скорость overrightarrow { upsilon } :

— Обозначается буквой overrightarrow { p }, измеряется в килограмм-метр в секунду (кг∙м/с).
— Импульс тела направлен в ту же сторону, что и скорость тела, и наоборот.

Изменение импульса тела

где overrightarrow { p } и overrightarrow { { p }_{ 0 } } — конечный и начальный импульсы тела, overrightarrow { upsilon } и overrightarrow { { upsilon }_{ 0 } } — конечная и начальная скорости тела, m — масса тела.

Импульс системы тел overrightarrow { p } равен векторной сумме импульсов тел overrightarrow { { p }_{ 1 } } ,overrightarrow { { p }_{ 2 } } ,..., входящих в эту систему

где m1, m2, … — массы тел системы, overrightarrow { { upsilon }_{ 1 } } ,overrightarrow { { upsilon }_{ 2 } } ,... — скорости тел системы.

Изменение импульса системы тел

где overrightarrow { { p }_{ 1 } } ,overrightarrow { { p }_{ 2 } } ,... — конечный импульс системы тел, overrightarrow { { p }_{ 01 } } ,overrightarrow { { p }_{ 02 } } ,... — начальный импульс системы тел, m1, m2, … — массы тел системы, overrightarrow { { upsilon }_{ 1 } } ,overrightarrow { { upsilon }_{ 2 } } ,... — конечные скорости тел системы, overrightarrow { { upsilon }_{ 01 } } ,overrightarrow { { upsilon }_{ 02 } } ,... — начальные скорости тел системы.

Импульс силы — векторная физическая величина, равная произведению силы на время t ее действия:

— Обозначается буквой overrightarrow { { I } }, измеряется в Ньютон на секунду (Н∙с).
— Импульс силы направлен в ту же сторону, что и сила, и наоборот.

Закон сохранения импульса:

в инерциальной системе отсчета (ИСО) векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю.

Задачи на применение закона сохранения импульса тел (системы тел) решайте, придерживаясь следующего плана:

1. Сделайте схематический чертеж. Укажите направления осей координат ОX и ОY.

— Материальную точку изобразите в виде двух прямоугольников (или окружностей) и укажите над ними (если это известно) направления скорости или импульса до и после взаимодействия.
— Индексы скоростей, импульсов на рисунке должны соответствовать индексам скоростей, импульсов в условии.

2. Определите, векторная сумма внешних сил, действующих на систему тел, равна нулю или нет. Если равна нулю, то запишите закон сохранения импульса тел в векторном виде и в проекциях.

Определите значения проекций всех величин.

3. Решите полученные уравнения.
 

к оглавлению ▴

Задачи

Задача 1

Два тела движутся по взаимно перпендикулярным пересекающимся прямым, как показано на рисунке. Модуль импульса первого тела p1 = 4 кг⋅м/с, а второго тела p2 = 3 кг⋅м/с . Чему равен модуль импульса системы этих тел после их абсолютно неупругого удара?

Решение. Импульс тел изменяет их столкновение. До удара двигались тела отдельно друг от друга. После неупругого удара тела двигались вместе.

Внешних сил нет, поэтому запишем закон сохранения импульса

1 способ (координатный). Так как тела движутся не вдоль одной прямой, то необходимо выбрать двухмерную систему координат, и тогда импульс тел (направление которого неизвестно) будет равен (рис. 2, а)

Направление осей и OY показаны на рисунке условия. Запишем уравнение (1) в проекциях на оси:

После подстановки уравнений (3) и (4) в (2) получаем:

2 способ (векторный). Построим треугольник импульсов по уравнению (1) (рис. 2, б). Модуль импульса p после удара найдем по теореме Пифагора


 

к оглавлению ▴

Задача 2.

По гладкой горизонтальной плоскости движутся вдоль осей X и Y две шайбы с импульсами, равными по модулю p10 = 5 кг·м/с и p20 = 3 кг·м/с (рис. 3). После их соударения первая шайба продолжает двигаться по оси Y в прежнем направлении. Модуль импульса первой шайбы после удара равен p1 = 2 кг·м/с. Найдите модуль импульса второй шайбы после удара. Ответ округлите до десятых.

Решение. Импульс шайб изменяет их столкновение. До удара шайбы двигались отдельно друг от друга. После удара шайбы так же двигались отдельно.

Внешних сил нет, поэтому запишем закон сохранения импульса

1 способ (координатный). Так как тела движутся не вдоль одной прямой, то необходимо выбрать двухмерную систему координат, и тогда импульс вто-рой шайбы (направление которого неизвестно) будет равен

Направление осей и OY показаны на рисунке 4. Запишем уравнение (1) в проекциях на оси:

После подстановки уравнений (3) и (4) в (2) получаем:

 

к оглавлению ▴

Задача 3.

Лодка массой 100 кг плывет без гребца вдоль пологого берега со скоростью 1 м/с. Мальчик массой 50 кг прыгает с берега в лодку со скоростью 2 м/с так, что векторы скорости лодки и мальчика составляют прямой угол. Определите значение и направление скорости лодки (в см/с) с мальчиком. Ответ округлите до целых.

Решение. Скорость лодки изменяет прыжок мальчика. До прыжка двига-лись лодка и мальчик отдельно друг от друга. После прыжка мальчик и лодка двигались вместе.

Векторная сумма внешних сил (силы тяжести и силы реакции опоры) равна нулю, поэтому запишем закон сохранения импульса


1 способ (координатный). Так как тела движутся не вдоль одной прямой, то необходимо выбрать двухмерную систему координат, и тогда скорость лодки с мальчиком (направление которой неизвестно) будет равна

Направим ось вдоль начальной скорости лодки, ось OY — вдоль начальной скорости мальчика, т.к. векторы скорости лодки и мальчика составляют прямой угол (рис. 5, а). Запишем уравнение (1) в проекциях на оси:

После подстановки уравнений (3) и (4) в (2) получаем:


Направление скорости υ определим следующим образом (рис. 5, б):

Примечание. Угол α можно было определить и через другие формулы


2 способ (векторный). Построим треугольник импульсов по уравнению (1) (рис. 5, в). Модуль скорости υ после прыжка найдем по теореме Пифагора

Направление скорости υ определим следующим образом (см. рис. 5, в):


 

к оглавлению ▴

Задача 4.

Летящий снаряд разрывается на два осколка, при этом первый осколок летит со скоростью 50 м/с под углом 90° по отношению к направлению движения снаряда, а второй — со скоростью 200 м/с под углом 30°. Найдите отношение массы первого осколка к массе второго осколка.

Скорость снаряда изменяет взрыв. До взрыва двигался только снаряд. После взрыва осколки снаряда двигались отдельно друг от друга.

Внешних сил нет, поэтому запишем закон сохранения импульса

1 способ (координатный). Направим ось вдоль начальной скорости снаряда, ось OY — вдоль конечной скорости первого осколка (рис. 6, а). Запишем уравнение (1) в проекции на ось:

2 способ (векторный). Построим треугольник импульсов по уравнению (1) (рис. 6, б). Тогда из прямоугольного треугольника получаем

Автор Сакович А.Л.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Закон сохранения импульса на плоскости» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Закон сохранения импульса

Начну с пары определений, без знания которых дальнейшее рассмотрение вопроса будет бессмысленным.

Сопротивление, которое оказывает тело при попытке привести его в движение или изменить его скорость, называется инертностью.

 Мера инертности – масса.

Таким образом можно сделать следующие выводы:

  1. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются вывести его из состояния покоя.
  2. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются изменить его скорость в случае, если тело движется равномерно.

Резюмируя можно сказать, что инертность тела противодействует попыткам придать телу ускорение. А масса служит показателем уровня инертности. Чем больше масса, тем большую силу нужно применить для воздействия на тело, чтобы придать ему ускорение.

Замкнутая система (изолированная) – система тел, на которую не оказывают влияние другие тела не входящие в эту систему. Тела в такой системе взаимодействуют только между собой.

Если хотя бы одно из двух условий выше не выполняется, то систему замкнутой назвать нельзя. Пусть есть система, состоящая из двух материальных точек, обладающими скоростями u1 и u2 соответственно. Представим, что между точками произошло взаимодействие, в результате которого скорости точек изменились. Обозначим через Δu1 и Δu2 приращения этих скоростей за время взаимодействия между точками Δt. Будем считать, что приращения имеют противоположные направления и связаны соотношением  Δu1m1 = -Δu2m2. Мы знаем, что коэффициенты m1 и m2 не зависят от характера взаимодействия материальных точек — это подтверждено множеством экспериментов. Коэффициенты m1 и m2 являются характеристиками самих точек. Эти коэффициенты называются массами (инертными массами). Приведенное соотношения для приращения скоростей и масс можно описать следующим образом.

Отношение масс двух материальных точек равно отношению приращений скоростей этих материальных точек в результате взаимодействия между ними.

Представленное выше соотношение можно представить в другом виде. Обозначим скорости тел до взаимодействия как u1 и u2 соответственно, а после взаимодействия — u1' и u2'. В этом случае приращения скоростей могут быть представлены в таком виде — Δu1 = u1' - u1 и Δu2 = u2' - u2.  Следовательно, соотношение можно записать так — m1u1 + m2u2 = m1u1' + m2u2'.

Импульс (количество энергии материальной точки) – вектор равный произведению массы материальной точки на вектор ее скорости — p = mu

Импульс системы (количество движения системы материальных точек) – векторная сумма импульсов материальных точек, из которых эта система состоит — p=p1+p2=m1u1+m2u2 .

Можно сделать вывод, что в случае замкнутой системы импульс до и после взаимодействия материальных точек должен остаться тем же — p=p', где p=p1+p2 и p'=p1'+p2'. Можно сформулировать закон закон сохранения импульса.

Импульс изолированной системы остается постоянным во времени, независимо от взаимодействия между ними.

Закон сохранения энергии

Необходимое определение:

Консервативные силы – силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

Формулировка закона сохранения энергии:

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки является функцией только координат этой точки. Т.е. потенциальная энергия зависит от положения точки в системе. Таким образом силы F, действующие на точку, можно определить так: можно определить так: F = ∇U(r). ∇U(r) – потенциальная энергия материальной точки. m*du/dt = -∇U(r) Помножим обе части на u=dr/dt и получим mu*du/dt = -∇U(r)*dr/dt. Преобразуем и получим выражение доказывающее закон сохранения энергии. d/dt((mu^2)/2 +U(r))=0

Упругие и неупругие столкновения

Мзображение двух шаров с различной массой и скоростью Абсолютно неупругий удар – столкновение двух тел, в результате которого они соединяются и далее двигаются как одно целое.

Два шара m1, m2 с u1 и u2 испытывают абсолютно неупругий дар друг с другом. По закону сохранения импульса m1u1 + m2u2 = (m1 + m2)u. Отсюда можно выразить скорость двух шаров, двигающихся после соударения как единое целое — u = (m1u1 + m2u2)/(m1 + m2). Кинетические энергии до и после удара: K1 = (m1u1^2)/2 + (m2u2^2)/2 и K2=(m1+m2)u^2/2. Найдем разность

clip_image064,

где clip_image066приведенная масса шаров. Отсюда видно, что при абсолютно неупругом столкновении двух шаров происходит потеря кинетической энергии макроскопического движения. Эта потеря равна половине произведения приведенной массы на квадрат относительной скорости.

Абсолютно упругий удар – столкновение двух тел, в результате которого механическая энергия системы остается прежней.

Два шара clip_image002[2], clip_image004[2] с clip_image006[3] и clip_image008[3] до соударения и clip_image068 и clip_image070 после. По закону сохранения импульса и энергии: clip_image072, clip_image074. Решением системы может стать clip_image076 и clip_image078. Это значит, что шары не встретились. Потребуем clip_image080 и и перепишем уравнения в виде: clip_image084, clip_image086. Второе уравнение делим почленно на первое и получаем clip_image088. Решаем систему из двух линейных уравнений и имеем: clip_image090, clip_image092.


Post Views:
67 640

Определение

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

p = mv

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости (p↑↓v), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

10 г = 0,01 кг

Импульс равен:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Определение

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p1отн2 = m1v1отн2 = m1(v1v2)

p1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v1отн2 — скорость первого тела относительно второго, v1 и v2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

15 т = 15000 кг

p1отн2 = m1(v1 – v2) = 15000(20 – 15) = 75000 (кг∙м/с) = 75∙103 (кг∙м/с)

Изменение импульса тела

ОпределениеИзменение импульса тела — векторная разность между конечным и начальным импульсом тела:

p = pp0 = p + (– p0)

p — изменение импульса тела, p — конечный импульс тела, p0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечная скорость после удара:

v = 0.

Конечный импульс тела:

p = 0.

Модуль изменения импульса тела равен модулю его начального импульса:

∆p = p0.

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p.

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

∆p = p0 – p = m(v0 – v)

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p = 2mv0

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Угол падения равен углу отражения:

α = α’

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

Или:

F∆t — импульс силы, ∆p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Определение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Реактивная сила:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

V = a∆t

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Определение

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Закон сохранения импульсаПолный импульс замкнутой системы сохраняется:

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

Важно!

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение  проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

m2v2 = (m1 + m2)v

Отсюда скорость равна:

Задание EF17556

Импульс частицы до столкновения равен p1, а после столкновения равен p2, причём p1 = p, p2 = 2p, p1p2. Изменение импульса частицы при столкновении Δp равняется по модулю:

а) p

б) p√3

в) 3p

г) p√5


Алгоритм решения

1.Записать исходные данные.

2.Построить чертеж, обозначить векторы начального и конечного импульсов, а также вектор изменения импульса. Для отображения вектора изменения импульса использовать правило сложения векторов методом параллелограмма.

3.Записать геометрическую формулу для вычисления длины вектора изменения импульса.

4.Подставить известные значения и вычислить.

Решение

Запишем исходные данные:

 Модуль импульса частицы до столкновения равен: p1 = p.

 Модуль импульса частицы после столкновения равен: p2 = 2p.

 Угол между вектором начального и вектором конечного импульса: α = 90о.

Построим чертеж:

Так как угол α = 90о, вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δp=p21+p22

Подставим известные данные:

Δp=p2+(2p)2=5p2=p5

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17695

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено


Алгоритм решения

1.Записать формулу, связывающую импульс тема с его кинематическими характеристиками движения.

2.Сделать вывод о том, как зависит характер движения от импульса.

3.На основании вывода и анализа графика установить характер движения тела на интервалах.

Решение

Импульс тела есть произведение массы тела на его скорость:

p = mv

Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.

На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.

Верный ответ: б.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22730

Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.


Алгоритм решения

1.Записать исходные данные.

2.Записать закон сохранения импульса применительно к задаче.

3.Записать формулу кинетической энергии тела.

4.Выполнить общее решение.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса камня: m1 = 3 кг.

 Масса тележки с песком: m2 = 15 кг.

 Кинетическая энергия тележки с камнем: Ek = 2,25 Дж.

Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:

m1v1+m2v2=(m1+m2)v

Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:

m1v1cosα=(m1+m2)v

Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:

Ek=(m1+m2)v22

Отсюда скорость равна:

v=2Ekm1+m2

Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:

v1=(m1+m2)vm1cosα=(m1+m2)m1cosα·2Ekm1+m2

Подставим известные данные и произведем вычисления:

v1=(3+15)3cos60o·2·2,253+15=12·0,25=12·0,5=6 (мс)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22520

Снаряд, имеющий в точке О траектории импульсp0, разорвался на два осколка. Один из осколков имеет импульс p1
. Импульс второго осколка изображается вектором:

а) AB

б) BC

в) CO

г) OD


Алгоритм решения

1.Сформулировать закон сохранения импульса и записать его в векторной форме.

2.Применить закон сохранения импульса к задаче.

3.Выразить из закона импульс второго осколка и найти на рисунке соответствующий ему вектор.

Решение

Согласно закону сохранения импульса, импульс замкнутой системы тел сохраняется. Записать его можно так:

p1+p2=p′
1
+p2

Можем условно считать осколки замкнутой системой, так как они не взаимодействуют с другими телами. Применяя к ним закон сохранения импульса, получим:

p0=p1+p2

Отсюда импульс второго осколка равен векторной разности импульса снаряда и импульса первого осколка:

p2=p0p1

Известно, что разностью двух векторов является вектор, начало которого соответствует вычитаемому вектору, а конец — вектору уменьшаемому. В нашем случае вычитаемый вектор — вектор импульса первого осколка. Следовательно, начало вектора импульса второго осколка лежит в точке А. Уменьшаемый вектор — вектор импульса снаряда. Следовательно, конец вектора лежит в точке В. Следовательно, искомый вектор — AB.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18122

Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?

Ответ:

а) 27 г

б) 64 г

в) 81 г

г) 100 г


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.

3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса пластилиновой пули: m = 9 г.

 Скорость пластилиновой пули: v = 20 м/с.

 Максимальный угол отклонения нити: α = 60°.

Переведем единицы измерения величин в СИ:

Сделаем чертеж:

Нулевой уровень — точка А.

После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:

mv=(m+M)V

После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.

Закон сохранения энергии для точки В:

(m+M)V22=(m+M)gh

V22=gh

Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:

V=2glcosα

Подставим это выражение в закон сохранения импульса для точки А и получим:

Выразим массу груза:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 20.2k

В статье обсуждаются различные формулы и задачи о том, как найти импульс после столкновения.

Скорость объекта изменяется во время столкновения из-за внешней силы от другого объекта. Изменение скорости вызывает изменение количества движения после столкновения. Итак, мы можем найти импульс после столкновения, используя формулу импульса, законы сохранения количества движения и сохранения энергии.

Импульс перед столкновением Pi = му. Импульс после столкновения также определяется путем оценки изменения скорости v объекта после столкновения. пf = мв

Узнать больше о Momentum.

Предположим, что неподвижный шар массой 8 кг сталкивается с другим шаром. После столкновения мяч движется со скоростью 5 м / с. Определите импульс мяча для пула после столкновения. 

Как найти импульс после столкновения

Как найти импульс после столкновения

Данный:

m = 8 кг

v = 5 м / с

Найти: ∆P =?

Формула:

∆Р = Рf — Пi

Решения:

Импульс шара после столкновения рассчитывается как,

∆Р = Рf — Пi

∆P = mv — mu

Поскольку бильярдный шар в состоянии покоя, т. Е. U = 0

∆P = мв

Подставляя все значения,

∆P = 8 х 5

∆P = 40

Импульс бильярдного шара после столкновения составляет 40 кгм / с.

Узнайте больше о том, как найти чистую силу от Momentum.

Как найти импульс после формулы столкновения?

Импульс после столкновения определяется по формуле импульса.

Когда мы говорим о нахождении импульса после столкновения только одного объекта, мы можем вычислить его, используя формулу импульса. Импульс — это изменение импульса после столкновения из-за внешней силы. Поскольку столкновения происходят быстро, сложно отдельно рассчитать приложенную внешнюю силу и время. 

Как только мы вычислили импульс до Pi и после столкновения Pf, мы можем найти импульс с точки зрения внешней силы со стороны другого объекта как,  

  Импульс (ΔP) — произведение внешней силы F и разницы во времени (∆t) в котором происходит изменение импульса ».

Что такое импульс

Импульс — изменение импульса

Математически,

∆P = F ∆t

Pf — Пi = F∆t

Подробнее о Типах сил.

Футбольный мяч ударил мячом массой 5 ​​кг по поверхности земли без трения с силой 30 Н в течение 5 секунд. Какова скорость и импульс футбола после удара ногой? 

Данный:

m = 5 кг

Ф = 30 Н

∆t = 5 с

Найти:

  1. v2=?
  2. Pf=?

Формула:

  1. Р = мв
  2. ∆P = F ∆t

Решения:

Импульс футбола до удара ногой:

Pi = м1v1

Поскольку футбол отдыхает. т.е. v1=0

Следовательно, Pi = 0

Импульс футбола до удара ногой равен нулю.

Импульс футбольного мяча после удара ногой рассчитывается с использованием Формула импульса.

∆P = F ∆t

Pf-Pi = F∆t

Поскольку Pi = 0

Pf = F∆t

Подставляя все значения,

Pf = 30 x 5

Pf = 150

Импульс футбола после удара ногой — 150 кг.м/с

Скорость футбола после удара ногой равна,

m2v2 = 150

v2 = 150 / 5

v2 = 30

Скорость футбольного мяча после удара ногой составляет 30 м / с.

Узнайте больше о том, как найти Net Force?

Как определить суммарный импульс двух объектов после столкновения?

Полный импульс двух объектов после столкновения оценивается с помощью закона сохранения количества движения.

Когда два объекта сталкиваются, их соответствующий импульс изменяется из-за их скорости, но их общий импульс после столкновения остается неизменным. Полный импульс после столкновения суммируется путем сложения всех соответствующих импульсов сталкивающихся объектов.

В закрытой или изолированной системе, когда два объекта, обладающие разными массами и скоростями, сталкиваются, они могут перемещаться друг с другом или далеко, в зависимости от типов столкновения — например, неупругое столкновение or упругое столкновение.

Типы столкновений

Упругое и неупругое столкновение
(Кредит: Shutterstock)

После столкновения их импульс, который является произведение их масс и скоростей, тоже разнообразно. Но если говорить об общем импульс изолированной системы, остается без изменений. Во время при столкновении любой импульс, который теряет один объект, приобретается другим объектом. Так сохраняется общий импульс сталкивающихся объектов.

Предположим, что импульс объекта 1 равен P1 = м1u1

Импульс объекта 2 равен P2 = м2u2

Импульс обоих объектов до столкновения Pi = P1 + Р2 = м1u1 + м2+u2

Если во время столкновения нет действующей силы, то импульс Pf обоих объектов после столкновения остается таким же, как и до столкновения.  

Следовательно, согласно закон сохранения импульса,

Pi = Pf

m1u1 + м2+u2 = м1v1 + м2+v2 ……………………. (*)

Обратите внимание, что скорости обоих объектов изменились после столкновения с u на v. Это показывает, что их соответствующий импульс после столкновения также изменился.

Для изолированная система,

«Полный импульс после столкновения точно такой же, как до столкновения, в соответствии с законом сохранения количества движения». 

Сохранение импульса

Общий импульс после столкновения
(Кредит: Shutterstock)

Предположим, что две мраморные гальки массой 10 кг и 5 кг движутся со скоростью 8 м / сек и 12 м / сек соответственно; сталкиваются друг с другом. После столкновения оба камешка удаляются друг от друга с одинаковой массой. Если один камешек удаляется со скоростью 10 м / сек, какова скорость второго? 

Данный:

m1 = 10 кг

m2 = 5 кг

u1= 8 м / сек

u2= 12 м / сек

v1= 10 м / сек

Найти: v2 =?

Формула:

m1u1 + м2+u2 = м1v1 + м2+v2

Решения:

Закон закон сохранения импульса вычисляет скорость второй камешек,

Для изолированных систем, когда нет равнодействующая сила действует,

m1u1 + м2+u2 = м1v1 + м2+v2

Обратите внимание, что вторые объекты перемещаются напротив первого объекта. Следовательно, импульс второго объекта должен быть отрицательным. 

Подставляя все значения,

10 x 8 + (- (5 x12) = 10 x 10 + (- (5xv2)

80 — 60 = 100 -5v2

5v2 = 100-20

v2 = 80 / 5

v2 = 16

Скорость второго камешка после столкновения составляет 16 м / сек. 

Узнайте больше об относительной скорости.

Как найти импульс после упругого столкновения?

Импульс после упругого столкновения оценивается с помощью закона сохранения энергии. 

Общая импульс сохраняется при столкновении. Кинетическая энергия соответствующего объекта может измениться после столкновения, но полная кинетическая энергия после упругого столкновения остается неизменной. Итак, мы можем найти импульс после упругого удара, используя закон сохранения энергии.

Упругое столкновение

Как найти импульс после упругого столкновения?
(Кредит: Shutterstock)

Когда столкновение между объектами является упругим, полная кинетическая энергия сохраняется.

Согласно закон сохранения энергии,

Переставляем уравнение (*) с помощью членов с m1 с одной стороны и членов с m2 с другой. 

Теперь переставим уравнение (#), используя члены с m1 на одной стороне и члены с m2 на другой, и сократим ½ общего множителя,

Узнаем, что первый член слева равен «1» в приведенном выше уравнении, мы получаем. 

………………. (1) 

Подставьте приведенное выше уравнение в уравнение (*), чтобы исключить v2, мы получаем

Наконец измените приведенное выше уравнение и решите для скорость v1 объекта 1 после столкновения,

Подставьте приведенное выше уравнение в уравнение (1) скорость v2 объекта 2 после столкновения,

Узнайте больше о кинетической энергии.

Когда мяч массой 10 кг, движущийся со скоростью 2 м / с, упруго сталкивается с другим мячом массой 2 кг, движущимся в противоположном направлении со скоростью 4 м / с. Рассчитайте конечные скорости обоих шариков после упругого столкновения.

Данный:

m1 = 10 кг

m2 = 2 кг

u1 = 2 м / с

u2 = -4 м / с

Найти:

  1. v1 =?
  2. v2 =?

Формула:

Решения:

Скорость шара 1 после упругого столкновения рассчитывается как

Подставляя все значения,

v1 = 0

Это означает, что упругий удар остановил мяч 1.

Скорость шара 2 после упругого столкновения рассчитывается как

Подставляя все значения,

v2= 6 м / с

Это означает, что упругое столкновение изменяет скорость второго мяча до 6 м / с.

Как найти импульс после неупругого столкновения?

Импульс после столкновения определяется с помощью закона сохранения количества движения.

Полный импульс сохраняется во время столкновения. Но полная кинетическая энергия системы также изменяется, как и кинетическая энергия соответствующего объекта, и столкновение называется неупругим. Итак, мы можем найти импульс после неупругого столкновения, используя закон сохранения количества движения. 

Неупругое столкновение

Как найти импульс после неупругого столкновения? (Кредит: Shutterstock)

Если столкновение упругое, оба объекта удаляются друг от друга с разной скоростью v1, v2 в противоположных направлениях. 

Но если столкновение неупругое, оба объекта движутся с одной конечной скоростью V в одном и том же направлении. 

Следовательно, импульс Pf после неупругое столкновение становится м1В + м2V или V (м1+m2)

Итак, уравнение сохранение импульса при неупругом столкновении является, 

m1u1 + м2+u2 = V (м1+m2)

Формула для окончательный скорость после неэластичный столкновение является,

V=(м1u1 + м2+u2) / (м1+m2)

Узнайте больше о скорости.

Два мальчика играют на детской площадке в парке. Первый мальчик массой 20 кг скользил по горке со скоростью 10 м / с. Поскольку первый мальчик на определенных участках становится медленнее, в последнее время он сталкивается с другим мальчиком массой 30 кг, который скользит вниз со скоростью 12 м / с. С какой скоростью оба мальчика соскользнут вместе после столкновения?

Данный:

m1 = 20 кг

m2 = 30 кг

u1 = 10 м / с

u2 = 12 м / с

Найти: В =?

Формула:

V=(м1u1 + м2+u2) / (м1+m2)

Решения:

Конечная скорость скольжения обоих мальчиков после столкновения рассчитывается как

V=(м1u1 + м2+u2) / (м1+m2)

Подставляя все значения,

V = 11.2

Конечная скорость скольжения обоих мальчиков после неупругого столкновения составляет 11.2 м / с.


Упругие и неупругие соударения

Закон сохранения механической энергии и закон сохранения импульса при упругом ударе способствует нахождению решения механических задач с неизвестными действующими силами, то есть задания с ударным взаимодействием тел.

Применение такого вида задач используется в технике и физике элементарных частиц.

Удар или столкновение – это кратковременное взаимодействие тел с последующим изменением их скорости.

При столкновении действуют неизвестные кратковременные ударные силы. Закон Ньютона не разрешит ударное взаимодействие, а позволит только исключить сам процесс столкновения и получить связь между скоростями тел до и после столкновений без промежуточных значений.

Механика применяет такое определения абсолютно упругих и абсолютно неупругих ударов.

Абсолютно неупругий удар. Скорость

Абсолютно неупругий удар – это ударное взаимодействие с соединением (слипанием) движущихся тел.

Сохранение механической энергии отсутствует, так как переходит во внутреннюю, то есть нагревание.

Попадание пули в баллистический маятник – характерный пример действия энергии абсолютно неупругого удара, где
М – подвешенный ящик с песком, показанный на рисунке 1 . 21 . 1 , m – горизонтально летящая пуля с v → скоростью движения, застревающая в ящике. Определение скорости пули возможно по отклонению маятника.

Если скорость ящика с пулей обозначить как u → , тогда, используя формулу сохранения импульса, получаем:

m v = ( M + m ) u ; u = m M + m v .

Когда пуля застревает в песке, то механическая энергия теряется:

∆ E = m v 2 2 — ( M + m ) u 2 2 = M M + m · m v 2 2 .

M ( M + m ) обозначает долю кинетической энергии выпущенной пули и прошедшей во внутреннюю энергию системы. Тогда

∆ E E 0 = M M + m = 1 1 + m M .

Использование формулы подходит для задач с наличием баллистического маятника и другого неупругого соударения разномасных тел.

Когда m М ∆ E E 0 → 1 2 , тогда происходит переход кинетической энергии во внутреннюю. Когда m = M ∆ E E 0 → 0 , только половина кинетической переходит во внутреннюю. Если имеется неупругое соударение движущегося тела большей массой с неподвижным, имеющим ( m > > М ) , отношение принимает вид ∆ E E 0 → 0 .

Расчет движения маятника производится по закону сохранения механической энергии. Получаем

( M + m ) u 2 2 = ( M + m ) g h ; u 2 = 2 g h .

В данном случае h является максимальной высотой подъема маятника. Отсюда следует, что

v = M + m m 2 g h .

При известной высоте h возможно определение скорости пули v .

Рисунок 1 . 21 . 1 . Баллистический маятник.

Абсолютно упругий удар

Абсолютный упругий удар – это столкновение с сохранением механической энергии системы тел.

Большинство случаев столкновения атомов подчинено законам абсолютного упругого центрального удара. Закон сохранения импульса и механической энергии сохраняются при таком ударе. Для примера используется столкновение при помощи центрального удара бильярдных шаров. Один из них находится в состоянии покоя, как изображено подробно на рисунке 1 . 21 . 2 .

Центральный удар – это соударение, когда скорости шаров направлены по линии центра.

Рисунок 1 . 21 . 2 . Абсолютно упругий центральный удар шаров.

Встречаются случаи, когда массы m 1 и m 2 не равны. Тогда, используя закон сохранения механической энергии, получаем

m 1 v 1 2 2 = m 1 v 1 2 2 + m 2 v 2 2 2 .

За v 1 принимается скорость при абсолютном упругом ударе первого шара перед столкновением, а v 2 = 0 скорость второго шара, u 1 и u 2 – скорости после столкновения.

Запись закона сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, принимает вид:

m 1 v 1 = m 1 u 1 + m 2 u 2 .

Полученная система из двух уравнений позволяет найти неизвестные скорости u 1 и u 2 шаров после столкновения.

u 1 = m 1 — m 2 v 1 m 1 + m 2 ; u 2 = 2 m 1 v 1 m 1 + m 2 .

Если массы равны, то есть, тогда происходит остановка первого шара ( u 1 = 0 ) , а второй продолжает движение u 2 = v 1 . происходит обмен скоростями и импульсами.

При наличии нулевой скорости второго шара ( v 2 ≠ 0 ) , задача могла бы свестись к предыдущей с переходим в новую систему отсчета с равномерным и прямолинейным движением и скоростью v 2 относительно «неподвижной» системы. В такой системе второй шар покоится до удара, а первый имеет скорость v 1 ‘ = v 1 – v 2 . После определения скорости шаров v 1 и v 2 производится переход к «неподвижной» системе.

С помощью закона сохранения механической энергии и импульса, можно определить скорости шаров после столкновений только с известными скоростями до соударения.

Рисунок 1 . 21 . 3 . Модель упругие и неупругие соударения.

При столкновении атомов или молекул применяется понятие центрального или лобового удара, который редко применим на практике. Нецентральный упругий удар не направлен по одной прямой.

Частный случай нецентрального упругого удара – соударение бильярдных шаров с одинаковой массой при обездвиженном одним из них, а другим направленным не по линии центра. Данная ситуация приведена на рисунке 1 . 21 . 4 .

Рисунок 1 . 21 . 4 . Нецентральное упругое соударение шаров с одинаковой массой, где d является прицельным расстоянием.

Нецентральное ударение характеризуется тем, что разлетатание шаров происходит под углом относительно друг друга. Чтобы определить скорости v 1 и v 2 после соударения, необходимо знать нахождение положения линии центров в момент удара или предельное расстояние d , изображенное на рисунке 1 . 21 . 4 .

Предельное расстояние

Предельным расстоянием называют расстояние между двумя линиями, которые проведены через центры шаров параллельно относительно вектора скорости v 1 → летящего шара.

При одинаковых массах шаров векторы v 1 → и v 2 → имеют перпендикулярное направление друг к другу. Это возможно показать с помощью применения законов сохранения импульса и энергии. Если m 1 = m 2 = m , тогда определение примет вид

v 1 → = u 1 → + u 2 → ; v 1 2 = u 1 2 + u 2 2 .

Первое равенство значит, что векторы v 1 → , u 1 → , u 2 → образуют треугольник, называемый диаграммой импульсов, второе – для его разрешения применяют теорему Пифагора. Угол, располагаемый между u 1 → и u 2 → , равняется 90 градусов.

Рисунок 1 . 21 . 5 . Модель соударения упругих шаров

Импульс тела, закон сохранения импульса

теория по физике 🧲 законы сохранения

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p 1отн2— импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

Изменение импульса тела

p — изменение импульса тела, p — конечный импульс тела, p 0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечный импульс тела:

Модуль изменения импульса тела равен модулю его начального импульса:

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Угол падения равен углу отражения:

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

F ∆t — импульс силы, ∆ p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

Отсюда скорость равна:

Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:

Алгоритм решения

Решение

Запишем исходные данные:

Так как угол α = 90 о , вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δ p = √ p 2 1 + p 2 2

Подставим известные данные:

Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено

Закон cохранения импульса

О чем эта статья:

9 класс, 10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Импульс: что это такое

Как-то раз Рене Декарт (это который придумал ту самую декартову систему координат) решил, что каждый раз считать силу, чтобы описать процессы — как-то лень и сложно.

Для этого нужно ускорение, а оно не всегда очевидно. Тогда он придумал такую величину, как импульс. Импульс можно охарактеризовать, как количество движения — это произведение массы на скорость.

Импульс тела

p — импульс тела [кг · м/с]

m — масса тела [кг]

Закон сохранения импульса

В физике и правда ничего не исчезает и не появляется из ниоткуда. Импульс — не исключение. В замкнутой изолированной системе (это та, в которой тела взаимодействуют только друг с другом) закон сохранения импульса звучит так:

Закон сохранения импульса

Векторная сумма импульсов тел в замкнутой системе постоянна

А выглядит — вот так:

Закон сохранения импульса

pn — импульс тела [кг · м/с]

Простая задачка

Мальчик массой m = 45 кг плыл на лодке массой M = 270 кг в озере и решил искупаться. Остановил лодку (совсем остановил, чтобы она не двигалась) и спрыгнул с нее с горизонтально направленной скоростью 3 м/с. С какой скоростью станет двигаться лодка?

Решение:

Запишем закон сохранения импульса для данного процесса.

— это импульс системы мальчик + лодка до того, как мальчик спрыгнул,

— это импульс мальчика после прыжка,

— это импульс лодки после прыжка.

Изобразим на рисунке, что происходило до и после прыжка.

Если мы спроецируем импульсы на ось х, то закон сохранения импульса примет вид

Подставим формулу импульса.
, где:
— масса мальчика [кг]
— скорость мальчика после прыжка [м/с]
— масса лодки [кг]
— скорость лодки после прыжка [м/с]

Выразим скорость лодки :

Подставим значения:
м/с

Ответ: скорость лодки после прыжка равна 0,5 м/с

Задачка посложнее

Тело массы m1 = 800 г движется со скоростью v1 = 3 м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы m2 = 200 г со скоростью v2 = 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение: Для данной системы выполняется закон сохранения импульса:

Импульс системы до удара — это сумма импульсов тел, а после удара — импульс «получившегося» в результате удара тела.

Спроецируем импульсы на ось х:

После неупругого удара получилось одно тело массы , которое движется с искомой скоростью:

Отсюда находим скорость тела, образовавшегося после удара:

Переводим массу в килограммы и подставляем значения:

В результате мы получили отрицательное значение скорости. Это значит, что в самом начале на рисунке мы направили скорость после удара неправильно.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Это никак не влияет на получившееся значение.

Ответ: скорость системы тел после соударения равна v = 0,2 м/с.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

Применим выражение для ускорения

В этих уравнениях слева находится величина a. Так как левые части уравнений равны, можно приравнять правые их части

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

В правой части находится — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Раскрыв скобки, получим

Заменим произведение массы и скорости на импульс:

То есть, вектор – это вектор изменения импульса .

Тогда второй закон Ньютона в импульсной форме запишем так

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

Сила называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

vг — скорость горючего,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

Скорость ракеты при реактивном движении

vг — скорость горючего [м/с]

mр — масса ракеты [кг]

vр — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

источники:

Импульс тела, закон сохранения импульса

http://skysmart.ru/articles/physics/zakon-sohraneniya-impulsa

Понравилась статья? Поделить с друзьями:
  • Как найти девушку школьнику в интернете
  • Как найти общее основание степени
  • Is 0009 epic games как исправить
  • Как составить отчет в директе
  • Переполнение буфера при записи в массив с как исправить