Как найти импульс тела зная скорость

Определение

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

p = mv

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости (p↑↓v), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

10 г = 0,01 кг

Импульс равен:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Определение

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p1отн2 = m1v1отн2 = m1(v1v2)

p1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v1отн2 — скорость первого тела относительно второго, v1 и v2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

15 т = 15000 кг

p1отн2 = m1(v1 – v2) = 15000(20 – 15) = 75000 (кг∙м/с) = 75∙103 (кг∙м/с)

Изменение импульса тела

ОпределениеИзменение импульса тела — векторная разность между конечным и начальным импульсом тела:

p = pp0 = p + (– p0)

p — изменение импульса тела, p — конечный импульс тела, p0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечная скорость после удара:

v = 0.

Конечный импульс тела:

p = 0.

Модуль изменения импульса тела равен модулю его начального импульса:

∆p = p0.

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p.

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

∆p = p0 – p = m(v0 – v)

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p = 2mv0

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Угол падения равен углу отражения:

α = α’

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

Или:

F∆t — импульс силы, ∆p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Определение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Реактивная сила:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

V = a∆t

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Определение

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Закон сохранения импульсаПолный импульс замкнутой системы сохраняется:

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

Важно!

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение  проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

m2v2 = (m1 + m2)v

Отсюда скорость равна:

Задание EF17556

Импульс частицы до столкновения равен p1, а после столкновения равен p2, причём p1 = p, p2 = 2p, p1p2. Изменение импульса частицы при столкновении Δp равняется по модулю:

а) p

б) p√3

в) 3p

г) p√5


Алгоритм решения

1.Записать исходные данные.

2.Построить чертеж, обозначить векторы начального и конечного импульсов, а также вектор изменения импульса. Для отображения вектора изменения импульса использовать правило сложения векторов методом параллелограмма.

3.Записать геометрическую формулу для вычисления длины вектора изменения импульса.

4.Подставить известные значения и вычислить.

Решение

Запишем исходные данные:

 Модуль импульса частицы до столкновения равен: p1 = p.

 Модуль импульса частицы после столкновения равен: p2 = 2p.

 Угол между вектором начального и вектором конечного импульса: α = 90о.

Построим чертеж:

Так как угол α = 90о, вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δp=p21+p22

Подставим известные данные:

Δp=p2+(2p)2=5p2=p5

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17695

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено


Алгоритм решения

1.Записать формулу, связывающую импульс тема с его кинематическими характеристиками движения.

2.Сделать вывод о том, как зависит характер движения от импульса.

3.На основании вывода и анализа графика установить характер движения тела на интервалах.

Решение

Импульс тела есть произведение массы тела на его скорость:

p = mv

Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.

На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.

Верный ответ: б.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22730

Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.


Алгоритм решения

1.Записать исходные данные.

2.Записать закон сохранения импульса применительно к задаче.

3.Записать формулу кинетической энергии тела.

4.Выполнить общее решение.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса камня: m1 = 3 кг.

 Масса тележки с песком: m2 = 15 кг.

 Кинетическая энергия тележки с камнем: Ek = 2,25 Дж.

Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:

m1v1+m2v2=(m1+m2)v

Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:

m1v1cosα=(m1+m2)v

Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:

Ek=(m1+m2)v22

Отсюда скорость равна:

v=2Ekm1+m2

Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:

v1=(m1+m2)vm1cosα=(m1+m2)m1cosα·2Ekm1+m2

Подставим известные данные и произведем вычисления:

v1=(3+15)3cos60o·2·2,253+15=12·0,25=12·0,5=6 (мс)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22520

Снаряд, имеющий в точке О траектории импульсp0, разорвался на два осколка. Один из осколков имеет импульс p1
. Импульс второго осколка изображается вектором:

а) AB

б) BC

в) CO

г) OD


Алгоритм решения

1.Сформулировать закон сохранения импульса и записать его в векторной форме.

2.Применить закон сохранения импульса к задаче.

3.Выразить из закона импульс второго осколка и найти на рисунке соответствующий ему вектор.

Решение

Согласно закону сохранения импульса, импульс замкнутой системы тел сохраняется. Записать его можно так:

p1+p2=p′
1
+p2

Можем условно считать осколки замкнутой системой, так как они не взаимодействуют с другими телами. Применяя к ним закон сохранения импульса, получим:

p0=p1+p2

Отсюда импульс второго осколка равен векторной разности импульса снаряда и импульса первого осколка:

p2=p0p1

Известно, что разностью двух векторов является вектор, начало которого соответствует вычитаемому вектору, а конец — вектору уменьшаемому. В нашем случае вычитаемый вектор — вектор импульса первого осколка. Следовательно, начало вектора импульса второго осколка лежит в точке А. Уменьшаемый вектор — вектор импульса снаряда. Следовательно, конец вектора лежит в точке В. Следовательно, искомый вектор — AB.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18122

Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?

Ответ:

а) 27 г

б) 64 г

в) 81 г

г) 100 г


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.

3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса пластилиновой пули: m = 9 г.

 Скорость пластилиновой пули: v = 20 м/с.

 Максимальный угол отклонения нити: α = 60°.

Переведем единицы измерения величин в СИ:

Сделаем чертеж:

Нулевой уровень — точка А.

После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:

mv=(m+M)V

После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.

Закон сохранения энергии для точки В:

(m+M)V22=(m+M)gh

V22=gh

Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:

V=2glcosα

Подставим это выражение в закон сохранения импульса для точки А и получим:

Выразим массу груза:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 20.2k

Импульс тела. Калькулятор онлайн.

Онлайн калькулятор импульса тела вычислит импульс, если известны масса и скорость, вычислит массу, если известны импульс и скорость,
вычислит скорость если известны импульс и масса, а также даст подробное решение.

Калькулятор содержит:
Калькулятор вычисления импульса тела через массу и скорость.
Калькулятор вычисления массы тела через импульс и скорость.
Калькулятор вычисления скорости тела через импульс и массу.

Калькулятор вычисления импульса тела через массу и скорость

ИмпульсИмпульс тела равен произведению массы тела m на его скорость v, направление импульса совпадает с направлением вектора скорости.

Единица измерения импульса — килограмм-метр в секунду (кг × м/с)

Калькулятор вычисления массы тела через импульс и скорость

МассаИмпульс тела равен произведению массы тела m на его скорость v, направление импульса совпадает с направлением вектора скорости.

Масса тела равна отношению импульса к скорости тела.

Единица измерения импульса — килограмм-метр в секунду (кг × м/с)

Импульс p (кг × м/с) =
Скорость v =
Единица измерения массы m

Калькулятор вычисления скорости тела через импульс и массу

СкоростьИмпульс тела равен произведению массы тела m на его скорость v, направление импульса совпадает с направлением вектора скорости.

Скорость тела равна отношению импульса и массе тела.

Единица измерения импульса — килограмм-метр в секунду (кг × м/с)

Импульс p (кг × м/с) =
Масса m =
Единица измерения скорости v

Вам могут также быть полезны следующие сервисы
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Конвертеры величин
Конвертер единиц длины
Конвертер единиц скорости
Конвертер единиц ускорения
Цифры в текст
Калькуляторы (Теория чисел)
Калькулятор выражений
Калькулятор упрощения выражений
Калькулятор со скобками
Калькулятор уравнений
Калькулятор суммы
Калькулятор пределов функций
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Калькулятор НОД и НОК для любого количества чисел
Калькулятор делителей числа
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор экспоненциальной записи чисел
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Калькулятор больших чисел
Калькулятор округления числа
Калькулятор свойств корней и степеней
Калькулятор комплексных чисел
Калькулятор среднего арифметического
Калькулятор арифметической прогрессии
Калькулятор геометрической прогрессии
Калькулятор модуля числа
Калькулятор абсолютной погрешности приближения
Калькулятор абсолютной погрешности
Калькулятор относительной погрешности
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькулятор приведения дробей к общему знаменателю
Калькуляторы (тригонометрия)
Калькулятор синуса угла
Калькулятор косинуса угла
Калькулятор тангенса угла
Калькулятор котангенса угла
Калькулятор секанса угла
Калькулятор косеканса угла
Калькулятор арксинуса угла
Калькулятор арккосинуса угла
Калькулятор арктангенса угла
Калькулятор арккотангенса угла
Калькулятор арксеканса угла
Калькулятор арккосеканса угла
Калькулятор нахождения наименьшего угла
Калькулятор определения вида угла
Калькулятор смежных углов
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Калькулятор сложения, вычитания, умножения и деления двоичных чисел
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер по математике
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Импульс тела — это физическая векторная величина, равная произведению массы тела на его скорость

Large p=mupsilon


Импульс тела

Каждое тело, которое имеет массу и скорость, так же имеет и импульс.

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила F. Под действием этой силы скорость тела изменилась на Delta upsilon =vecupsilon _2-vecupsilon _1 . Следовательно, тело на промежутке Δt двигалось с ускорением

Large vec a=frac{Delta vecupsilon }{Delta t}=frac{vec upsilon _2-vecupsilon_1}{Delta t}

На основе Второго закон Ньютона

Large  vec F=m vec a=mfrac{(vec upsilon _2-vecupsilon _1)}{Delta t}

А если немного преобразовать, то у нас получится:

Large  vec FDelta t=mvec upsilon _2-mvecupsilon _1=mDelta vecupsilon=Delta (mupsilon)

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела mupsilon. А физическая величина, равная произведению силы на время ее действия, называется импульсом силы FDelta t.

Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с)

В Формуле мы использовали :

 p — Импульс тела

m — Масса тела

upsilon — Скорость тела


Импульс в физике

Любое тело, обладающее скоростью, обладает импульсом.

Тело всегда движется туда, куда направлен вектор его скорости.

Импульс тела – это вектор. Он сонаправлен с вектором скорости тела.

Покоящееся тело импульса не имеет — если тело не движется, его импульс равен нулю.

Физики различают два вектора – импульс тела и импульс силы.

Импульса тела, формула

Возьмем вектор ( vec{v} ) скорости тела (рис. 1), умножим его на ( m ) массу тела (масса — скаляр), получим новый вектор, обозначим его ( p ). Длина этого вектора отличается от длины скорости, а направление – совпадает.

Подробнее о умножении вектора на число написано тут.

Вектор скорости тела умножаем на скаляр - массу тела, получаем вектор импульса тела

Рис. 1. Вектор скорости тела умножаем на скаляр — массу тела, получаем вектор импульса тела

[ large boxed{ vec{v} cdot m = vec{p} }]

( vec{v} left( frac{ text{м}}{с} right) ) – скорость тела, вектор

( m left( text{кг} right) ) – масса тела, скаляр (просто число)

( vec{p} left( text{кг} cdot frac{ text{м}}{c} right) ) – импульс тела, вектор, он сонаправлен со скоростью тела

Если тело не движется, оно импульсом не обладает ( vec{p} = 0 ).

Импульс силы, формула

На тело может действовать сила, например, когда тело соударяется с каким-то другим телом. Тела взаимодействуют с помощью сил. Что такое сила, написано тут.

Действие происходит не мгновенно, а в течение какого-то промежутка времени.

Возьмем вектор ( vec{F} ) силы, действующей на тело (рис. 2), умножим его на ( Delta t ) кусочек времени, в течение которого сила действовала (время — скаляр), получим новый вектор. Для этого вектора не придумали специального обозначения.

Вектор силы умножаем на скаляр – промежуток времени, в течение которого сила действовала, получаем вектор импульса силы

Рис. 2. Вектор силы, действующей на тело, умножаем на скаляр – промежуток времени, в течение которого сила действовала, получаем вектор импульса силы

[ large boxed{overrightarrow {F cdot Delta t }}]

( vec{F} left( H right) ) – сила, действующая на тело, вектор

( Delta t left( c right) ) – время воздействия силы (просто число). Можно пояснить так:

Пусть сила действовала несколько секунд. Тогда ( Delta t = t — t_{0} ) – разница между двумя положениями секундной стрелки на часах.

  • ( t left( c right) ) – конечное положение стрелки,
  • ( t_{0} left( c right) ) – начальное положение стрелки.

Длины векторов силы и импульса силы отличаются, а направления – совпадают.

Если сила не действует ( vec{F} = 0 ), то вектор импульса силы отсутствует ( vec{F} cdot Delta t = 0 ).

Импульс тела и импульс силы связаны. В этой статье подробно описана связь между этими векторами.

Оценка статьи:

Загрузка…

Импульс

  • Второй закон Ньютона в импульсной форме

  • Пример вычисления силы

  • Импульс системы тел

  • Закон сохранения импульса

  • Закон сохранения проекции импульса

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: импульс тела, импульс системы тел, закон сохранения импульса.

Импульс тела — это векторная величина, равная произведению массы тела на его скорость:

vec{p} = mvec{upsilon } .

Специальных единиц измерения импульса нет. Размерность импульса — это просто произведение размерности массы на размерность скорости:

[p]=[m]cdot [upsilon ]= frac{displaystyle kgcdot m}{displaystyle c}.

Почему понятие импульса является интересным? Оказывается, с его помощью можно придать второму закону Ньютона несколько иную, также чрезвычайно полезную форму.

к оглавлению ▴

Второй закон Ньютона в импульсной форме

Пусть vec{F} — равнодействующая сил, приложенных к телу массы m. Начинаем с обычной записи второго закона Ньютона:

mvec{a} =vec{F} .

С учётом того, что ускорение тела vec{a} равно производной вектора скорости, второй закон Ньютона переписывается следующим образом:

mfrac{displaystyle dvec{upsilon } }displaystyle {dt}=vec{F} .

Вносим константу m под знак производной:

frac{displaystyle d(mvec{upsilon } )}{displaystyle dt}= vec{F} .

Как видим, в левой части получилась производная импульса:

frac{displaystyle dvec{displaystyle p} }{displaystyle dt}= vec{F} . ( 1)

Соотношение ( 1) и есть новая форма записи второго закона Ньютона.

Второй закон Ньютона в импульсной форме. Производная импульса тела есть равнодействующая приложенных к телу сил.

Можно сказать и так: результирующая сила, действующая на тело, равна скорости изменения импульса тела.

Производную в формуле ( 1) можно заменить на отношение конечных приращений:

frac{displaystyle Delta vec{displaystyle p} }{Delta displaystyle t}= vec{displaystyle F} . ( 2)

В этом случае vec{F} есть средняя сила, действующая на тело в течение интервала времени Delta t. Чем меньше величина Delta t, тем ближе отношение Delta vec{p} /Delta t к производной dvec{p} /dt, и тем ближе средняя сила vec{F} к своему мгновенному значению в данный момент времени.

В задачах, как правило, интервал времени Delta t достаточно мал. Например, это может быть время соударения мяча со стенкой, и тогда vec{F} — средняя сила, действующая на мяч со стороны стенки во время удара.

Вектор Delta vec{p} в левой части соотношения ( 2) называется изменением импульса за время Delta t. Изменение импульса — это разность конечного и начального векторов импульса. А именно, если vec{p} _{0} — импульс тела в некоторый начальный момент времени, vec{p} — импульс тела спустя промежуток времени Delta t, то изменение импульса есть разность:

Delta vec{p} = vec{p} -vec{p} _{0}.

Подчеркнём ещё раз, что изменение импульса — это разность векторов (рис. 1):

Рис. 1. Изменение импульса

Пусть, например, мяч летит перпендикулярно стенке (импульс перед ударом равен vec{p} _{0} ) и отскакивает назад без потери скорости (импульс после удара равен vec{p}= -vec{p} _{0}). Несмотря на то, что импульс по модулю не изменился (p= p _{0}), изменение импульса имеется:

Delta vec{p} = vec{p} -vec{p} _{0}= -vec{p} _{0}-vec{p} _{0}= -2vec{p} _{0}.

Геометрически эта ситуация показана на рис. 2:

Рис. 2. Изменение импульса при отскоке назад

Модуль изменения импульса, как видим, равен удвоенному модулю начального импульса мяча: Delta p= 2p_{0}.

Перепишем формулу ( 2) следующим образом:

Delta vec{p} =vec{F} Delta t, ( 3)

или, расписывая изменение импульса, как и выше:

vec{p} -vec{p} _{0}=vec{F} Delta t.

Величина vec{F} Delta t называется импульсом силы. Специальной единицы измерения для импульса силы нет; размерность импульса силы равна просто произведению размерностей силы и времени:

[FDelta t]= [F]cdot [t]= Hcdot c.

(Обратите внимание, что Hcdot c оказывается ещё одной возможной единицей измерения импульса тела.)

Словесная формулировка равенства ( 3) такова: изменение импульса тела равно импульсу действующей на тело силы за данный промежуток времени. Это, разумеется, снова есть второй закон Ньютона в импульсной форме.

к оглавлению ▴

Пример вычисления силы

В качестве примера применения второго закона Ньютона в импульсной форме давайте рассмотрим следующую задачу.

Задача. Шарик массы m= 100 г, летящий горизонтально со скоростью upsilon = 6 м/с, ударяется о гладкую вертикальную стену и отскакивает от неё без потери скорости. Угол падения шарика (то есть угол между направлением движения шарика и перпендикуляром к стене) равен alpha = 60^{circ}. Удар длится Delta t= 0,01 с. Найти среднюю силу,
действующую на шарик во время удара.

Решение. Покажем прежде всего, что угол отражения равен углу падения, то есть шарик отскочит от стены под тем же углом alpha (рис. 3).

Рис. 3. К задаче (вид сверху)

Тут всё дело в том, что стена — гладкая. Это значит, что трения между шариком и стеной нет. Следовательно, со стороны стены на шарик действует единственная сила vec{N} — сила упругости, направленная перпендикулярно стене (рис. 4).

Рис. 4. К задаче

Согласно ( 3) имеем: Delta vec{p} = vec{N} Delta t. Отсюда следует, что вектор изменения импульса сонаправлен с вектором vec{N} , то есть направлен перпендикулярно стене в сторону отскока шарика (рис. 5).

Рис. 5. К задаче

Векторы vec{p} _{0} и
vec{p} равны по модулю
(так как скорость шарика не изменилась). Поэтому треугольник, составленный из векторов vec{p} _{0}, vec{p} и Delta vec{p} , является равнобедренным. Значит, угол между векторами vec{p} и Delta vec{p} равен alpha , то есть угол отражения действительно равен углу падения.

Теперь заметим вдобавок, что в нашем равнобедренном треугольнике есть угол 60^{circ} (это угол падения); стало быть, данный треугольник — равносторонний. Отсюда:

Delta p= p_{0}= mupsilon = 0,1cdot 6= 0,6~Hcdot c.

И тогда искомая средняя сила, действующая на шарик:

N= frac{displaystyle Delta p}{displaystyle Delta t}= frac{displaystyle 0,6}{displaystyle 0,01}= 60~H.

к оглавлению ▴

Импульс системы тел

Начнём с простой ситуации системы двух тел. А именно, пусть имеются тело 1 и тело 2 с импульсами vec{p} _{1} и vec{p} _{2} соответственно. Импульс vec{p} системы данных тел — это векторная сумма импульсов каждого тела:

vec{p} = vec{p} _{1}+vec{p} _{2}.

Оказывается, для импульса системы тел имеется формула, аналогичная второму закону Ньютона в виде ( 1). Давайте выведем эту формулу.

Все остальные объекты, с которыми взаимодействуют рассматриваемые нами тела 1 и 2, мы будем называть внешними телами. Силы, с которыми внешние тела действуют на тела 1 и 2, называем внешними силами. Пусть vec{F} _{1} — результирующая внешняя сила, действующая на тело 1. Аналогично vec{F} _{2} — результирующая внешняя сила, действующая на тело 2 (рис. 6).

Рис. 6. Система двух тел

Кроме того, тела 1 и 2 могут взаимодействовать друг с другом. Пусть тело 2 действует на тело 1 с силой vec{T} . Тогда тело 1 действует на тело 2 с силой {vec{T} }. По третьему закону Ньютона силы vec{T} и {vec{T} } равны по модулю и противоположны по направлению: {vec{T} }. Силы vec{T} и {vec{T} } — это внутренние силы, действующие в системе.

Запишем для каждого тела 1 и 2 второй закон Ньютона в форме ( 1):

frac{displaystyle dvec{displaystyle p} _ {displaystyle 1}}{displaystyle dt}=vec{F} _{1}+vec{T} , ( 4)

frac{displaystyle dvec{displaystyle p} _{displaystyle 2}}{displaystyle dt}=vec{F} _{2}+{vec{T}}. ( 5)

Сложим равенства ( 4) и ( 5):

frac{displaystyle dvec{displaystyle p} _{displaystyle 1}}{displaystyle dt}+frac{displaystyle dvec{displaystyle p} _{displaystyle 2}}{displaystyle dt}= vec{F} _{1}+vec{F} _{2}+vec{T} +{vec{T}}.

В левой части полученного равенства стоит сумма производных, равная производной суммы векторов vec{p} _{1} и vec{p} _{2}. В правой части имеем vec{T} +{vec{T}} в силу третьего закона Ньютона:

frac{displaystyle d(vec{displaystyle p} _{displaystyle 1}+vec{displaystyle p} _{displaystyle 2})}{displaystyle dt}= vec{F} _{1}+vec{F} _{2}.

Но vec{p} _{1}+vec{p} _{2}= vec{p} — это импульс системы тел 1 и 2. Обозначим также vec{F} _{1}+vec{F} _{2}= vec{F} _{external} — это результирующая внешних сил, действующих на систему. Получаем:

frac{dvec{displaystyle p} }{displaystyle dt}= vec{F} _{external}. ( 6)

Таким образом, скорость изменения импульса системы тел есть равнодействующая внешних сил, приложенных к системе. Равенство ( 6), играющее роль второго закона Ньютона для системы тел, мы и хотели получить.

Формула ( 6) была выведена для случая двух тел. Теперь обобщим наши рассуждения на случай произвольного количества тел в системе.

Импульсом системы тел тел называется векторная сумма импульсов всех тел, входящих в систему. Если система состоит из N тел, то импульс этой системы равен:

vec{p} = vec{p} _{1}+vec{p} _{2}+...+vec{p} _{N}.

Дальше всё делается совершенно так же, как и выше (только технически это выглядит несколько сложнее). Если для каждого тела записать равенства, аналогичные ( 4) и ( 5), а затем все эти равенства сложить, то в левой части мы снова получим производную импульса системы, а в правой части останется лишь сумма внешних сил (внутренние силы, попарно складываясь, дадут нуль ввиду третьего закона Ньютона). Поэтому равенство ( 6) останется справедливым и в общем случае.

к оглавлению ▴

Закон сохранения импульса

Система тел называется замкнутой, если действия внешних тел на тела данной системы или пренебрежимо малы, или компенсируют друг друга. Таким образом, в случае замкнутой системы тел существенно лишь взаимодействие этих тел друг с другом, но не с какими-либо другими телами.

Равнодействующая внешних сил, приложенных к замкнутой системе, равна нулю: vec{F} _{external}= vec{0} . В этом случае из ( 6) получаем:

frac{displaystyle dvec{displaystyle p} }{displaystyle dt}= vec{0} .

Но если производная вектора обращается в нуль (скорость изменения вектора равна нулю), то сам вектор не меняется со временем:

vec{p} = const.

Закон сохранения импульса. Импульс замкнутой системы тел остаётся постоянным с течением времени при любых взаимодействиях тел внутри данной системы.

Простейшие задачи на закон сохранения импульса решаются по стандартной схеме, которую мы сейчас покажем.

Задача. Тело массы m_{1}= 800 г движется со скоростью upsilon _{1}= 3 м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы m_{2}= 200 г со скоростью upsilon _{2}= 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение. Ситуация изображена на рис. 7. Ось X направим в сторону движения первого тела.

Рис. 7. К задаче

Поскольку поверхность гладкая, трения нет. Поскольку поверхность горизонтальная, а движение происходит вдоль неё, сила тяжести и реакция опоры уравновешивают друг друга:

m_{1}vec{g} +vec{N} _{1}= vec{0} ,
m_{2}vec{g} +vec{N} _{2}= vec{0} .

Таким образом, векторная сумма сил, приложенных к системе данных тел, равна нулю. Это значит, что система тел замкнута. Стало быть, для неё выполняется закон сохранения импульса:

vec{p} _{before~hitting}= vec{p} _{after~hitting}. ( 7)

Импульс системы до удара — это сумма импульсов тел:

vec{p} _{before~hitting}= m_{1}vec{upsilon _{1}} +m_{2}vec{upsilon _{2}} .

После неупругого удара получилось одно тело массы m_{1}+m_{2}, которое движется с искомой скоростью vec{upsilon } :

vec{p} _{after~hitting}= (m_{1}+m_{2})vec{upsilon } .

Из закона сохранения импульса ( 7) имеем:

m_{1}vec{upsilon _{1}} +m_{2}vec{upsilon _{2}} = (m_{1}+m_{2})vec{upsilon } .

Отсюда находим скорость тела, образовавшегося после удара:

vec{upsilon} = frac{displaystyle m_{displaystyle 1}vec{displaystyle upsilon _{displaystyle 1}} +displaystyle m_{displaystyle 2}vec{displaystyle upsilon _{displaystyle 2}} }{displaystyle m_{displaystyle 1}+displaystyle m_{displaystyle 2}}.

Переходим к проекциям на ось X:

upsilon _{x}= frac{displaystyle m_{displaystyle 1}displaystyle upsilon _{displaystyle 1x}+displaystyle m_{displaystyle 2}upsilon _{displaystyle 2x}}{displaystyle m_{displaystyle 1}+displaystyle m_{displaystyle 2}}.

По условию имеем: upsilon _{1x}= 3 м/с, upsilon _{2x}= -13 м/с, так что

upsilon _{x}= frac{displaystyle 0,8cdot 3-0,2cdot 13}{displaystyle 0,8+0,2}= -0,2frac{m}{c}.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Искомая скорость: upsilon = 0,2 м/с.

к оглавлению ▴

Закон сохранения проекции импульса

Часто в задачах встречается следующая ситуация. Система тел не является замкнутой (векторная сумма внешних сил, действующих на систему, не равна нулю), но существует такая ось X, сумма проекций внешних сил на ось X равна нулю в любой момент времени. Тогда можно сказать, что вдоль данной оси наша система тел ведёт себя как замкнутая, и проекция импульса системы на ось X сохраняется.

Покажем это более строго. Спроектируем равенство ( 6) на ось X:

frac{displaystyle dp_{displaystyle x}}{displaystyle dt}= F_{external,x}.

Если проекция равнодействующей внешних сил обращается в нуль, F_{external,x}= 0, то

frac{displaystyle dp_{displaystyle x}}{displaystyle dt}= 0.

Следовательно, проекция p_{x} есть константа:

p_{x}= const.

Закон сохранения проекции импульса. Если проекция на ось X суммы внешних сил, действующих на систему, равна нулю, то проекция p_{x} импульса системы не меняется с течением времени.

Давайте посмотрим на примере конкретной задачи, как работает закон сохранения проекции импульса.

Задача. Мальчик массы M, стоящий на коньках на гладком льду, бросает камень массы m со скоростью upsilon под углом alpha к горизонту. Найти скорость u, с которой мальчик откатывается назад после броска.

Решение. Ситуация схематически показана на рис. 8. Мальчик изображён прямогольником.

Рис. 8. К задаче

Импульс системы «мальчик + камень» не сохраняется. Это видно хотя бы из того, что после броска появляется вертикальная составляющая импульса системы (а именно, вертикальная составляющая импульса камня), которой до броска не было.

Стало быть, система, которую образуют мальчик и камень, не замкнута. Почему? Дело в том, что векторная сумма внешних сил Mvec{g} +mvec{g} +vec{N} не равна нулю во время броска. Величина N больше, чем сумма Mg+mg, и за счёт этого превышения как раз и появляется вертикальная компонента импульса системы.

Однако внешние силы действуют только по вертикали (трения нет). Стало быть, сохраняется проекция импульса на горизонтальную ось X. До броска эта проекция была равна нулю. Направляя ось X в сторону броска (так что мальчик поехал в направлении отрицательной полуоси), получим:

-Mu+mupsilon _{0}cos alpha = 0,

откуда

u=frac{mupsilon _{0}cos alpha }{M}.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Импульс» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Понравилась статья? Поделить с друзьями:
  • Google как найти синхронизированные данные
  • Как найти значок угла в ворде
  • Как найти остракон в пещере порфириона
  • Как найти центуриона в скайрим
  • Как найти деньги магнитом