Как найти индуктивность через площадь

Индуктивность контура — теоретические основы

Индуктивностью называется идеализированный элемент, приближающийся по своим свойствам к индуктивной катушке, в котором накапливается энергия магнитного поля.

Условное обозначение индуктивности и положительные направления тока, ЭДС самоиндукции и напряжения:

условное обозначение индуктивности
Если по проводнику пропустить ток, то вокруг него создается магнитный поток Φ. Суммарный магнитный поток (поток сцепления) катушки индуктивности равен Ψ= w×Φ, где Φ — магнитный поток, создаваемый одним витком; w — число витков.

По определению собственная индуктивность (или просто индуктивность) равна коэффициенту пропорциональности между потокосцеплением и током
катушки L=Ψ/i.

Индуктивность измеряется в генри 1 Гн = 1 Вб / 1 А. Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца (Heinrich Friedrich Emil Lenz). Единица измерения индуктивности названа в честь Джозефа Генри(Joseph Henry). Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года.

Поток сцепления катушки индуктивности равен Ψ=L×i.

В соответствии с законом электромагнитной индукции при изменении магнитного потока в катушке наводится ЭДС самоиндукции eL=-dΨ/dt. Знак «-» ставится потому, что ЭДС имеет такое направление, что образуемый ею ток своим магнитным полем препятствует изменению магнитного потока, вызывающего данную ЭДС.

Напряжение на индуктивности уравновешивает ЭДС и может быть записано в
виде uL=-eL=dΨ/dt=L×di/dt.

Мгновенная мощность, поступающая в катушку индуктивности равна p=uL×i=L×i×di/dt.

Энергия, запасаемая в катушке индуктивности равна wM=∫(0^t)ptd=∫(0^t)L×i×dt×di/dt=(L×i²)/2.

Взаимная индуктивность характеризует свойство одного элемента с током i1 создавать магнитное поле, частично сцепляющиеся с витками w2 другого элемента.

Коэффициент взаимной индуктивности определяется по формуле M=Ψ12/i2=Ψ21/i1, где Ψ12 — поток сцепления первого контура, вызванный током второго контура (аналогично Ψ21). Измеряется в Гн.

Электрическая цепь и индуктивность контура

Индуктивность характеризует электромагнитные свойства электроцепей. В более узком понятии, это элемент или участок цепи, обладающий большой величиной самоиндукции.

Таким элементом может считаться один, несколько или даже часть витка проводника, на высоких частотах также прямой отрезок провода любой длины.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции открыл Майкл Фарадей в ходе серии опытов.

Опыт раз. На одну непроводящую основу намотали две катушки таким образом, что витки одной катушки были расположены между витками второй. Витки первой катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушку замкнули на гальванометр, а магнит передвигали относительно катушки.

Опыт с катушкой и магнитом

Вот что показали эти опыты:

    1. Индукционный ток возникает только при изменении линий магнитной индукции.
    1. Направление тока различается при увеличении числа линий и при их уменьшении.
  1. Сила индукционного тока зависит от скорости изменения магнитного потока. При этом как само поле может изменяться, так и контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна электродвижущей силе (ЭДС).

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Самоиндукция и измерение индуктивности

Индуктивность проводника

При изменении тока, который протекает в замкнутом электрическом контуре, меняется создаваемый им магнитный поток. Вследствие этого наводится ЭДС, которая называется ЭДС самоиндукции.

Напряжение ЭДС определяется формулой расчета индукции:

Ꜫ=-L∙di/dt.

То есть ЭДС прямо пропорциональна величине скорости изменения тока с некоторым коэффициентом L, который и называется «индуктивность».

Как найти индуктивность контура

Формула, которая является простейшей для нахождения величины, следующая:

  • L = F : I,

где F – магнитный поток, I – ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

  • Ei = -L х dI : dt.

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

  • W = L I2 : 2.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

  • L= µ0n2V,

где µ0 показывает магнитную проницаемость вакуума, n – это число витков, V – объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

  • L = µ0N2S : l,

где S – это площадь поперечного сечения, а l – длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Обозначение и единицы измерения

Сопротивление тока: формула

В честь Ленца, единица измерения индуктивности получила обозначение символом «L». Выражается в Генри, сокращенно Гн (в англоязычной литературе Н), в честь известного американского физика.

Индуктивность контура
Джозеф Генри

Если при изменении тока в один ампер за каждую секунду ЭДС самоиндукции составляет 1 вольт, то индуктивность цепи будет измеряться в 1 генри.

Как может обозначаться индуктивность в других системах:

  • В системе СГС, СГСМ – в сантиметрах. Для отличия от единицы длины обозначается абгенри;
  • В системе СГСЭ – в статгенри.

Свойства

Имеет следующие свойства:

  • Зависит от количества витков контура, его геометрических размеров и магнитных свойств сердечника;
  • Не может быть отрицательной;
  • Исходя из определения, скорость изменения тока в контуре, ограничена значением его индуктивности;
  • При увеличении частоты тока реактивное сопротивление катушки увеличивается;
  • Обладает свойством запасать энергию – при отключении тока запасенная энергия стремится компенсировать падение тока.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

  • Ce = C : (1 – 4Π2f2LC),

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f – это частота, L – индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида – апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

  • Lk = Lp + Lm + Lb,

где Lk показывает индуктивность устройства, Lp –пакета, Lm – главных шин, а Lb – индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc : n + µ0 l х d : (3b) + Lb,

где l – длина шин, b – ее ширина, а d – расстояние между шинами.

индуктивность тока
Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.

“Катушка ниток”

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

индуктивность соленоида формула

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

  • I = U : R,

где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь “катушка – источник тока”, то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN2R2 : 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N2R2 :2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от “витков в квадрате”.
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Общие сведения

Для того чтобы понять, от чего зависит индуктивность катушки, необходимо подробно изучить всю информацию об этой физической величине. Первым делом следует рассмотреть принятое международное обозначение параметра, его назначение, характеристики и единицы измерения.

Само понятие индуктивности было предложено известным английским физиком Оливером Хевисайдом, который занимался её изучением. Этот учёный подарил миру и другие известные термины — электропроводимость, магнитная проницаемость и сопротивление, а также ЭДС (электродвижущая сила).

Знаменитый физик— Эмилий Ленц
Первая буква фамилии другого знаменитого физика — Эмилия Ленца — была взята в качестве обозначения индуктивности в формулах и при проведении расчётов. В наше время символ L продолжает использоваться при упоминании этого параметра.

Выдающийся американский физик Джозеф Генри первым обнаружил явление индуктивности. В его честь физики назвали единицу измерения в международной СИ, которая чаще всего используется в расчётах. В других системах (гауссова и СГС) индуктивность измеряют в сантиметрах. Для упрощения вычислений было принято соотношение, в котором 1 см равняется 1 наногенри. Очень редко используемая система СГСЭ оставляет коэффициент самоиндукции без каких-либо единиц измерения или использует величину статгенри. Она зависит от нескольких параметров и приблизительно равняется 89875520000 генри.

Среди основных свойств индуктивности выделяются:

  1. Величина параметра никогда не может быть меньше нуля.
  2. Показатель зависит только от магнитных свойств сердечника катушки, а также от геометрических размеров контура.

Способы расчёта

Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.

Через силу тока

Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:

  • L — индуктивность контура (в генри);
  • Ф — величина магнитного потока, измеряемого в веберах;
  • I — сила тока в катушке (в амперах).

Формула индуктивности катушки

Такая формула подходит только для одновиткового контура. Если катушка состоит из нескольких витков, то вместо величины магнитного потока используется полный поток (суммарное значение). Когда же через все витки проходит одинаковый магнитный поток, то для определения суммарного значения достаточно умножить величину одного из них на общее количество.

Соленоид конечной длины

Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:

  • Соленоид конечной длины
    µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
  • N — количество витков в катушке;
  • S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:

  • W — энергия магнитного потока, измеряемая в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:

  • N — число витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Катушка с тороидальным сердечником

Длинный проводник

Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:

  • Вычисления по формуле
    l — длина проводника в метрах;
  • r — радиус сечения провода, измеряемый в метрах;
  • µ0 — магнитная постоянная;
  • µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
  • µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
  • π — число Пи;
  • ln — обозначение логарифма.

Графический вывод формулы

Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1.21.2 треугольника:

Рисунок 1.21.2. Вычисление энергии магнитного поля.

В итоге формула энергии Wм магнитного поля катушки с индуктивностью L, создаваемого током I, будет записана в виде формулы:

Wм=ΦI2=LI22=Φ22L

Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, получим запись:

Wм=μ0·μ·n2·I22V=B22μ0·μV

В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.

Определение 4

Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: Wм=B22μ·μ.

В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.

Об индуктивности простыми словами

Индуктивностью является физическая величина, которая была введена с целью оценки способности электрического проводника противодействовать току. Т.е. индуктивность, или как ее еще называют – коэффициент самоиндукции, показывает зависимость Ɛ от свойств проводника и от магнитной проницаемости среды, в которой он находится. Единицей измерения величины является генри (Гн).

Если рассмотреть величину на примере катушки индуктивности, то можно понять, что ее показатели будут изменяться в зависимости от числа витков катушки, а также ее размеров и формы. Чем больше количество витков, тем больше индуктивность. Данная величина также будет увеличена, если внутрь катушки будет помещен сердечник, так как изменится относительная магнитная проницаемость среды, в которой находится проводник. Данную зависимость можно увидеть на схеме.

Индуктивность

Если посмотреть на формулу зависимости ЭДС от индуктивности, то можно понять, что чем больше будет величина, тем заметнее будет электродвижущая сила, что говорит о их прямой пропорциональности. Следуя из этого, можно сделать вывод, что индуктивность выступает неким «хранилищем» энергии, которое открывается в момент изменения тока.

Ɛ=- L(dI/dt), где:

  • Ɛ – ЭДС самоиндукции;
  • L-индуктивность;
  • I – сила тока;
  • t – время.

При этом L равно магнитному полю (Ф) деленному на силу тока (I).

Польза и вред

Такое явление, как самоиндукция, большинство людей наблюдают ежедневно, даже не осознавая этого. Так, например, принцип работы люминесцентных трубчатых ламп основан именно на явлении самоиндукции. Также данное явление можно наблюдать в цепи зажигания транспортных средств, работающих на бензине. Это возможно благодаря наличию катушки индуктивности и прерывателя. Так, в момент, когда через катушку проходит ток, прерыватель разрывает цепь питания катушки, в результате чего и образуется ЭДС, которая далее приводит к тому, что импульс более 10 кВ поступает на свечи зажигания.

Явление самоиндукции также приносит пользу, убирая лишнюю пульсацию, частоты или различные шумы в музыкальных колонках или другой аудиотехнике. Именно на ней основано работа различных «шумовых» фильтров.

Однако самоиндукция способна приносить не только пользу, но и заметный вред. Особенно часто она вредит различным выключателям, рубильникам, розеткам и другим устройствам, размыкающим электрическую цепь. Ее негативное воздействие на электроприборы можно заметить невооруженным глазом: искра в розетке в момент вытаскивания вилки, работающего фена и есть проявление сопротивления изменению силы тока.

Именно поэтому лампочки чаще всего перегорают именно в момент выключения света, а не наоборот. Это связано с тем, что сопротивление приводит к выгоранию контактов и накоплению цепей с токами в различных электроприборах, что в свою очередь представляет собой довольно серьезную техническую проблему.

Индуктивность и самоиндукция – незнакомые многим термины, с которыми люди встречаются ежедневно. И если первый термин является физической величиной, обозначающей способность проводника препятствовать изменению напряжения, то второй объясняет появление ЭДС индукции в том же проводнике.

Предыдущая

РазноеЧто такое фазное и линейное напряжение?

Следующая

РазноеБлуждающие токи и способы борьбы с ними

Главная

Примеры решения задач ТОЭ

РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ

2 Магнитное поле и магнитные цепи при постоянных токах

2.3 Магнитное поле, индуктивность

2.3 Магнитное поле, индуктивность

Методы и примеры решения задач ТОЭ

РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ

2 Магнитное поле и магнитные цепи при постоянных токах

Магнитное поле, индуктивность

Основные положения и соотношения

1. Закон Био — Савара — Лапласа выражает значение магнитной индукции, определяемой элементом тока I dl →  на расстоянии r от него в однородной среде (рис. 1)

Закон Био Савара Лапласа выражает значение магнитной индукции, определяемой элементом тока

dB → =μ⋅ I⋅[ dl → × 1 r → ] 4π r 2 ,  (1)

здесь

1 r →  – единичный вектор, направленный от центра элемента тока I dl →  в точку М, в которой определяется магнитная индукция;

r — расстояние от центра элемента тока до той же точки;

µ — абсолютная магнитная проницаемость среды, равная µ0·µr;

µr — магнитная проницаемость (относительная магнитная проницаемость);

μ 0 =4π⋅ 10 −7    Гн м  – магнитная постоянная.

В формуле (1) использовали векторное произведение [ a → × b → ]≡ a → × b →

Векторное произведение

Закон Био — Савара — Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био — Савара — Лапласа можно считать главным законом магнитостатики, получая из него остальные ее результаты.

Связь между векторами напряженности магнитного поля и магнитной индукцией выражается формулой

B → =μ⋅ H → .  (2)

Величина напряженности магнитного поля тока, протекающего по прямому проводнику конечной длины l (рис. 2) в некоторой точке, находящейся на расстоянии a от проводника, равна

Напряженность магнитного поля тока прямого проводника конечной длины

H= I 4π⋅a ⋅( cos β 1 −cos β 2 ).  (3)

Направление вектора H →  определяется правилом винта; так, в рассматриваемой на рис. 2 точке вектор H →  направлен от читателя за чертеж.

Величина напряженности магнитного поля прямого и бесконечно длинного тока в точке, отстоящей на расстоянии a от оси провода, несущего ток, равна

H= I 2π⋅a .  (4)

Величина напряженности магнитного поля кругового тока в некоторой точке на его оси (рис. 3) определяется по формуле

Напряженность магнитного поля кругового тока

H= I 2 r 0 ⋅si n 3 α,  (5)

здесь r0 — радиус витка, по которому протекает круговой ток, α — угол, под которым виден радиус витка из точки, в которой определяется напряженность поля.

Напряженность магнитного поля в центре плоскости витка определяется по формуле

H= I 2 r 0 .  (6)

Напряженность магнитного поля соленоида. Величина напряженности магнитного поля в некоторой точке на оси цилиндрического соленоида (рис. 4)

Напряженность магнитного поля соленоида

H= w⋅I 2l ⋅( cos α 1 −cos α 2 ),  (7)

здесь w — общее число витков соленоида.

Величина напряженности магнитного поля на оси очень длинного цилиндрического соленоида

H= w⋅I l .  (8)

Направление вектора H →  и здесь определяется правилом винта.

По этой же формуле находится напряженность магнитного поля на оси кольцевого соленоида (тороида). В этом случае l — длина средней линии магнитной индукции, считается совпадающей с кольцевой осью соленоида.

2. Закон полного тока. Линейный интеграл вектора напряженности магнитного поля по замкнутому контуру равен алгебраической сумме токов, проходящих сквозь поверхность, ограничиваемую контуром интегрирования,

? H → dl → = ∑ I .  (9)

Формулы (4) и (8) являются непосредственными результатами применения закона полного тока.

3. Поток вектора магнитной индукции сквозь поверхность S

Φ= ∫ S B → dS → .  (10)

4. Сила Лоренца. Сила, испытываемая зарядом q, движущимся со скоростью v в магнитном поле с индукцией В, определяется по формуле

F → =q⋅[ v → × B → ].  (11)

Макроскопическим проявлением силы Лоренца является сила Ампера.

Закон Ампера. Сила (рис. 5), действующая на элемент провода dl →  с током I , помещенный в магнитное поле с индукцией B →  (сила Ампера),

Сила Ампера

dF → =I⋅[ dl → × B → ].  (12)

Прямолинейный проводник длиной l, помещенный в однородное магнитное поле с индукцией B →  под углом α к вектору B → , испытывает силу

F → =I⋅[ l → × B → ]=I⋅l⋅B⋅sinα⋅ 1 n → ,  (13)

где 1 n →  – единичный вектор, нормальный к плоскости, проведенной через векторы l →  и B → .

Сила Ампера. Правило левой руки

Направление силы Ампера F определяется правилом левой руки.

5. Работа сил поля при перемещении в нем на расстояние ds элемента проводника длиною dl с током I равна (рис. 6)

dW=I⋅dΦ,  (14)

здесь dФ — магнитный поток через поверхность, описанную проводником при его перемещении.

Работа, производимая при перемещении замкнутого контура с неизменным по величине током в постоянном магнитном поле, определяется выражением

W=I⋅( Φ 2 − Φ 1 ),  (15)

где Ф1 и Ф2 — величины магнитного потока, пронизывающего контур в начальном и конечном положениях.

6. Расчет магнитных цепей. Основанием к расчету служат: первый закон Кирхгофа для магнитных цепей и закон полного тока.

Первый закон Кирхгофа для магнитных цепей гласит: алгебраическая сумма магнитных потоков в узле магнитной цепи равна нулю.

Закон полного тока применяется к контуру, образованному средними магнитными линиями магнитной цепи и имеет вид

F=ΣwI= ? H → dl → .  (16)

Величина F называется магнитодвижущей силой (МДС).

Выражение

F=ΣwI= ∑ k=1 n Φ k R мk  (17)

называют вторым законом Кирхгофа для магнитных цепей и формулируют следующим образом: алгебраическая сумма магнитодвижущих сил (ΣwI) в замкнутом контуре магнитной цепи равна алгебраической сумме магнитных напряжений ( ∑ k=1 n Φ k R мk )  в том же контуре.

В формуле (17) R мk = l k μ k S k  – магнитное сопротивление участка цепи с сечением Sk, с длиною средней магнитной линии lk и с абсолютной магнитной проницаемостью материала µk.

Отметим, что для расчета стальной магнитной цепи формулой (17) пользуются редко, так как Rмk не может рассматриваться как постоянная величина (величина магнитной проницаемости стали и других ферромагнитных материалов зависит от их намагниченности).

При расчете магнитодвижущей силы для воздушного зазора напряженность магнитного поля определяется по формуле

H 0 = B μ 0 .  (18)

7. Закон электромагнитной индукции. Величина индуктированной ЭДС

e=− dΨ dt ,  (19)

где Ψ — потокосцепление. Оно может быть выражено произведением величины магнитного потока на число витков, с которыми он сцеплен

Ψ= ∑ w⋅Φ .  (20)

8. Общее выражение для статической индуктивности проводника, витка, катушки

L= Ψ I .  (21)

9. ЭДС, индуктированная в прямолинейном проводнике, движущемся с равномерной скоростью v в однородном магнитном поле, равна

e = B·l·v·sinα, (22)

где α — угол между направлениями векторов v →  и B → .

10. Величина ЭДС самоиндукции

e L =−L di dt .  (23)

11. Индуктивность соленоида

L= μ⋅ w 2 ⋅S l ,  (24)

здесь w — число витков, S — сечение соленоида, l — длина средней линии магнитной индукции.

Эта же формула приближенно подходит для расчета индуктивности длинной однослойной катушки цилиндрической формы (l/D > 50), где l/D –отношение длины катушки к диаметру ее витков.

12. Для вычисления индуктивности коротких цилиндрических катушек без стального сердечника применяется формула

L=k⋅ μ 0 ⋅ w 2 ⋅S l ,  (25).

где коэффициент k является функцией отношения диаметра D катушки к ее длине l его значения приведены в таблице 1.

Таблица 1 — Значения коэффициент k(D/l)

D/l

k

D/l

k

0,00

1,0000

1,00

0,6884

0,10

0,9588

0,80

0.6581

0,20

0,9201

0,60

0.5697

0,40

0,8499

0,40

0,4719

0,60

0,7885

0,20

0,3108

0,80

0,7351

0,10

0,2033

1,00

0,6884

13. Индуктивность двухпроводной линии

L= μ 0 l π ln D r + μ⋅l 4π ,  (26)

здесь D — расстояние между осями проводов, r — радиус провода, l — длина линии, µ — абсолютная магнитная проницаемость проводов линии.

Для проводников, изготовленных не из ферромагнитных материалов, пользуются следующей приближенной формулой, в которой отсутствует слагаемое, выражающее внутреннюю индуктивность

L= μ 0 l π ln D r .  (27)

Индуктивность однопроводной линии

L= μ 0 l 2π ln 2h r ,  (28)

где h — высота провода над землей.

14. Общее выражение для взаимной индуктивности двух контуров

M= w 1 Φ 21 I 2 = w 2 Φ 12 I 1 ,  (29)

здесь w1 и I1 — число витков и ток, проходящий в первом контуре, Ф21 — часть общего магнитного потока, определяемого током второго контура и пронизывающего первый контур, w2 и I2 — число витков и ток, проходящий во втором контуре, Ф12 — часть общего магнитного потока, определяемого током первого контура и пронизывающего второй контур.

15. Электродвижущая сила взаимоиндукции двух контуров с токами

e 1M =− w 1 d Φ 21 dt =−M d i 2 dt , e 2M =− w 2 d Φ 12 dt =−M d i 1 dt ,  (30)

здесь e1M — ЭДС, наведенная в первом контуре вследствие изменения во времени сцепляющейся с ним части магнитного потока Ф21, определяемого током во втором контуре, со скоростью d Φ 21 dt , e2M — ЭДС, наведенная во втором контуре вследствие изменения во времени сцепляющейся с ним части магнитного потока Ф12, определяемой током в первом контуре, со скоростью d Φ 12 dt .

16. Взаимная индуктивность двух кольцевых соленоидов, имеющих общий сердечник, число витков которых w1 и w2, определяется по приближенной формуле

M= μ w 1 w 2 S l ,  (31)

здесь S — сечение сердечника, l — длина средней линии магнитной индукции.

Взаимная индуктивность между двумя параллельными двухпроводными линиями a1a2 и b1b2 длиною l (рис. 7)

Взаимная индуктивность между двумя параллельными двухпроводными линиями

M= μ 0 l 2π ln r 12 r 21 r 11 r 22 .  (32)

Расстояния считаются между осями проводов. Радиусы проводов предположены малыми по сравнению с расстояниями между ними.

17. Заряд, прошедший через проводящий контур. Количество индуктированного электричества, прошедшего через проводящий контур, имеющий w витков, при изменении сцепленного с ним магнитного потока от величины Ф1 до величины Ф2

Q= w r ( Φ 2 − Φ 1 ),  (33)

здесь r — сопротивление контура, w — число витков.

18. Коэффициент магнитной связи двух контуров

k= M L 1 L 2 .  (34)

Пределы изменения коэффициента магнитной связи

0 ≤ k ≤ 1.

Коэффициент рассеяния

σ = 1 — k2. (35)

19. Энергия магнитного поля

W= L⋅ I 2 2 = I⋅Ψ 2 ,  (36)

где Ψ — потокосцепление.

Удельная энергия магнитного поля (на единицу объема)

w= dW dV = B⋅H 2 = μ H 2 2 .  (37)

Энергия магнитного поля может быть выражена через удельную энергию посредством интеграла

W= ∫ V B⋅H 2 dV .  (38)

здесь V — объем пространства, занятый магнитным полем.

20. Полная магнитная энергия системы двух индуктивно связанных контуров с токами I1 и I2

W= L 1 I 1 2 2 + L 2 I 2 2 2 ±M⋅ I 1 I 2 .  (39)

Упражнения и задачи

Задача 1. Вычислить и построить кривую, зависимости напряженности магнитного поля неограниченно длинного коаксиального кабеля (рис. 8) в функции расстояния r от его оси, если по кабелю проходит постоянный ток I = 1 А.

Напряженность магнитного поля коаксиального кабеля

Радиус внутреннего проводника r1 = 2 мм, радиусы трубы r2 = 7,2 мм и r3 = 7,5 мм.

Плотность тока по сечению каждого проводника распределена равномерно.

Решение

Для определения напряженности магнитного поля (ввиду симметрии) воспользуемся законом полного тока.

Область внутреннего проводника (0 ≤ rr1)

Проведем окружность радиуса r < r1 с центром на оси провода. В любой ее точке напряженность H1 вследствие симметрии имеет одно и то же значение и совпадает по направлению с элементом длины окружности . Беря линейный интеграл напряженности магнитного поля вдоль этой окружности, по закону полного тока получим

? H 1 → dl → = ? H 1 dlcos( H 1 → , dl → ) = H 1 ⋅ ? dl = H 1 ⋅2πr=I( r ),

где под I(r) надо понимать ток, проходящий в части сечения проводника, находящейся внутри контура циркуляции.

Плотность тока во внутреннем проводнике

δ 1 = I π r 1 2 .

Ток, проходящий через часть сечения проводника, имеющую радиус r < r1,

I( r )= δ 1 π r 2 = I⋅ r 2 r 1 2 .

Итак,

H 1 ⋅2πr= I⋅ r 2 r 1 2 ,

отсюда

H 1 = I⋅r 2π r 1 2 .

После подстановки числовых значений получим

H 1 = I⋅r 2π r 1 2 = 1⋅r 2π⋅ 0,002 2 =39800⋅r     ( А м ).

Область полости трубы (r1rr2)

Применим закон полного тока к окружности радиуса r, проведенной в сечении трубы

? H 2 → dl → = ? H 2 dl = H 2 ⋅ ? dl = H 2 ⋅2πr=I,

отсюда

H 2 = I 2πr = 0,159 r      ( А м ).

Область трубы (r2rr3)

Применим закон полного тока к окружности радиуса r, проведенной в сечении трубы

? H 3 → dl → = ? H 3 dl = H 3 ⋅ ? dl = H 3 ⋅2πr= ∑ I .

Здесь под ΣI надо понимать сумму токов, находящихся внутри окружности радиуса r, т. е. весь ток I, проходящий по внутреннему проводу, и ток, проходящий по части сечения кольца трубы, обходимой контуром циркуляции, причем этот последний ток должен быть взят со знаком минус (так как по трубе протекает обратный ток).

Плотность тока в трубе

δ 2 = I π( r 3 2 − r 2 2 ) ; ∑ I =I− δ 2 ( π r 2 −π r 2 2 )=I⋅ r 3 2 − r 2 r 3 2 − r 2 2 .

Итак,

H 3 ⋅2πr=I⋅ r 3 2 − r 2 r 3 2 − r 2 2 ,

отсюда

H 3 =I⋅ r 3 2 − r 2 2π( r 3 2 − r 2 2 )⋅r = 2,03 r −36100⋅r    ( А м ),

Область пространства вне кабеля (r3r)

Для всех точек пространства вне кабеля напряженность магнитного поля H4 = 0. Это вытекает из закона полного тока при любом контуре интегрирования, охватывающем весь кабель.

Кривая напряженности магнитного поля коаксиального кабеля

На рис. 9 представлена кривая изменения напряженности магнитного поля в функции r.

Задача 2. Вдоль длинного трубчатого провода, радиусы сечения которого r1 и r2, протекает постоянный ток I (рис. 10).

Вдоль длинного трубчатого провода протекает постоянный ток

Вычислить и построить кривую зависимости напряженности магнитного поля в функции r — расстояния от точки до оси провода для областей 1 (внутри трубы), 2 (в стенках трубы), 3 (вне трубы). Даны: r1 = 2 см; r2 = 3 см, I = 10 А.

Ответ: внутри трубы (0 ≤ rr1) H1 = 0; в стенках трубы (r1rr2) H 2 = r 2 −4 πr    А см ; вне трубы (r2r) H 3 = 5 πr    А см .

Задача 3. Построить кривую напряженности магнитного поля вдоль оси x для двухпроводной линии (рис. 11), оси проводов которой отстоят друг от друга на расстоянии D = 30 см.

Построить кривую напряженности магнитного поля вдоль оси x для двухпроводной линии

Радиус проводов a = 4 мм. Ток в прямом и обратном проводе I = 200 А. Весь ток, протекающий в проводе, следует считать сосредоточенным в его оси.

Задача 4. Два провода линии электропередачи Л1 и Л2 и две пары телефонных проводов (a1a2 и b1b2 расположены параллельно друг другу (рис. 12, а).

Два провода линии электропередачи Л1 и Л2 и две пары телефонных проводов (a1a2 и b1b2) расположены параллельно друг другу

Если по проводам линии передачи проходит ток I = 150 А, то чему будет равно потокосцепление на 1 км с телефонной линией a1a2 и с телефонной линией b1b2. Даны: D = 90 см; a = b = 30 см.

Решение

Найдем потокосцепление линии Л1Л2 с линией a1a2 (рис. 12, б). Поток, определяемый током, проходящим через провод Л1, и пронизывающий линию a1a2, с учетом формул (2), (4) и того, что dS = ldx, где l — длина линии, будет равен

Φ Л 1 = ∫ r 11 r 12 BdS = ∫ r 11 r 12 μ I 2πx ldx = μ⋅I⋅l 2π ln r 12 r 11 .

Поток, определяемый током, проходящим через провод Л2, будет равен

Φ Л 2 = μ⋅I⋅l 2π ln r 21 r 22 = Φ Л 1 .

Так как

r 11 = r 22 = 30 2 + 30 2 =42,4  см    и     r 12 = r 21 = 30 2 + 60 2 =67  см,

то общий поток

Φ= Φ Л 1 + Φ Л 2 =2 μ 0 ⋅I⋅l 2π ln r 12 r 11 =2 4π⋅ 10 −7 ⋅150⋅ 10 3 2π ln 67 42,4 =27,5⋅ 10 −3   Вб.

Аналогично найдем, что потокосцепление линии Л1Л2 с линией b1b2 (рис. 12, в) будет равно

Φ= μ 0 ⋅I⋅l 2π ln c 1 ⋅ c ′ 2 c 2 ⋅ c ′ 1 =7,4⋅ 10 −3   Вб.

Задача 5. На кольцевой эбонитовый сердечник намотано w = 800 витков, по которым проходит ток I = 10 А (рис. 13).

 На кольцевой эбонитовый сердечник намотано w витков, по которым проходит ток

Учитывая неравномерность индукции по сечению сердечника, вычислить значение магнитного потока, проходящего через сердечник.

Внутренний диаметр сердечника d1 = 20 см, внешний диаметр d2 = 25 см, толщина сердечника b = 4 см.

Сравнить полученные результаты с теми, которые будут, если предположить, что индукция по всему сечению сердечника неизменна и равна индукции, соответствующей осевой линии.

Указание. Найти напряженность магнитного поля в любой точке сечения сердечника, пользуясь законом полного тока.

Ответ: Φ= μIwb 2π ln d 2 d 1 ;    Φ приб = μIw l ср S,   где   S= d 2 − d 1 2 b.

Задача 6. Прямолинейный проводник, длина которого равна 40 см, перемещается со скоростью 25 м/сек под углом α = 30° к линиям однородного магнитного поля, имеющего магнитную индукцию, равную 1 Вб/м2. Определить величину ЭДС, индуктированной в проводнике.

Ответ: 5 В.

Задача 7. В однородном магнитном поле, индукция которого B, находится проволока aOb, изогнутая под углом α, по которой скользит проводник MN с равномерной скоростью v (рис. 14).

Вектор магнитной индукции перпендикулярен плоскости угла aOb. Все проводники обладают сопротивлением r0 на единицу длины. Найти выражения для наводимой ЭДС и тока, протекающего в контуре a1Ob1.

Решение

Обозначим отрезок a1b1 через h, а переменный отрезок Ob1 — через x.

В однородном магнитном поле, индукция которого B, находится проволока aOb, изогнутая под углом α, по которой скользит проводник MN с равномерной скоростью v

Площадь треугольника a1Ob1 равна

S= x⋅h 2 = x 2 tgα 2 .

Магнитный поток, пронизывающий контур треугольника,

Φ=B⋅S= B 2 tgα⋅ x 2 .

Имея в виду, что dx/dt = v, по формуле (19) найдем выражение для наводимой ЭДС

e=− dΦ dt =− dΦ dx dx dt =− 2x⋅tgα⋅B 2 ⋅v=B⋅v⋅x⋅tgα;

ЭДС растет пропорционально x, ибо этой величине пропорциональна активная часть a1b1 перемещающегося проводника MN.

Сопротивление контура проводника a1Ob1a1

r= r 0 ⋅( x+h+ x cosα )= r 0 ⋅x⋅( 1+tgα+ 1 cosα ).

Заметим, что величина сопротивления также возрастает пропорционально расстоянию x.

Искомый ток

i= e r =− B⋅v⋅sinα r 0 ⋅( 1+sinα+cosα ) =const,

т.е. по контуру протекает постоянный ток.

Задача 8. В однородном магнитном поле, индукция которого В = 0,5 Вб/м2, вокруг оси О вращается с равномерной скоростью прямоугольная рамка (рис. 15). Построить кривые изменения магнитного потока, пронизывающего рамку и наводимой в рамке ЭДС в функции времени. Рамка делает 1500 об/мин, ее размеры: a = 10 см, b = 20 см.

В однородном магнитном поле, индукция которого В, вокруг оси О вращается с равномерной скоростью прямоугольная рамка

Как изменятся частота и величина максимальной ЭДС, наведенной в рамке, если: а) индукцию увеличить в 2 раза, б) сторону a увеличить в 2 раза, в) скорость вращения увеличить в 2 раза.

Ответ: Ф = 0,01cos50πt Вб, e = 1,57sin50πt В; а) и б) частота не изменится, Em увеличится в 2 раза; в) частота и Em увеличатся в 2 раза.

Задача 9. Круглый виток, радиус которого равен 5 см, находится в однородном магнитном поле, перпендикулярном плоскости витка, и изменяется с течением времени по уравнению В = Вmsinωt. Построить кривые изменения во времени магнитного потока, пронизывающего виток и наводимой в нем ЭДС, если Вm = 8000 Гс и ω = 628 1/с.

Единица индукции магнитного поля в системе единиц СИ Тесла (Тл), а в системе единиц СГСМ Гаусс (Гс). Соотношение между единицами: 1 Тл = 10000 Гс.

Ответ: Ф = 6,28·10–3sinωt Вб, e = –3,95cosωt В.

Задача 10. Построить кривую ЭДС, наводимой магнитным потоком в катушке, имеющей w =100 витков. Поток в функции времени изменяется согласно рис. 16, а, б, в, г.

Во всех случаях Фm = 10–2 Вб. Данные кривых:

а) для рис. 16, a t1 = t2 = 0,005 с;

б) для рис. 16, б t1 = 0,005 с, t2 = 0,0025 с;

в) для рис. 16, в t1 = 0,005 с, t2 = t3 = 0,0025 с;

г) для рис. 16, г t1 = 0,0025 с, t2 = t4 = 0,005 с; t3 = 0,01 с.

Решение

а) Наводимая ЭДС определяется по формуле (19).

На первом участке в интервале времени от нуля до t1 поток возрастает; за время dt происходит положительное приращение потока dФ (рис. 16, д). Вследствие линейного характера кривой отношение dФ/dt есть величина постоянная.

Величина наводимой ЭДС будет равна

e=−w dΦ dt =−w Φ m t 1 =−100 10 −2 0,005 =−200  В.

Построить кривую ЭДС, наводимой магнитным потоком в катушке

На втором участке t2 происходит спад кривой потока по прямой линии и, следовательно, dФ/dt также есть величина постоянная, но имеющая отрицательный знак; за время dt поток получает отрицательное приращение (dФ < 0); наводимая ЭДС равна

e=−w dΦ dt =+200  В.

На третьем участке за время dt поток продолжает убывать; и dФ/dt есть величина отрицательная; наводимая ЭДС равна +200 В; на четвертом участке магнитный поток возрастает с той же скоростью, что и на первом участке; наводимая ЭДС равна –200 В.

На рис. 16, д начерчена кривая наводимой ЭДС.

Задача 11. В центре цилиндрической катушки длиною l = 30 см и диаметром D = 10 см, состоящей из w = 400 витков, помещен виток, ось которого совпадает с осью катушки (рис. 17).

В центре цилиндрической катушки длиною l и диаметром D, состоящей из w витков, помещен виток, ось которого совпадает с осью катушки

По катушке проходит ток

i = Imsinωt (Im = 4 А, ω = 314 с–1).

Определить взаимную индуктивность катушки и витка и ЭДС, наводимую в витке, если диаметр витка d = 0,5 см.

Ввиду малости размеров витка по сравнению с размерами катушки при расчете принять, что магнитная индукция, определяемая током в катушке во всех точках, лежащих в плоскости витка, будет такой же, как и в центре витка.

Полагая, что виток, перпендикулярный к оси цилиндрической катушки, расположен на расстоянии x от ее центра, построить кривую зависимости взаимной индуктивности катушки и витка в функции x.

Для построения кривой подсчет произвести для различных точек при изменении x от нуля до +l (соседние значения x брать через каждые 5 см).

Ответ: M = 31,2·10–9 Гн = 31,2 нГн; e = –39,2cos314t мкВ.

x, см

0

5

10

15

20

25

30

M, нГн

31,2

30,7

26,3

16,1

4,63

1,62

0,72

Задача 12. Катушка прямоугольной формы, средние размеры сторон которой равны a = 8 см, b = 15 см, содержащая w = 20 витков тонкой проволоки, находится в плоскости проводов двухпроводной линии передачи энергии, по которой проходит ток I = 100 А (рис. 18).

Катушка прямоугольной формы, средние размеры сторон которой равны a, b, содержащая w витков тонкой проволоки, находится в плоскости проводов двухпроводной линии передачи энергии, по которой проходит ток I

Расстояние между осью левого провода и серединой ближайшей стороны катушки c = 2 см. Расстояние между проводами линии D = 20 см.

Чему равна энергия потока взаимной индукции линии и катушки? Какова сила, действующая на катушку, если по ней проходит ток I = 0,5 А? Определить количество индуктированного в рамке электричества при ее повороте вокруг оси OO на 180°, если сопротивление катушки r = 0,08 Ом.

Примечание. Следует иметь в виду, что энергия потока взаимной индукции

W= w⋅Φ⋅I 2 ,

где Ф — магнитный поток, пронизывающий катушку, а I — ток в линии, определяющий этот поток.

Ответ: 6,6 мДж; 0,109 Гн; 33·10–4 Кл.

Задача 13. Определить индуктивность катушки, если известно, что при прохождении через нее синусоидального тока i = Imsinωt амплитуда (максимальная величина) наведенной ЭДС самоиндукции равна Em.

Дано Im = 2 А; ω = 5000 с–1; Em = 200 В.

Решение

По формуле (23) находим выражение для мгновенной величины электродвижущей силы самоиндукции, наводимой в катушке,

e L =−L di dt =−ωL I m cosωt.

Коэффициент при cosωt является амплитудой ЭДС самоиндукции, наведенной в катушке, т.е.

E m =ωL I m ,

откуда

L= E m ω I m = 200 5000⋅2 =0,02  Гн.

Задача 14. Определить индуктивность цилиндрической катушки без стального сердечника, имеющей w витков, длину l и сечение S. Расчет провести при следующих данных: a) w1 = 300, l1 = 60 см, S1 = 1 см2; б) w2 = 200, l2 = 60 см, S2 = 10 см2.

Решение

Индуктивность катушки вычисляем по формуле (25) с учетом коэффициента k, являющегося функцией отношения диаметра катушки к ее длине; значения k приведены в таблице 1.

а) Диаметр катушки найдем из формулы

S 1 = π D 1 2 4 ;    D 1 = 4 S 1 π =1,13   см;

затем определяем коэффициент k1

k 1 = l 1 D 1 = 60 1,13 ≈53.

Так как k1 >50, то индуктивность находим по формуле (24)

L 1 = μ 0 ⋅ w 1 2 ⋅ S 1 l 1 = 4π⋅ 10 −7 ⋅ 300 2 ⋅1⋅ 10 −4 0,6 =18,8⋅ 10 −6   Гн=18,8  мкГн.

б) Найдем D2 и k2

D 2 = 4 S 2 π =3,57   см; k 2 = l 2 D 2 = 60 3,57 ≈16,8;    D 2 l 2 = 3,57 60 =0,0595.

По таблице 1 находим, что отношению D/l = 0 соответствует k = 1, а отношению D/l = 0,1 соответствует k = 0,9588; путем интерполирования находим k, соответствующее отношению D2/l2 = 0,0595.

интерполирование коэффициента k цилиндрической катушки без стального сердечника

Из рис. 19 определяем

Δk 1−0,9588 = 0,1−0,0595 0,1 ,

откуда Δk = 0,0167, следовательно,

k = 0,9588 + Δk = 0,9588 + 0,0167 = 0,9755,

по формуле (25) находим индуктивность

L 2 =k μ 0 ⋅ w 2 2 ⋅ S 2 l 2 =81,5⋅ 10 −6   Гн=81,5  мкГн.

Задача 15. Индуктивность короткой цилиндрической катушки (для которой D:l = 1), имеющей 500 витков, равна 0,01 Гн. Определить индуктивность катушки, имеющей то же число витков и такую же длину, но у которой отношение D:l = 0,4.

Ответ: 2 мГн.

Задача 16. Определить индуктивность катушки, состоящей из 400 витков, намотанной на кольцевой сердечник, изготовленный из листовой электротехнической стали Э11, если ток I = 1 А. Сердечник имеет квадратное сечение. Радиусы: R1 = 3 см, R2 = 4 см.

Чему будет равна индуктивность, если в тороиде сделать зазор δ = 0,5 мм (рис. 20).

Определить индуктивность катушки намотанной на кольцевой сердечник, изготовленный из листовой электротехнической стали Э11, если ток I. Сердечник имеет квадратное сечение

Указание. Надо рассчитать магнитную цепь, а для определения L воспользоваться формулой (21).

Ответ: 57,4 мГн; 32,8 мГн.

Задача 17. Катушка из 600 витков навита на стальной тороид, поперечное сечение которого равно 40 см2. Индуктивность катушки равна L1 = 2,5 Гн. Чему равна длина воздушного промежутка, который необходимо сделать в сердечнике для уменьшения индуктивности до 2 Гн?

При решении задачи принять, что магнитная проницаемость сердечника постоянна и очень велика по сравнению с единицей.

Решение

Магнитное сопротивление катушки без зазора

R 1 = l μS .

Для уменьшения индуктивности катушки в 1,25 раза ее магнитное сопротивление должно увеличиться в 1,25 раза, т. е. положив сечение пути потока в воздухе равным с сечением сердечника, получим

R 2 = l μS + δ μ 0 S =1,25 R 1 =1,25 l μS .

где δ — длина воздушного зазора, отсюда

δ S =0,25 l μ r S ,    l μ r =4δ.

Индуктивность катушки, определяемая по формуле (24), равна

L 1 = μ r μ 0 ⋅ w 2 ⋅S l ,

отсюда

l μ r = μ 0 ⋅ w 2 ⋅S L 1 .

Сравнивая два выражения для отношения l к µr, получим

4δ= μ 0 ⋅ w 2 ⋅S L 1 .

Отсюда рассчитывается необходимая длина воздушного зазора

δ= μ 0 ⋅ w 2 ⋅S 4 L 1 = 4π⋅ 10 −7 ⋅ 600 2 ⋅40⋅ 10 −4 4⋅2,5 =0,00018  м=0,18  мм.

Задача 18. На сердечник, изготовленный из листовой электротехнической стали Э11, имеющий регулируемый воздушный зазор, намотана катушка. Когда воздушный промежуток уменьшен до нуля, индуктивность катушки равна 3,5 Гн. При каком воздушном зазоре индуктивность катушки будет равна 2,5 Гн, если при зазоре в 1 мм ее индуктивность равна 2 Гн?

Принять, что абсолютная магнитная проницаемость сердечника постоянна.

Ответ: 0,53 мм.

Задача 19. Определить индуктивность 1 км воздушной медной двухпроводной линии, радиус проводов которой равен 2 мм и расстояние между осями проводов равно 30 см.

Ответ: 2 мГн.

Задача 20. Определить индуктивность 1 км воздушной медной однопроводной линии, радиус провода которой равен 2,5 мм. Расстояние провода от земли 5 м.

Ответ: 1,656 мГн.

Задача 21. Найти взаимную индуктивность на 1 км между двумя параллельными линиями a1a2 и b1b2 (рис. 21). Радиусы проводов считать малыми по сравнению с расстояниями между их осями, заданными на рис. 21.

Найти взаимную индуктивность на 1 км между двумя параллельными линиями

Решение

Расчет взаимной индуктивности проведем по формуле (32). Чтобы ею воспользоваться найдем расстояния: от оси первого провода первой линии до оси первого провода второй линии

r11 = a1b1 = 140 см;

от оси первого провода первой линии до оси второго провода второй линии

r12 = a1b2 = 180 см;

от оси второго провода первой линии до оси первого провода второй линии

r21 = a2b1 = 100 см;

и, наконец, от оси второго провода первой линии до оси второго провода второй линии

r22 = a2b2 = 140 см.

Искомая взаимная индуктивность

M= μ 0 l 2π ln r 11 r 22 r 12 r 21 = 4π⋅ 10 −7 2π ln 140⋅140 180⋅100 =17,2⋅ 10 −6   Гн=17,2  мкГн.

Задача 22. Четыре длинных прямых параллельных провода расположены в вершинах квадрата (рис. 22).

Четыре длинных прямых параллельных провода расположены в вершинах квадрата. Провода a1a2 образуют одну цепь, провода b1b2 — другую. Определить взаимную индуктивность этих цепей на 1 км

Провода a1a2 образуют одну цепь, провода b1b2 — другую. Чему равна взаимная индуктивность этих цепей на 1 км, если сторона квадрата равна 20 см? Радиусы проводов считать достаточно малыми (например, 1,5–2 мм).

Ответ: 0,1386 мГн.

Задача 23. Найти взаимную индуктивность двух катушек, изображенных на рис. 23.

Найти взаимную индуктивность двух катушек

Число витков наружной катушки w1 = 200, число витков внутренней катушки w2 = 500; r1 = 8 см, r2 = 10 см, r3 = 12 см, r4= 14 см.

Решение

Взаимная индуктивность определяется по формуле (31), в которой под S надо понимать ту площадь, которая пронизывается потоком, сцепленным как с током первой так и с током второй катушки, т.е. площадь сечения меньшей катушки S2 равна

S 2 = π d 2 2 4 = π ( r 3 − r 2 ) 2 4 = 3,14⋅ 0,02 2 4 =3,14⋅ 10 −4    м 2 .

Полагая распределение магнитной индукции равномерным по сечениям обеих катушек, найдем

M= μ 0 w 1 w 2 S 2 2π r 1 + r 4 2 = 4π⋅ 10 −7 ⋅200⋅500⋅3,14⋅ 10 −4 2π⋅0,11 =57⋅ 10 −6   Гн=57  мкГн.

Задача 24. Под линией электропередачи Л1Л2 подвешены бронзовые провода линии связи a1a2 (рис. 24).

Под линией электропередачи Л1Л2 подвешены бронзовые провода линии связи a1a2. Определить индуктивность одного километра линии a1a2

Определить индуктивность одного километра линии a1a2, диаметр проводов которой d = 3 мм, а расстояние между осями проводов D = 30 см.

Чему равна взаимная индуктивность на 1 км длины между линиями Л1Л2 и a1a2, если расстояния равны: h = 100 см, c = 25 см.

Какая электродвижущая сила наводится в линии связи, если по линии электропередачи протекает ток

i = Imsinωt,

где Im = 600 А, ω = 314 с–1.

Ответ: L = 2,12 мГн, M = 14 мкГн; e = –2,54cosωt В.

Задача 25. Определить взаимную индуктивность двух круговых витков, имеющих общую ось (рис. 25).

 Определить взаимную индуктивность двух круговых витков, имеющих общую ось

Радиусы витков r1 = 4 см, r2 = 0,5 см. Принять, что напряженность магнитного поля, определяемая током в большем витке во всех точках, лежащих в плоскости второго витка (внутри его), будет такой же, как и в центре второго витка.

Задачу решить для двух случаев: а) a = 0, б) a = 3 см.

На какое расстояние от центра 0 надо удалить второй виток, чтобы взаимная индуктивность составляла 1% от взаимной индуктивности в случае, когда плоскости витков совпадают.

Указание. Положив, что по большему витку проходит ток I, надо вычислить напряженность магнитного поля, созданную этим током в центре меньшего витка; умножив найденное значение H на магнитную постоянную и площадь, ограниченную меньшим витком, найти величину магнитного потока, пронизывающего этот виток. Разделив этот поток на ток I, получают искомую взаимную индуктивность (формула 29).

Ответ: а) 1,23 нГн; б) 0,63 нГн, 18,2 см.

Задача 26. На кольцо, изготовленное из литой стали, средний диаметр которого равен 25 см, навиты две катушки. Радиус поперечного сечения кольца 2 см. В первой катушке 250 витков, во второй — 500 витков. Относительную магнитную проницаемость стали принять постоянной и равной 1000. Определить индуктивность каждой катушки и их взаимную индуктивность (полагая распределение магнитной индукции в сечении кольца равномерным).

Ответ: L1 = 125,6 мГн; L2 = 502,4 мГн; M = 251,2 мГн.

Задача 27. Цилиндрическая катушка длиною в 1 м и диаметром в 10 см имеет 1000 витков. Вторая катушка, поперечное сечение которой 0,5 см2, а длина 1 см, имеет 10 витков. Катушки расположены так, что их оси совпадают.

Принять, что магнитная индукция, определяемая током первой катушки во всех точках, лежащих внутри второй катушки, будет такой же, как и в центре второй катушки. Определить взаимную индуктивность катушек, в случаях: а) когда их центры совпадают, б) когда центр второй катушки расположен на одном из концов первой катушки, в) когда их центры удалены друг от друга на 60 см.

Ответ: а) 0,625 мкГн; б) 0,314 мкГн; в) 0,033 мкГн.

Задача 28. Определить взаимную индуктивность двух катушек, индуктивности которых 0,04 и 0,16 Гн, а коэффициент связи равен 0,75.

Ответ: M = 0,06 Гн.

Задача 29. Определить коэффициент рассеяния двух катушек, индуктивности которых 30 и 120 мГн, а взаимная индуктивность равна 0.03 Гн.

Ответ: σ = 0,75.

Задача 30. Определить энергию магнитного поля цилиндрической катушки, содержащей 500 витков. Длина катушки равна 10 см. диаметр равен тоже 10 см; по виткам катушки проходит ток в 2 А. Среда — воздух.

Указание. Сначала следует вычислить индуктивность катушки по формуле (25), а затем энергию магнитного поля по формуле (36).

Ответ: 0,034 Дж.

Задача 31. Чему равна энергия магнитного поля катушки, имеющей 1000 витков и индуктивность которой равна 2 мГн, если магнитный поток, определяемый проходящим по катушке током, равен 2·10–5 Вб.

Ответ: 0,1 Дж.

Задача 32. Исходя из выражения интеграла магнитной энергии

W= ∫ V μ H 2 2 dV ,

определить полную индуктивность коаксиального кабеля длиною l = 1 км, радиус внутреннего проводника которого r1 = 2 мм, внутренний радиус внешнего проводника r2 = 7,2 мм, внешний радиус внешнего проводника r3 = 7,5 мм (рис. 26).

Полная индуктивность коаксиального кабеля

Относительную магнитную проницаемость материала внутреннего и внешнего проводника, а также пространства между проводниками принять равной 1.

Определить энергию магнитного поля на 1 м длины кабеля, запасаемую во внутреннем проводе, между проводом и трубой и внутри трубы, если I = 1 А.

Указание. Индуктивность следует определить из выражения

L⋅ I 2 2 = ∫ V μ H 2 2 dV ,

которое следует применить по отдельности к области внутри внутреннего проводника, к полости трубы и к области внешнего проводника. При расчете энергии каждый раз надо рассматривать малый трубчатообразный объем (рис. 26)

dV = 2πdr·l.

Значение напряженности поля в каждой из областей было найдено в задаче 1.

В результате решения должно быть получено для внутренней индуктивности внутреннего проводника L’ = 0,05 мГн, то же для внешнего проводника = 0,0045 мГн, и для внешней индуктивности Lвне = 0,256 мГн. Полная индуктивность

L = L’ + + Lвне = 0,31 мГн.

Искомую энергию следует определять по формуле (36).

Задача 33. По двум катушкам, индуктивности которых равны L1 = 0,5 Гн, L2 = 1 Гн, а их взаимная индуктивность составляет M = 0,5 Гн, проходят токи I1 = 6 А, I2 = 4 А. Определить полную магнитную энергию этой системы.

Ответ: 29 Дж.

удельная энергия магнитного поля,
энергия магнитного поля,
коэффициент магнитной связи,
взаимная индуктивность,
индуктивность однопроводной линии,
индуктивность двухпроводной линии,
индуктивность соленоида,
ЭДС самоиндукции,
индуктивность,
закон электромагнитной индукции,
второй закон Кирхгофа для магнитных цепей,
первый закон Кирхгофа для магнитных цепей,
сила Ампера,
закон Ампера,
сила Лоренца,
закон полного тока,
магнитная постоянная,
закон Био Савара Лапласа

Индуктивность контура — это коэффициент пропорциональности между постоянным током, текущим в заданном замкнутом контуре, и потоком вектора магнитной индукции, создаваемым этим током через поверхность, окружённой этим контуром. Обозначение — displaystyle L, размерность — Гн (генри). Формульно:

Фdisplaystyle =LI (1)

  • где

Соленоид

Рис. 1. Соленоид

В большинстве задач данный параметр задан в условии, однако есть одна система, в которой данный параметр является расчётным. Это соленоид (рис. 1). Соленоидом называется провод, согнутый в виде спирали (он же, в принципе, катушка индуктивности). Формульно:

displaystyle L=mu {{mu }_{0}}{{N}^{2}}frac{S}{l} (1)

  • где

Немного о displaystyle mu approx 1 — относительной магнитной проницаемости среды. Чаще всего в школьных задачах соленоид пустотелый, т.е. внутри него (витков) воздух, тогда displaystyle mu >1. Иногда в него помещают сердечник, т.е. болванку формой повторяющую внутреннюю геометрию соленоида, тогда displaystyle mu >1 и по веществу, из которого состоит сердечник, можно в таблицах найти значение магнитной проницаемости.

Для ряда задач существует всё тот же вопрос о параллельном и последовательном соединении индуктивностей. Будем считать, что взаимной индукции нет (т.е. один контур экранирован от второго). Тогда:

  • при параллельном подключении:

displaystyle frac{1}{{{L}_{o}}}=sumlimits_{i}{frac{1}{{{L}_{i}}}} (2)

  • где

В случае двух элементов, соединённых параллельно:

displaystyle {{L}_{o}}=frac{{{L}_{1}}{{L}_{2}}}{{{L}_{1}}+{{L}_{2}}} (3)

  • при последовательном подключении:

displaystyle {{L}_{o}}=sumlimits_{i}{{{L}_{i}}} (4)

  • где

Всем доброго времени суток! В прошлой статье я рассказывал о таком явлении как электромагнитная индукция и ЭДС возникающая при самоиндукции и взаимной индукции. Устройства, в основе которых лежат данные явления и процессы, называются индуктивными элементами (катушки колебательных контуров, трансформаторы, дроссели, реакторы). В качестве одного из основных параметров данных элементов выступает индуктивность L(также имеет название коэффициента самоиндукции). О том, как рассчитать данный параметр пойдёт речь в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Методы расчёта индуктивностей

Индуктивностью (обозначается L) или коэффициентом самоиндукции называется коэффициент пропорциональности между потокосцеплением (обозначается Ψ­L) и электрическим током, который возбуждает данное потокосцепление.

В простых случаях индуктивность можно рассчитать, применяя формулы для вычисления магнитной индукции B0 (закон Био-Савара-Лапласа), магнитного потока Φ и потокосцепления Ψ­L

где S – площадь поверхности ограниченная контуром, который создает магнитную индукцию;

n – количество контуров с током, которые пронизывает магнитный поток.

Однако это в идеальном случае, в реальности говоря о токе I, который протекает по проводнику, необходимо отметить, что его распределение по сечению проводника не всегда равномерно, вследствие возникновения скин-эффекта при переменном токе. В результате этого эффекта плотность электрического тока распределяется неравномерно, происходит её уменьшение от внешнего слоя проводника к его центру. Уменьшение плотности тока также происходит неравномерно и зависит от частоты переменного тока. Для оценки скин-эффекта ввели понятие толщины скин-слоя ∆, которая показывает, на каком расстоянии от поверхности проводника плотность тока падает в е = 2,718 раз. Толщину скин-слоя можно вычислить по выражению

где δ – глубина проникновения переменного тока или толщина скин-слоя;

μ – магнитная проницаемость вещества;

γ – удельная электрическая проводимость материала проводника;

ω – круговая частота переменного тока, ω = 2πf.

Поэтому непосредственный способ вычисления индуктивности практически не применяется.

На практике применяется выражения для индуктивности, выведенные с некоторыми допущениями, погрешности вычисления индуктивности по этим выражениями составляет порядка нескольких процентов.

Так как индуктивные элементы довольно разнообразны, их можно разделить на три группы:

индуктивные элементы без сердечников;

индуктивные элементы с замкнутыми сердечниками;

индуктивные элементы с сердечниками, имеющие воздушный зазор.

Самые простые по конструкции являются индуктивные элементы без сердечников, поэтому рассмотрим их в первую очередь. Простейшим из таких элементов является прямой провод.

Индуктивность прямолинейного провода круглого сечения

При расчёте индуктивности необходимо разделять индуктивность на постоянном токе и индуктивность на высокой частоте. Под высокой частотой следует понимать такую частоту, на которой толщина скин-слоя меньше размеров поперечного сечения провода. В случае если толщина скин-слоя больше поперечных размеров провода, то можно вести расчёт для постоянного тока.

Индуктивность прямого провода
Определение индуктивности прямого провода. l – это длина проводника, d = 2r – диаметр проводника.

В случае постоянного тока или тока низкой частоты индуктивность составит

где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м;

l – длина провода, м;

d – диаметр провода, м.

Как я уже говорил, на величину индуктивности влияет частота переменного тока, поэтому в случае необходимости рассчитать индуктивность на любой частоте применяется следующее выражение

где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Данный коэффициент зависит от величины k*r, где

d = 2r – диаметр поперечного сечения провода, м.

где ω – угловая частота переменного тока, ω = 2πf;

μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м;

γ – удельная проводимость вещества проводника.

Тогда если k*r < 3, то

если k*r > 3, то

где

Пример. Необходимо рассчитать индуктивность прямолинейного провода круглого сечения из меди (γ = 5,81*107 См/м) диаметром d = 2 мм и длиной l = 4 м, при постоянном токе и токе частотой f = 50 кГц.

На постоянном токе

На частоте 50 кГц

Online калькулятор индуктивности прямолинейного проводника

Индуктивность кругового кольца круглого сечения

Теперь рассмотрим, какова будет индуктивность если провод свернуть в кольцо. Такой индуктивный элемент будет иметь вид

Индуктивность кольца (витка) из провода
Определение индуктивности кругового витка. D – диаметр кольца (витка), d – диаметр провода, из которого сделано кольцо (виток).

При этом его индуктивность можно вычислить по следующему выражению

для  постоянного тока

где R – радиус витка, м, R = D/2;

r – радиус провода, м, r = d/2;

μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м.

Так же как и для проводника существует выражение для индуктивности кругового витка на любой частоте

где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Определяется также как и для прямого проводника.

Пример. В качестве примера рассчитаем индуктивность такого же провода, как и в первом примере, только свёрнутом в кольцо. В этом случае диаметр провода d = 2 мм, а диаметр кольца D = l/π = 4/3,142 ≈ 1,273 м, провод выполнен из меди (γ = 5,81*107 См/м).

Для постоянного тока индуктивность составит

На частоте 50 кГц

Online калькулятор индуктивности кольца кругового сечения

В следующей части я продолжу рассмотрение расчётов индуктивности для различных индуктивных элементов.

Содержание

  1. Способы расчёта
  2. Через силу тока
  3. Соленоид конечной длины
  4. Катушка с тороидальным сердечником
  5. Длинный проводник
  6. Одновитковой контур и катушка
  7. Что такое индуктивность
  8. ЭДС индукции
  9. Применение катушек в технике
  10. Соленоид
  11. ÐагниÑное поле
  12. «Катушка ниток»
  13. Основные формулы для вычисления вектора МИ
  14. Закон Био-Савара-Лапласа
  15. Принцип суперпозиции
  16. Теорема о циркуляции
  17. Магнитный поток
  18. ÐÐ¸Ð´Ñ ÐºÐ°ÑÑÑек
  19. Основные уравнения
  20. В магнитостатике
  21. В общем случае
  22. Вариометр
  23. ÐÑÑоÑиÑ
  24. Общие сведения
  25. Свойства магнетизма
  26. Линии магнитной индукции
  27. Материал сердечника
  28. Современные магнитные материалы
  29. Как найти активную, реактивную и полную мощность

Способы расчёта

Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.

Через силу тока

Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:

  • L — индуктивность контура (в генри);
  • Ф — величина магнитного потока, измеряемого в веберах;
  • I — сила тока в катушке (в амперах).

Соленоид конечной длины

Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:

  • µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
  • N — количество витков в катушке;
  • S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:

  • W — энергия магнитного потока, измеряемая в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:

  • N — число витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Длинный проводник

Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:

  • l — длина проводника в метрах;
  • r — радиус сечения провода, измеряемый в метрах;
  • µ0 — магнитная постоянная;
  • µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
  • µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
  • π — число Пи;
  • ln — обозначение логарифма.

Одновитковой контур и катушка

Индуктивность контура, представляющего виток провода, зависит от величины протекающего тока и магнитного потока, пронизывающего контур. Для индуктивности контура формула определяет параметр, соответственно, через поток и силу тока:

L=Ф/I.

Ослабление магнитного потока из-за диамагнитных свойств окружающей среды снижает индуктивность.

Параметр для многовитковой катушки пропорционален квадрату количества витков, поскольку увеличивается не только магнитный поток от каждого витка, но и потокосцепление:

L=L1∙N2.

Для того чтобы рассчитать индуктивность катушки формула должна учитывать не только количество витков, но и тип намотки и геометрические размеры.

Что такое индуктивность

Этим термином обозначают зависимость, которая устанавливается между силой тока в проводнике (I) и созданным магнитным потоком (Ф):

L = Ф/ I.

С учетом базового определения несложно понять зависимость индуктивности от свойств окружающей среды, оказывающей влияние на распределение силовых линий. Определенное значение имеют размеры и конфигурация проводящего элемента.

Индуктивность подобна механической инерции. Только в данном случае речь идет о действиях с электрическими величинами. Этим коэффициентом характеризуют способность рассматриваемого компонента противодействовать изменению проходящего через него тока.

ЭДС индукции

Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.

Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.

Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.

Применение катушек в технике

Явление электромагнитной индукции известно уже давно и широко применяется в технике. Примеры использования:

  • сглаживание пульсаций и помех, накопление энергии;
  • создание магнитных полей в различных устройствах;
  • фильтры цепей обратной связи;
  • создание колебательных контуров;
  • трансформаторы (устройство из двух катушек, связанных индуктивно);
  • силовая электротехника использует для ограничения тока при к. з. на ЛЭП (катушки индуктивности, называются реакторами);
  • ограничение тока в сварочных аппаратах — катушки индуктивности делают его работу стабильнее, уменьшая дугу, что позволяет получить ровный сварочный шов, имеющий наибольшую прочность;
  • применение катушек в качестве электромагнитов различных исполнительных механизмов;
  • обмотки электромагнитных реле;
  • индукционные печи;
  • установление качества железных руд, исследование горных пород при помощи определения магнитной проницаемости минералов.

Соленоид

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.

Соленоидальный тип катушки

Параметры соленоида можно узнать из такого выражения:

L=µ0N2S/l,

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

ÐагниÑное поле

ЭÑо ÑловоÑоÑеÑание знакомо нам Ñо ÑколÑной ÑкамÑи. Ðо многие Ñже забÑли о Ñом, ÑÑо оно ознаÑаеÑ. ХоÑÑ ÐºÐ°Ð¶Ð´Ñй из Ð½Ð°Ñ Ð¿Ð¾Ð¼Ð½Ð¸Ñ, ÑÑо магниÑное поле ÑпоÑобно воздейÑÑвоваÑÑ Ð½Ð° пÑедмеÑÑ, пÑиÑÑÐ³Ð¸Ð²Ð°Ñ Ð¸Ð»Ð¸ оÑÑÐ°Ð»ÐºÐ¸Ð²Ð°Ñ Ð¸Ñ. Ðо, помимо ÑÑого, Ñ Ð½ÐµÐ³Ð¾ еÑÑÑ Ð¸ дÑÑгие оÑобенноÑÑи: напÑимеÑ, магниÑное поле Ð¼Ð¾Ð¶ÐµÑ Ð²Ð¾Ð·Ð´ÐµÐ¹ÑÑвоваÑÑ Ð½Ð° ÑлекÑÑиÑеÑки заÑÑженнÑе обÑекÑÑ, а ÑÑо знаÑиÑ, ÑÑо ÑлекÑÑиÑеÑÑво и магнеÑизм ÑеÑно ÑвÑÐ·Ð°Ð½Ñ Ð¼ÐµÐ¶Ð´Ñ Ñобой, и одно Ñвление Ð¼Ð¾Ð¶ÐµÑ Ð¿Ð»Ð°Ð²Ð½Ð¾ пеÑеÑекаÑÑ Ð² дÑÑгое. УÑÑнÑе понÑли ÑÑо доÑÑаÑоÑно давно и поÑÑÐ¾Ð¼Ñ ÑÑали назÑваÑÑ Ð²Ñе ÑÑи пÑоÑеÑÑÑ Ð²Ð¼ÐµÑÑе одним Ñловом — «ÑлекÑÑомагниÑнÑе Ñвлениѻ. Ðа Ñамом деле ÑлекÑÑомагнеÑизм — доволÑно инÑеÑеÑÐ½Ð°Ñ Ð¸ еÑÑ Ð½Ðµ до конÑа изÑÑÐµÐ½Ð½Ð°Ñ Ð¾Ð±Ð»Ð°ÑÑÑ Ñизики. Ðна оÑÐµÐ½Ñ Ð¾Ð±ÑиÑна, и Ñе знаниÑ, ÑÑо Ð¼Ñ Ð¼Ð¾Ð¶ÐµÐ¼ здеÑÑ Ð¸Ð·Ð»Ð¾Ð¶Ð¸ÑÑ Ð²Ð°Ð¼, — ÑÑо оÑÐµÐ½Ñ Ð¼Ð°Ð»Ð°Ñ ÑаÑÑÑ Ñого, ÑÑо извеÑÑно ÑеловеÑеÑÑÐ²Ñ Ð¾ магнеÑизме ÑегоднÑ.

Ð ÑейÑÐ°Ñ Ð¿ÐµÑейдÑм непоÑÑедÑÑвенно к пÑедмеÑÑ Ð½Ð°Ñей ÑÑаÑÑи. СледÑÑÑий Ñаздел бÑÐ´ÐµÑ Ð¿Ð¾ÑвÑÑÑн ÑаÑÑмоÑÑÐµÐ½Ð¸Ñ Ð½ÐµÐ¿Ð¾ÑÑедÑÑвенно ÑÑÑÑойÑÑва каÑÑÑки индÑкÑивноÑÑи.

«Катушка ниток»

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

I = U : R,

где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь «катушка – источник тока», то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

L = 10µ0ΠN2R2 : 9R + 10l.

А вот уже для многослойной другая формула:

L= µ0N2R2 :2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от «витков в квадрате».
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB

dB = µ0 *I*dl*sin α /4*π*r2,

где

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме

Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

В = µ* µ0*2*I/4*π*r.

Для кругового движения она выглядит так:

В = µ*µ0*I/4*π*r.

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

B→= B1→+ B2→+ B3→… + Bn→

Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Математическая формула теоремы о циркуляции

где:

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В  СГС магнитный поток измеряется в максвеллах (Мкс):

108 Мкс = 1 Вб.

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

φ = |B*S| = B*S*cosα,

где

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900)

Магнитный поток

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

ÐÐ¸Ð´Ñ ÐºÐ°ÑÑÑек

Ðо ÑÑнкÑионалÑноÑÑи ÑазлиÑаÑÑ ÐºÐ¾Ð½ÑÑÑнÑе каÑÑÑки, наÑодÑÑие пÑименение в ÑадиоÑизике, каÑÑÑки ÑвÑзи, иÑполÑзÑемÑе в ÑÑанÑÑоÑмаÑоÑаÑ, и ваÑиомеÑÑÑ, Ñо еÑÑÑ ÐºÐ°ÑÑÑки, показаÑели коÑоÑÑÑ Ð¼Ð¾Ð¶Ð½Ð¾ ваÑÑиÑоваÑÑ Ð¸Ð·Ð¼ÐµÐ½ÐµÐ½Ð¸ÐµÐ¼ взаимного ÑаÑÐ¿Ð¾Ð»Ð¾Ð¶ÐµÐ½Ð¸Ñ ÐºÐ°ÑÑÑек.

Также ÑÑÑеÑÑвÑÐµÑ Ñакой вид каÑÑÑек, как дÑоÑÑели. ÐнÑÑÑи ÑÑого клаÑÑа Ñакже еÑÑÑ Ð´ÐµÐ»ÐµÐ½Ð¸Ðµ на обÑÑнÑе и ÑдвоеннÑе. Ðни имеÑÑ Ð²ÑÑокое ÑопÑоÑивление пеÑÐµÐ¼ÐµÐ½Ð½Ð¾Ð¼Ñ ÑÐ¾ÐºÑ Ð¸ оÑÐµÐ½Ñ Ð½Ð¸Ð·ÐºÐ¾Ðµ — поÑÑоÑнномÑ, благодаÑÑ ÑÐµÐ¼Ñ Ð¼Ð¾Ð³ÑÑ ÑлÑжиÑÑ ÑоÑоÑим ÑилÑÑÑом, пÑопÑÑкаÑÑим поÑÑоÑннÑй Ñок и задеÑживаÑÑим пеÑеменнÑй. СдвоеннÑе дÑоÑÑели оÑлиÑаÑÑÑÑ Ð±Ð¾Ð»ÑÑей ÑÑÑекÑивноÑÑÑÑ Ð¿Ñи болÑÑÐ¸Ñ ÑÐ¾ÐºÐ°Ñ Ð¸ ÑаÑÑоÑÐ°Ñ Ð¿Ð¾ ÑÑÐ°Ð²Ð½ÐµÐ½Ð¸Ñ Ñ Ð¾Ð±ÑÑнÑми.

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

В магнитостатике

В магнитостатическом пределе наиболее важными являются:

  • Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:

    B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{displaystyle {vec {B}}left({vec {r}}right)={mu _{0} over 4pi }int limits _{L_{1}}{frac {Ileft({vec {r}}_{1}right){vec {dL_{1}}}times left({vec {r}}-{vec {r}}_{1}right)}{left|{vec {r}}-{vec {r}}_{1}right|^{3}}},}
    B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{displaystyle {vec {B}}left({vec {r}}right)={mu _{0} over 4pi }int {frac {{vec {j}}left({vec {r}}_{1}right)dV_{1}times left({vec {r}}-{vec {r}}_{1}right)}{left|{vec {r}}-{vec {r}}_{1}right|^{3}}},}
  • Теорема Ампера о циркуляции магнитного поля:

    ∮∂S⁡B→⋅dl→=μIS≡μ∫Sj→⋅dS→,{displaystyle oint limits _{partial S}{vec {B}}cdot {vec {dl}}=mu _{0}I_{S}equiv mu _{0}int limits _{S}{vec {j}}cdot {vec {dS}},}
    rotB→≡∇→×B→=μj→.{displaystyle mathrm {rot} ,{vec {B}}equiv {vec {nabla }}times {vec {B}}=mu _{0}{vec {j}}.}

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{displaystyle {vec {B}}}:

Три из четырех уравнений Максвелла (основных уравнений электродинамики)

divE→=ρε,   rotE→=−∂B→∂t{displaystyle mathrm {div} ,{vec {E}}={frac {rho }{varepsilon _{0}}}, mathrm {rot} ,{vec {E}}=-{frac {partial {vec {B}}}{partial t}}}
divB→=,    rotB→=μj→+1c2∂E→∂t{displaystyle mathrm {div} ,{vec {B}}=0, ,mathrm {rot} ,{vec {B}}=mu _{0}{vec {j}}+{frac {1}{c^{2}}}{frac {partial {vec {E}}}{partial t}}}
а именно:

Закон отсутствия монополя:

divB→=,{displaystyle mathrm {div} ,{vec {B}}=0,}

Закон электромагнитной индукции Фарадея:

rotE→=−∂B→∂t,{displaystyle mathrm {rot} ,{vec {E}}=-{frac {partial {vec {B}}}{partial t}},}

Закон Ампера — Максвелла:

rotB→=μj→+1c2∂E→∂t.{displaystyle mathrm {rot} ,{vec {B}}=mu _{0}{vec {j}}+{frac {1}{c^{2}}}{frac {partial {vec {E}}}{partial t}}.}

Формула силы Лоренца:

F→=qE→+qv→×B→,{displaystyle {vec {F}}=q{vec {E}}+qleft,}
Следствия из неё, такие как

Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)

dF→=Idl→×B→,{displaystyle d{vec {F}}=left,}
dF→=j→dV×B→,{displaystyle d{vec {F}}=left,}

выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):

M→=m→×B→,{displaystyle {vec {M}}={vec {m}}times {vec {B}},}

выражение для потенциальной энергии магнитного диполя в магнитном поле:

U=−m→⋅B→,{displaystyle U=-{vec {m}}cdot {vec {B}},}
  • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
  • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
F→=Kqmr→r3.{displaystyle {vec {F}}=K{frac {q_{m}{vec {r}}}{r^{3}}}.}

(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).

Выражение для плотности энергии магнитного поля

w=B22μ{displaystyle w={frac {B^{2}}{2mu _{0}}}}

Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

Вариометр

Что такое катушка, показано выше на простых примерах. На практике для обозначения однотипных групп применяют специфическую терминологию. Вариометром, например, называют деталь с переменной индуктивностью. В типовой конструкции применяют две катушки, установленные одна внутри другой. Необходимый результат получают регулировкой взаимного положения функциональных компонентов. Для перемещения применяют ручной привод или автоматизированный механизм с внешней схемой управления.

К сведению. Не следует путать определения. Мультипликаторная катушка, например, – это приспособление для рыбной ловли. Такое устройство будет обладать индуктивностью при наматывании лески из проводящего материала. Однако в радиотехнических схемах подобные устройства не используют.

Мультипликаторные катушки

Особенности других конструкций:

  • Дроссель обеспечивает высокое сопротивление цепи переменному току, поэтому такой пассивный индуктивный элемент часто применяют для создания фильтров. При подключении к сети питания 220В/ 50 Гц используют железные сердечники. При повышении частоты – ферритовые аналоги.
  • Контурные катушки магнитные устанавливают в комбинации с конденсаторами для создания схем с определенной полосой пропускания.
  • Электрическим реактором называют крупные конструкции, которые применяют в силовых сетях.
  • Сдвоенные катушки применяют для разделения цепей по постоянной составляющей.

Токовый реактор ограничивает сильный ток, предотвращает развитие аварийной ситуации при КЗ

Выше отмечены типовые области применения элементов с индуктивными характеристиками. Они пригодны для создания фильтров, ограничения тока и разделения цепи прохождения постоянных и переменных составляющих сигнала. Магнитное поле катушки с током распространяется в пространстве. Чтобы предотвратить паразитное воздействие, отдельные компоненты размещают на достаточном расстоянии.

ÐÑÑоÑиÑ

ÐагнеÑизм наÑÐ¸Ð½Ð°ÐµÑ ÑÐ²Ð¾Ñ Ð¸ÑÑоÑÐ¸Ñ ÐµÑÑ Ñ ÐÑевнего ÐиÑÐ°Ñ Ð¸ ÐÑевней ÐÑеÑии. ÐÑкÑÑÑÑй в ÐиÑае магниÑнÑй железнÑк иÑполÑзовалÑÑ Ñогда в каÑеÑÑве ÑÑÑелки компаÑа, ÑказÑваÑÑей на ÑевеÑ. ÐÑÑÑ ÑпоминаниÑ, ÑÑо киÑайÑкий импеÑаÑÐ¾Ñ Ð¸ÑполÑзовал его во вÑÐµÐ¼Ñ Ð±Ð¸ÑвÑ.

Ðднако вплоÑÑ Ð´Ð¾ 1820 года магнеÑизм ÑаÑÑмаÑÑивалÑÑ Ð»Ð¸ÑÑ ÐºÐ°Ðº Ñвление. ÐÑÑ ÐµÐ³Ð¾ пÑакÑиÑеÑкое пÑименение бÑло заклÑÑено в Ñказании ÑÑÑелки компаÑа на ÑевеÑ. Ðднако в 1820 Ð³Ð¾Ð´Ñ Ð­ÑÑÑед пÑовÑл Ñвой опÑÑ Ñ Ð¼Ð°Ð³Ð½Ð¸Ñной ÑÑÑелкой, показÑваÑÑий влиÑние ÑлекÑÑиÑеÑкого Ð¿Ð¾Ð»Ñ Ð½Ð° магниÑ. ЭÑÐ¾Ñ Ð¾Ð¿ÑÑ Ð¿Ð¾ÑлÑжил ÑолÑком Ð´Ð»Ñ Ð½ÐµÐºÐ¾ÑоÑÑÑ ÑÑÑнÑÑ, взÑвÑиÑÑÑ Ð·Ð° ÑÑо вÑеÑÑÑз, ÑÑÐ¾Ð±Ñ ÑазÑабоÑаÑÑ ÑеоÑÐ¸Ñ Ð¼Ð°Ð³Ð½Ð¸Ñного полÑ.

СпÑÑÑÑ Ð²Ñего 11 леÑ, в 1831 годÑ, ФаÑадей оÑкÑÑл закон ÑлекÑÑомагниÑной индÑкÑии и ввÑл в обиÑод Ñизиков понÑÑие «Ð¼Ð°Ð³Ð½Ð¸Ñное поле». Ðменно ÑÑÐ¾Ñ Ð·Ð°ÐºÐ¾Ð½ поÑлÑжил оÑновой Ð´Ð»Ñ ÑÐ¾Ð·Ð´Ð°Ð½Ð¸Ñ ÐºÐ°ÑÑÑек индÑкÑивноÑÑи, о коÑоÑÑÑ ÑÐµÐ³Ð¾Ð´Ð½Ñ Ð¸ пойдÑÑ ÑеÑÑ.

РпÑежде Ñем пÑиÑÑÑпиÑÑ Ðº ÑаÑÑмоÑÑÐµÐ½Ð¸Ñ Ñамого ÑÑÑÑойÑÑва ÑÑÐ¸Ñ ÐºÐ°ÑÑÑек, оÑвежим в голове понÑÑие магниÑного полÑ.

Общие сведения

Для того чтобы понять, от чего зависит индуктивность катушки, необходимо подробно изучить всю информацию об этой физической величине. Первым делом следует рассмотреть принятое международное обозначение параметра, его назначение, характеристики и единицы измерения.

Первая буква фамилии другого знаменитого физика — Эмилия Ленца — была взята в качестве обозначения индуктивности в формулах и при проведении расчётов. В наше время символ L продолжает использоваться при упоминании этого параметра.

Выдающийся американский физик Джозеф Генри первым обнаружил явление индуктивности. В его честь физики назвали единицу измерения в международной СИ, которая чаще всего используется в расчётах. В других системах (гауссова и СГС) индуктивность измеряют в сантиметрах. Для упрощения вычислений было принято соотношение, в котором 1 см равняется 1 наногенри. Очень редко используемая система СГСЭ оставляет коэффициент самоиндукции без каких-либо единиц измерения или использует величину статгенри. Она зависит от нескольких параметров и приблизительно равняется 89875520000 генри.

Среди основных свойств индуктивности выделяются:

  1. Величина параметра никогда не может быть меньше нуля.
  2. Показатель зависит только от магнитных свойств сердечника катушки, а также от геометрических размеров контура.

Свойства магнетизма

Магнитное поле, как и любое другое физическое явление на Земле, имеет свои характеристики:

  1. Источник возникновения – движущиеся электрические заряды.
  2. Индукция магнитного поля – основная силовая его характеристика, которая существует в каждой отдельной его точке и является направленной.
  3. Его влияние ограничивается магнитами, движущимися зарядами и проводниками тока.
  4. Оно разделяется учеными на два типа: постоянное и переменное.
  5. Человек без специальных приборов не может почувствовать воздействие магнетизма.
  6. Это электродинамическое явление, ведь источник его происхождения – движущиеся частицы электрического тока. И только такие же частицы могут быть подвержены влиянию магнитного поля.
  7. Траектория движения заряженных частиц может быть лишь перпендикулярной.

Линии магнитной индукции

Сама индукция магнитного поля характеризуется определенным направлением, представляющим собой линии, отображаемые графически. Эти линии, также получили название магнитных линий, или линий магнитных полей. Так же, как и магнитная индукция, ее линии имеют собственное определение. Они представляют собой линии, к которым проведены касательные во всех точках поля. Эти касательные и вектор магнитной индукции совпадают между собой.

Однородное магнитное поле отличается параллельными линиями магнитной индукции, совпадающими с направлением вектора во всех точках.

Если же магнитное поле является неоднородным, произойдет изменение вектора электромагнитной индукции в каждой пространственной точке, расположенной вокруг проводника. Касательные, проведенные к этому вектору, приведут к созданию концентрических окружностей вокруг проводника. Таким образом, в данном случае, линии индукции будут выглядеть в виде расширяющихся окружностей.

Материал сердечника

Как и в предыдущем примере, для вычисления индукции катушки с сердечником в представленные выше формулы добавляют множитель относительной магнитной проницаемости «m

L = m0 * m * N2 * (S/l) = m0 * m * n2 * V.

С помощью этого коэффициента учитывают ферромагнитные свойства определенного материала.

Если для примера взять бесконечный (очень длинный) прямой провод с круглым сечением, то он будет обладать определенной индуктивностью:

L = (m0/2π) * l *(mc * ln(l/r) +1/4m,

где:

  • mc – магнитная проницаемость (относительная) среды;
  • r – радиус, который намного меньше длины (l) проводника.

Однако простые зависимости действуют только до определенной частоты. С определенного уровня волны малой длины начинают распространяться в поверхностной части проводников (скин-эффект). Дополнительно приходится учитывать влияние вихревых составляющих, экранирующих излучение и меняющих силовые параметры поля.

Современные магнитные материалы

Катушка будет работать в точном соответствии с расчетом, если правильно подобраны все функциональные компоненты конструкции. Как показано выше, существенное значение имеют параметры сердечника. Ниже отмечены важные особенности соответствующих материалов:

  • Сталь с низким содержанием примесей стоит недорого. Ее рекомендуется применять в цепях постоянного тока, так как при повышении частоты значительно увеличиваются потери.
  • В специальные сорта (трансформаторную сталь) добавляют кремний. Для уменьшения вредного влияния поверхностных эффектов сердечник собирают из пластин. Однако и такие решения не следует использовать при частоте более 1 кГц.
  • Сплавы из железа с никелем отличаются увеличенной магнитной проницаемостью. Рабочий диапазон – до 80-120 кГц.
  • Порошковые материалы создают со слоем диэлектрика на поверхностях отдельных микроскопических гранул. Они хорошо приспособлены для работы с высокочастотными сигналами, однако не обладают большой магнитной проницаемостью.
  • Ферриты – это материалы, созданные на основе керамических компонентов. Они отличаются хорошими техническими характеристиками, малыми потерями. Следует учитывать значительную зависимость от температуры, а также ухудшение рабочих параметров при длительной эксплуатации.

Измерение индуктивности катушки, созданной из медного провода на ферритовом сердечнике

Как найти активную, реактивную и полную мощность

Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.

В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени. Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления. Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.

При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.

Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в ваттах, реактивная мощность измеряется в вар – вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.

Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).

Что такое активная и реактивная электроэнергия, мощность

Как найти реактивную мощность

Активное и реактивное сопротивление

Компенсация реактивной мощности в электрических сетях

Активное и индуктивное сопротивление кабелей – таблица

Онлайн калькулятор расчета тока по мощности

Понравилась статья? Поделить с друзьями:
  • Как найти хорошие очки
  • Как найти сколько элементов в массиве
  • Как найти наименьшее кратное число двух чисел
  • Как найти свой почтовый ящик на майл
  • Как найти поставщика для своего магазина одежды