Как найти индуктивность формула 9 класс

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с  самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

Изображение магнитного поля при помощи силовых линий

Изображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

Правило правой руки

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

основные формулы электричество и магнетизм

Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

Правило левой руки для силы Ампера

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

магнетизм основные понятия и формулы

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

Определение направления силы Лоренца

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

формулы по теме магнетизм

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

магнетизм формулы по физике

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

электричество и магнетизм формулы

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

Соленоид

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

магнетизм формулы

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.

электричество и магнетизм формулы

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

Магнитный поток

При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

электричество и магнетизм формулы

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

электричество и магнетизм формулы

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

электричество и магнетизм формулы

Формула для ЭДС самоиндукции:

электричество и магнетизм формулы

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

электричество и магнетизм формулы

Объемная плотность энергии поля:

электричество и магнетизм формулы

Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

Индуктивность катушки

Рассмотрим длинную цилиндрическую катушку или тороидальную

Воспользуемся формулой электромагнитной индукции (1)

[ U = -N frac{ΔΦ}{Δt} ]

Подставим в эту формулу следующие выражения:

напряженность магнитного поля в цилиндрической катушке

[ H = I frac{N}{l} ]

магнитный поток и
магнитная индукция

[ Φ = μ_a H S ]

Здесь

L Индуктивность катушки, Генри
I ток в катушке, Ампер
U напряжение индукции, Вольт
N Число витков, Вольт
l длина катушки (длина силовых линий в области однородного поля), метр
S площадь поперечного сечения поля (катушки), Метр2

то

[ U = -N μ_a S frac{ N }{ l } frac{ ΔI }{ Δt } = -L frac{ ΔI }{ Δt } ]

Отсюда получим формулу

[ L = frac{μ_0 μ N^2 S}{l} ]

Расчет индуктивности катушки

Индуктивность катушки

стр. 661

«Искусство
экспериментатора состоит в том,

чтобы
уметь задавать природе

вопросы
и понимать её ответы».

Майкл
Фарадей

Задача
1.

В результате убывания тока в контуре от 8 А до 2 А за 12 мс, в контуре возникла
ЭДС самоиндукции 25 мВ. Найдите индуктивность данного контура.

ДАНО:

СИ

РЕШЕНИЕ

ЭДС самоиндукции

Изменение силы тока равно
разности между конечным и начальным током

Выразим индуктивность из
полученного уравнения

Ответ:
50 мкГн.

Задача
2.

Через площадь контура проходит магнитный поток 2 мВб, создаваемый протекающим
по контуру током силой 5 А. В течение 50 мс ток равномерно уменьшается до 3 А.
Найдите ЭДС самоиндукции.

ДАНО:

СИ

РЕШЕНИЕ

Запишем закон самоиндукции

Индуктивность – это
коэффициент самоиндукции, который равен отношению магнитного потока,
проходящего через контур к силе тока в этом контуре

В задаче указан магнитный
поток при начальном значении силы тока. Исходя из этого, запишем выражение
для индуктивности

С учетом последних формул ЭДС самоиндукции равно

Ответ:
16 мВ.

Задача
3.

К источнику тока с ЭДС 12 В и внутренним сопротивлением 1 Ом подключен реостат,
сопротивление которого за 0,5 с равномерно увеличивают от 10 Ом до 15 Ом. При
этом в реостате возникает ЭДС самоиндукции 0,03 В. Найдите индуктивность
реостата.

ДАНО:

РЕШЕНИЕ

Запишем закон самоиндукции

Запишем закон Ома для полной цепи

Найдём выражения для
начального и конечного тока, подставив в закон Ома соответствующие значения
сопротивления реостата

Тогда изменение тока равно

Выразим индуктивность из закона самоиндукции

Ответ:
44 мГн.

Задача
4.

В магнитное поле с индукцией 200 мТл помещена рамка, площадь которой равна
40 см2. Изначально магнитный поток, пронизывающий рамку равен
нулю. После этого рамку поворачивают на 30º. Найдите ЭДС самоиндукции,
которая возникнет в рамке, когда её перестанут вращать, предполагая, что время
остановки занимает 1 мс.

ДАНО:

СИ

РЕШЕНИЕ

Магнитный поток определяется по формуле

Если

Рамку поворачивают на 30º.
Соответственно, угол между направлением линий магнитной индукции и нормалью к
плоскости рамки становится равным

Запишем закон самоиндукции

Пока рамку поворачивали, в
ней существовала ЭДС индукции и, соответственно, индукционный ток. Как только
рамку перестали поворачивать, ток в ней пропал, то есть, изменение силы тока
равно всему индукционному току.

Тогда индуктивность равна

ЭДС самоиндукции

Второй способ решения

Магнитный поток рассчитывается по формуле

Закон электромагнитной индукции

ЭДС самоиндукции

Изменение тока равно всему
индукционному току, поскольку после остановки рамки индукционный ток
пропадёт.

Магнитный поток определяется по выражению

Т.к.

 

Ответ:
0,4 В.

Задача
5.

На рисунке изображён соленоид, радиус которого равен 10 см, и он содержит 500
витков проволоки. Индукция магнитного поля соленоида равна 600 мкТл. Найдите
ЭДС самоиндукции, которая возникнет в соленоиде при исчезновении тока в нём за
0,1 с.

ДАНО:

СИ

РЕШЕНИЕ

Запишем закон самоиндукции

Изменение тока равно тому
значению тока, который был в соленоиде

Магнитное поле соленоида

Индуктивность соленоида определяется по формуле

С учётом последних формул закон самоиндукции примет вид

Объём цилиндра определяется по формуле

Тогда ЭДС самоиндукции

Ответ:
47 В.

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Подробности
Обновлено 21.07.2018 11:56
Просмотров: 1185

«Физика — 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией.

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

На вышеприведенном рисунке:
при замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием, т.к. ЭДС самоиндукции в цепи второй лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке L возникает ЭДС самоиндукции, которая поддерживает уменьшающийся ток.
В момент размыкания через гальванометр идет ток размыкания, направленный против начального тока до размыкания.
Сила тока при размыкании может быть больше начального тока, т.е. ЭДС самоиндукции больше ЭДС источника тока.

Индуктивность

Величина индукции магнитного поля, создаваемого током, пропорционален силе тока, а магнитный поток пропорционален магнитной индукции.

Следовательно

Ф = LI

где L — индуктивность контура (иначе коэффициентом самоиндукции), т.е. это коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Используя закон электромагнитной индукции, получаем равенство

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от размеров проводника, его формы и магнитных свойств среды, в которой находится проводник, но не зависит от силы тока в проводнике.

Индуктивность катушки (соленоида) зависит от количества витков в ней.

Единицу индуктивности в СИ называется генри (1Гн).
Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В.

Аналогия между самоиндукцией и инерцией.

Явление самоиндукции подобно явлению инерции в механике.

В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм ~ В2,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля wэ ~ Е2.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика

Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы

Inductance is a term that every physics student should be familiar with. It has its own formula and is frequently combined with resistance and capacitance. Oliver Heaviside first coined the phrase in 1886. In addition, we use the L to represent inductors on circuit diagrams and inductance in equations, in honor of the eminent physicist Heinrich Let’s learn about the Inductance formula and how to use it to determine the inductance of any item.

Inductance

Inductance is a property of an electrical conductor that causes it to resist changes in the electric current passing through it. The flow of electric current generates a magnetic field around a conductor. The field strength is proportional to the current magnitude and is unaffected by current fluctuations. According to Faraday’s law of induction, any change in the magnetic field via a circuit generates an electromotive force (EMF) (voltage) in the conductors, a process is known as electromagnetic induction.

Inductance can be found in many electrical and electronic systems, as well as circuits. The gears are available in a range of shapes and sizes, as well as a variety of names. Examples include coils, chokes, transformers, inductors, and other parts. The SI unit of inductance is the henry (H), which can be represented in the current and voltage rate of change.

Formula for Inductance

  • Following is the inductance formula,

L = μN2A/l

Where,

  • L = Inductance (H),
  • μ = Permeability (Wb/Am),
  • N = The coil’s number of turns,
  • A = The coil’s cross sectional area,
  • l = Length of coil (m).

Derivation 

Given: 

E = N(dϕ/dt)

The number of turns in the coil is N, and the induced EMF across the coil is E.

Using Lenz’s law, rewrite the above equation,

E = -N(dϕ/dt)

The previous equation is modified to compute the value of inductance.

E = -N(dϕ/dt)

∴ E = -L(di/dt)

N = dΦ = L di

NΦ = Li

Hence,

The flux density is denoted by B, and the coil area is denoted by A.

Li = NΦ = NBA

Hl = Ni

The magnetizing force of the magnetic flux is denoted by H.

B = μH

Li = NBA

L = NBA/i = N2BA/Ni

N2BA/Hl = N2μHA/Hl

L = μN2A/l 

  • With an inductance of L, the voltage induced in a coil (V) is equal to,

V = L × (di/dt)

Where,

  • V = Voltage (volts),
  • L = Value of Inductance (H),
  • i = Current (A),
  • t = Time taken (s).
  • The inductance reactance is calculated as follows,

X = 2πfL

Where,

  • X = Reactance (ohm),
  • f = frequency (Hz),
  • L = Inductance (H).
  • If Inductance is in series 

L = L1 + L2 + L3 . . . . + Ln

  • If Inductance is in parallel

1/L = 1/L1 + 1/L2 + 1/L3 . . . . + 1/Ln

Sample Questions on Inductance Formula

Question 1: Define Inductance.

Answer:

Inductance is a property of an electrical conductor that causes it to resist changes in the electric current passing through it. Since inductance has N in the formula, it means that the number of turns in the conductor are directly proportional to the inductance present. However, an interesting fact is that even straight conductors carry inductance just very little in amount to be considerable.

Question 2: What is the SI unit of Inductance?

Answer:

SI unit of Inductance is the henry (H). The discovery of inductance is credited to Faraday, however, the introduction of self inductance for a single circuit was first introduced by Henry. Therefore, the unit of inductance is dedicated to the scientist’s name.

Question 3: Determine the self-inductance of a 210-turn solenoid with a cross-sectional area of 17 cm2 and a length of 66.2 cm.

Solution:

Given: μ = 4π × 10-7N/A2, N = 210 turns, A = 17 × 10-4 m2, l = 66.2 × 10-2 m

Since,

L = μN2A/l

∴ L = ((4π × 10-7) × (210)2 × (17 × 10-4))/(66.2 × 10-2)

∴ L = 0.0001422

L = 14.22 × 10-5 H

Question 4: What is the corresponding resistance when 16H, 10H, and 21H inductors are joined in series?

Solution:

Given: L1 = 16 H, L2 = 10 H, L3 = 21 H

Since,

L = L1 + L2 + L

∴ L = 16 + 10 + 21

L = 47 H

Question 5: A circuit is connected to a 61 H inductor, and a frequency of 240 Hz is provided. calculate the reactance?

Solution:

Given: f = 240 Hz, L = 61 H

Since,

X = 2πfL

∴ X = 2 × 3.14 × 240 × 61

X = 91939 ohm

Question 6: What is the corresponding resistance when 26H, 16H, 21H, and 30H inductors are connected in parallel?

Solution:

Given: L1 = 26 H, L2 = 16 H, L3 = 21 H, L4 = 30 H

Since,

1/L = 1/L1 + 1/L2 + 1/L3 + 1/L4 

∴ 1/L = 1/26 + 1/16 + 1/21 + 1/30

∴ 1/L = 0.03 + 0.06 + 0.04 + 0.03

∴ 1/L = 0.16 H

L = 6.25 H

Last Updated :
03 Nov, 2022

Like Article

Save Article

Понравилась статья? Поделить с друзьями:
  • Как найти путь по диаметру
  • Как правильно составить расписку об отсутствии претензий
  • Как найти код радио на рено каптур
  • Как найти одинаковые элементы массива паскаль
  • Как найти в нокиа мои файлы