Как найти индуктивность контура через емкость

Расчёт индуктивности колебательного контура

Расчёт индуктивности колебательного контура  (L,C)

Колебательный контур —  простейшая система, в которой могут происходить свободные электромагнитные колебания.

Колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

Формула расчета индуктивности колебательного контура

  •   L = 1/(4π²F²C)

Где:

  •     F — Резонансная частота, Гц)
  •     L — Индуктивность, (Гн)
  •     C — Ёмкость, (Ф)

Онлайн-калькулятор для расчёта индуктивности колебательного контура.

Индуктивность для колебательного контура LC

Ёмкость:

Частота :

Индуктивность:

Поделиться в соц сетях:

Популярные сообщения из этого блога

Найти тангенс фи , если известен косинус фи

Калькулятор коэффициент мощности cos fi в tg fi Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ Калькулятор онлайн — косинус в тангенс cos φ: tg φ: Поделиться в соц сетях: Найти синус φ, если известен тангенс φ Найти косинус φ, если известен тангенс φ

Индекс Руфье калькулятор

Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание  доктора Диксона о «Использование сердечного индекса Руфье в медико-спортивном контроле». Проба Руфье — представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке. Индекс Руфье для школьников и студентов. У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле:  Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменов Измеряют пульс в положении сидя (Р1); Спортсмен выполняет 30 глубоких приседаний в

Найти косинус фи (cos φ), через тангенс фи (tg φ)

tg фи=…  чему равен cos фи? Как перевести тангенс в косинус формула: cos(a)=(+-)1/sqrt(1+(tg(a))^2) Косинус через тангенс, перевести tg в cos, калькулятор — онлайн tg φ: cos φ: ± Поделиться в соц сетях:

Выберите подписку для получения дополнительных возможностей Kalk.Pro

Любая активная подписка отключает

рекламу на сайте

    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов

Более 10 000 пользователей уже воспользовались расширенным доступом для успешного создания своего проекта. Подробные чертежи и смета проекта экономят до 70% времени на подготовку элементов конструкции, а также предотвращают лишний расход материалов.

Подробнее с подписками можно ознакомиться здесь.

Индуктивность контура — теоретические основы

Индуктивностью называется идеализированный элемент, приближающийся по своим свойствам к индуктивной катушке, в котором накапливается энергия магнитного поля.

Условное обозначение индуктивности и положительные направления тока, ЭДС самоиндукции и напряжения:

условное обозначение индуктивности
Если по проводнику пропустить ток, то вокруг него создается магнитный поток Φ. Суммарный магнитный поток (поток сцепления) катушки индуктивности равен Ψ= w×Φ, где Φ — магнитный поток, создаваемый одним витком; w — число витков.

По определению собственная индуктивность (или просто индуктивность) равна коэффициенту пропорциональности между потокосцеплением и током
катушки L=Ψ/i.

Индуктивность измеряется в генри 1 Гн = 1 Вб / 1 А. Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца (Heinrich Friedrich Emil Lenz). Единица измерения индуктивности названа в честь Джозефа Генри(Joseph Henry). Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года.

Поток сцепления катушки индуктивности равен Ψ=L×i.

В соответствии с законом электромагнитной индукции при изменении магнитного потока в катушке наводится ЭДС самоиндукции eL=-dΨ/dt. Знак «-» ставится потому, что ЭДС имеет такое направление, что образуемый ею ток своим магнитным полем препятствует изменению магнитного потока, вызывающего данную ЭДС.

Напряжение на индуктивности уравновешивает ЭДС и может быть записано в
виде uL=-eL=dΨ/dt=L×di/dt.

Мгновенная мощность, поступающая в катушку индуктивности равна p=uL×i=L×i×di/dt.

Энергия, запасаемая в катушке индуктивности равна wM=∫(0^t)ptd=∫(0^t)L×i×dt×di/dt=(L×i²)/2.

Взаимная индуктивность характеризует свойство одного элемента с током i1 создавать магнитное поле, частично сцепляющиеся с витками w2 другого элемента.

Коэффициент взаимной индуктивности определяется по формуле M=Ψ12/i2=Ψ21/i1, где Ψ12 — поток сцепления первого контура, вызванный током второго контура (аналогично Ψ21). Измеряется в Гн.

Электрическая цепь и индуктивность контура

Индуктивность характеризует электромагнитные свойства электроцепей. В более узком понятии, это элемент или участок цепи, обладающий большой величиной самоиндукции.

Таким элементом может считаться один, несколько или даже часть витка проводника, на высоких частотах также прямой отрезок провода любой длины.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции открыл Майкл Фарадей в ходе серии опытов.

Опыт раз. На одну непроводящую основу намотали две катушки таким образом, что витки одной катушки были расположены между витками второй. Витки первой катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушку замкнули на гальванометр, а магнит передвигали относительно катушки.

Опыт с катушкой и магнитом

Вот что показали эти опыты:

    1. Индукционный ток возникает только при изменении линий магнитной индукции.
    1. Направление тока различается при увеличении числа линий и при их уменьшении.
  1. Сила индукционного тока зависит от скорости изменения магнитного потока. При этом как само поле может изменяться, так и контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна электродвижущей силе (ЭДС).

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Самоиндукция и измерение индуктивности

Индуктивность проводника

При изменении тока, который протекает в замкнутом электрическом контуре, меняется создаваемый им магнитный поток. Вследствие этого наводится ЭДС, которая называется ЭДС самоиндукции.

Напряжение ЭДС определяется формулой расчета индукции:

Ꜫ=-L∙di/dt.

То есть ЭДС прямо пропорциональна величине скорости изменения тока с некоторым коэффициентом L, который и называется «индуктивность».

Как найти индуктивность контура

Формула, которая является простейшей для нахождения величины, следующая:

  • L = F : I,

где F – магнитный поток, I – ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

  • Ei = -L х dI : dt.

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

  • W = L I2 : 2.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

  • L= µ0n2V,

где µ0 показывает магнитную проницаемость вакуума, n – это число витков, V – объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

  • L = µ0N2S : l,

где S – это площадь поперечного сечения, а l – длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Обозначение и единицы измерения

Сопротивление тока: формула

В честь Ленца, единица измерения индуктивности получила обозначение символом «L». Выражается в Генри, сокращенно Гн (в англоязычной литературе Н), в честь известного американского физика.

Индуктивность контура
Джозеф Генри

Если при изменении тока в один ампер за каждую секунду ЭДС самоиндукции составляет 1 вольт, то индуктивность цепи будет измеряться в 1 генри.

Как может обозначаться индуктивность в других системах:

  • В системе СГС, СГСМ – в сантиметрах. Для отличия от единицы длины обозначается абгенри;
  • В системе СГСЭ – в статгенри.

Свойства

Имеет следующие свойства:

  • Зависит от количества витков контура, его геометрических размеров и магнитных свойств сердечника;
  • Не может быть отрицательной;
  • Исходя из определения, скорость изменения тока в контуре, ограничена значением его индуктивности;
  • При увеличении частоты тока реактивное сопротивление катушки увеличивается;
  • Обладает свойством запасать энергию – при отключении тока запасенная энергия стремится компенсировать падение тока.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

  • Ce = C : (1 – 4Π2f2LC),

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f – это частота, L – индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида – апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

  • Lk = Lp + Lm + Lb,

где Lk показывает индуктивность устройства, Lp –пакета, Lm – главных шин, а Lb – индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc : n + µ0 l х d : (3b) + Lb,

где l – длина шин, b – ее ширина, а d – расстояние между шинами.

индуктивность тока
Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.

“Катушка ниток”

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

индуктивность соленоида формула

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

  • I = U : R,

где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь “катушка – источник тока”, то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN2R2 : 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N2R2 :2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от “витков в квадрате”.
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Общие сведения

Для того чтобы понять, от чего зависит индуктивность катушки, необходимо подробно изучить всю информацию об этой физической величине. Первым делом следует рассмотреть принятое международное обозначение параметра, его назначение, характеристики и единицы измерения.

Само понятие индуктивности было предложено известным английским физиком Оливером Хевисайдом, который занимался её изучением. Этот учёный подарил миру и другие известные термины — электропроводимость, магнитная проницаемость и сопротивление, а также ЭДС (электродвижущая сила).

Знаменитый физик— Эмилий Ленц
Первая буква фамилии другого знаменитого физика — Эмилия Ленца — была взята в качестве обозначения индуктивности в формулах и при проведении расчётов. В наше время символ L продолжает использоваться при упоминании этого параметра.

Выдающийся американский физик Джозеф Генри первым обнаружил явление индуктивности. В его честь физики назвали единицу измерения в международной СИ, которая чаще всего используется в расчётах. В других системах (гауссова и СГС) индуктивность измеряют в сантиметрах. Для упрощения вычислений было принято соотношение, в котором 1 см равняется 1 наногенри. Очень редко используемая система СГСЭ оставляет коэффициент самоиндукции без каких-либо единиц измерения или использует величину статгенри. Она зависит от нескольких параметров и приблизительно равняется 89875520000 генри.

Среди основных свойств индуктивности выделяются:

  1. Величина параметра никогда не может быть меньше нуля.
  2. Показатель зависит только от магнитных свойств сердечника катушки, а также от геометрических размеров контура.

Способы расчёта

Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.

Через силу тока

Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:

  • L — индуктивность контура (в генри);
  • Ф — величина магнитного потока, измеряемого в веберах;
  • I — сила тока в катушке (в амперах).

Формула индуктивности катушки

Такая формула подходит только для одновиткового контура. Если катушка состоит из нескольких витков, то вместо величины магнитного потока используется полный поток (суммарное значение). Когда же через все витки проходит одинаковый магнитный поток, то для определения суммарного значения достаточно умножить величину одного из них на общее количество.

Соленоид конечной длины

Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:

  • Соленоид конечной длины
    µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
  • N — количество витков в катушке;
  • S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:

  • W — энергия магнитного потока, измеряемая в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:

  • N — число витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Катушка с тороидальным сердечником

Длинный проводник

Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:

  • Вычисления по формуле
    l — длина проводника в метрах;
  • r — радиус сечения провода, измеряемый в метрах;
  • µ0 — магнитная постоянная;
  • µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
  • µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
  • π — число Пи;
  • ln — обозначение логарифма.

Графический вывод формулы

Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1.21.2 треугольника:

Рисунок 1.21.2. Вычисление энергии магнитного поля.

В итоге формула энергии Wм магнитного поля катушки с индуктивностью L, создаваемого током I, будет записана в виде формулы:

Wм=ΦI2=LI22=Φ22L

Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, получим запись:

Wм=μ0·μ·n2·I22V=B22μ0·μV

В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.

Определение 4

Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: Wм=B22μ·μ.

В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.

Об индуктивности простыми словами

Индуктивностью является физическая величина, которая была введена с целью оценки способности электрического проводника противодействовать току. Т.е. индуктивность, или как ее еще называют – коэффициент самоиндукции, показывает зависимость Ɛ от свойств проводника и от магнитной проницаемости среды, в которой он находится. Единицей измерения величины является генри (Гн).

Если рассмотреть величину на примере катушки индуктивности, то можно понять, что ее показатели будут изменяться в зависимости от числа витков катушки, а также ее размеров и формы. Чем больше количество витков, тем больше индуктивность. Данная величина также будет увеличена, если внутрь катушки будет помещен сердечник, так как изменится относительная магнитная проницаемость среды, в которой находится проводник. Данную зависимость можно увидеть на схеме.

Индуктивность

Если посмотреть на формулу зависимости ЭДС от индуктивности, то можно понять, что чем больше будет величина, тем заметнее будет электродвижущая сила, что говорит о их прямой пропорциональности. Следуя из этого, можно сделать вывод, что индуктивность выступает неким «хранилищем» энергии, которое открывается в момент изменения тока.

Ɛ=- L(dI/dt), где:

  • Ɛ – ЭДС самоиндукции;
  • L-индуктивность;
  • I – сила тока;
  • t – время.

При этом L равно магнитному полю (Ф) деленному на силу тока (I).

Польза и вред

Такое явление, как самоиндукция, большинство людей наблюдают ежедневно, даже не осознавая этого. Так, например, принцип работы люминесцентных трубчатых ламп основан именно на явлении самоиндукции. Также данное явление можно наблюдать в цепи зажигания транспортных средств, работающих на бензине. Это возможно благодаря наличию катушки индуктивности и прерывателя. Так, в момент, когда через катушку проходит ток, прерыватель разрывает цепь питания катушки, в результате чего и образуется ЭДС, которая далее приводит к тому, что импульс более 10 кВ поступает на свечи зажигания.

Явление самоиндукции также приносит пользу, убирая лишнюю пульсацию, частоты или различные шумы в музыкальных колонках или другой аудиотехнике. Именно на ней основано работа различных «шумовых» фильтров.

Однако самоиндукция способна приносить не только пользу, но и заметный вред. Особенно часто она вредит различным выключателям, рубильникам, розеткам и другим устройствам, размыкающим электрическую цепь. Ее негативное воздействие на электроприборы можно заметить невооруженным глазом: искра в розетке в момент вытаскивания вилки, работающего фена и есть проявление сопротивления изменению силы тока.

Именно поэтому лампочки чаще всего перегорают именно в момент выключения света, а не наоборот. Это связано с тем, что сопротивление приводит к выгоранию контактов и накоплению цепей с токами в различных электроприборах, что в свою очередь представляет собой довольно серьезную техническую проблему.

Индуктивность и самоиндукция – незнакомые многим термины, с которыми люди встречаются ежедневно. И если первый термин является физической величиной, обозначающей способность проводника препятствовать изменению напряжения, то второй объясняет появление ЭДС индукции в том же проводнике.

Предыдущая

РазноеЧто такое фазное и линейное напряжение?

Следующая

РазноеБлуждающие токи и способы борьбы с ними

Колебательный контур:

Явление возникновения ЭДС индукции при изменении магнитного потока через площадь, ограниченную контуром, называется явлением электромагнитной индукции.

Под явлением самоиндукции понимают возникновение в контуре ЭДС индукции, создаваемой вследствие изменения силы тока в самом контуре. Правило Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, при котором созданный им собственный магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение внешнего магнитного потока, вызвавшее данный ток.

Рассмотрим электрическую цепь, содержащую конденсатор электроемкостью С и катушку (соленоид) индуктивностью L (рис. 15). Такая цепь называется идеальным колебательным контуром или LC-контуром.

Колебательный контур в физике - формулы и определения с примерами

В отличие от реального колебательного контура, который всегда обладает некоторым электрическим сопротивлением (RКолебательный контур в физике - формулы и определения с примерами

Пусть в начальный момент времени (t = 0) конденсатор С заряжен так, что на его первой обкладке находится заряд +Колебательный контур в физике - формулы и определения с примерами, а на второй —Колебательный контур в физике - формулы и определения с примерами. При этом конденсатор обладает энергией Колебательный контур в физике - формулы и определения с примерами

С течением времени конденсатор начнет разряжаться, и в цепи появится электрический ток, сила l(t) которого будет меняться с течением времени. Поскольку при прохождении такого электрического тока в катушке индуктивности возникнет изменяющийся во времени магнитный поток, то это вызовет появление ЭДС самоиндукции, препятствующей изменению силы тока.

Вследствие этого сила тока в колебательном контуре будет возрастать от нуля до максимального значения в течение некоторого промежутка времени, определяемого индуктивностью катушки.

В момент полной разрядки конденсатора (q = 0) сила тока в катушке I(t) достигнет своего максимального значения Колебательный контур в физике - формулы и определения с примерами. В соответствии с законом сохранения энергии первоначально запасенная в конденсаторе энергия электростатического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:

Колебательный контур в физике - формулы и определения с примерами

После разрядки конденсатора сила тока в катушке начнет убывать. Это также произойдет не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создаст индукционный ток. Он будет иметь такое же направление, как и уменьшающийся ток в цепи, и поэтому будет «поддерживать» его. Индукционный ток, создаваемый ЭДС самоиндукции катушки, перезарядит конденсатор до начального напряжения обратной полярности — знак заряда на каждой обкладке окажется противоположным начальному.

Соответственно, к моменту исчезновения тока заряд конденсатора достигнет максимального значения Колебательный контур в физике - формулы и определения с примерами. При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно (см. рис. 15). Далее процесс повторится с той лишь разницей, что электрический ток будет проходить в противоположном направлении.

Таким образом, в идеальном LC-контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.

Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без потребления энергии от внешних источников.

Таким образом, возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением в катушке ЭДС самоиндукции, которая «обеспечивает» эту перезарядку. Заметим, что заряд q(t) конденсатора и сила тока I(t) в катушке достигают своих максимальных значений Колебательный контур в физике - формулы и определения с примерами и Колебательный контур в физике - формулы и определения с примерами в различные моменты времени (см. рис. 15).

Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальному значению заряда данной обкладки), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Период свободных электромагнитных колебаний в контуре определяется по формуле Томсона:

Колебательный контур в физике - формулы и определения с примерами

Получим эту формулу, используя закон сохранения энергии. Поскольку полная энергия идеального LC-контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство

Колебательный контур в физике - формулы и определения с примерами (1)

Поскольку закономерности гармонических колебаний носят универсальный характер, то можно сравнить колебания в LC-контуре с колебаниями пружинного маятника.

Для пружинного маятника полная механическая энергия в любой момент времени    2 ,

Колебательный контур в физике - формулы и определения с примерами (2)

и период его колебаний

Колебательный контур в физике - формулы и определения с примерами

Проанализируем соотношения (1) и (2). Сравним выражения для энергии электростатического поля конденсатора Колебательный контур в физике - формулы и определения с примерами и потенциальной энергии упругой деформации пружины Колебательный контур в физике - формулы и определения с примерами энергии магнитного поля катушки Колебательный контур в физике - формулы и определения с примерами и кинетической энергии груза Колебательный контур в физике - формулы и определения с примерами Аналогом координаты x(t) при колебаниях в электрическом контуре является заряд конденсатора q(t), а аналогом проекции скорости груза Колебательный контур в физике - формулы и определения с примерами служит сила тока I(t) в колебательном контуре.

Следуя аналогии, заменим в формуле для периода колебаний пружинного маятника т на L и k на Колебательный контур в физике - формулы и определения с примерами, тогда для периода свободных колебаний в LC-контуре получим формулу Томсона: 

Колебательный контур в физике - формулы и определения с примерами

Несложные дальнейшие рассуждения позволяют установить аналогии между физическими величинами при электромагнитных и механических колебаниях (табл. 4).

Таблица 4

Сопоставление физических величин, характеризующих электромагнитные и механические колебания

Колебательный контур в физике - формулы и определения с примерами
Соответственно, зависимость заряда конденсатора от времени будет иметь такой же характер, как и зависимость координаты (смещения) тела, совершающего гармонические колебания, от времени:

Колебательный контур в физике - формулы и определения с примерами

Также по гармоническому закону (но с другими начальными фазами) будут изменяться сила тока в цепи, напряжение на конденсаторе.

Для определения начальной фазы Колебательный контур в физике - формулы и определения с примерами и амплитуды колебаний заряда Колебательный контур в физике - формулы и определения с примерами необходимо знать заряд конденсатора и силу тока в катушке в начальный момент времени (t = 0).

Полная энергия идеального колебательного контура (R = 0) с течением времени сохраняется, поскольку в нем при прохождении тока теплота не выделяется.

Как уже отмечалось, реальный колебательный контур всегда имеет некоторое сопротивление R, обусловленное сопротивлением катушки, соединительных проводов и т. д. Это приводит к тому, что электромагнитные колебания в реальном контуре с течением времени затухают, тогда как в идеальном контуре они «будут происходить» сколь угодно долго.

Таким образом, механическим аналогом идеального колебательного контура является пружинный маятник без трения, а механическим аналогом реального колебательного контура — пружинный маятник с трением.

Пример №1

При изменении емкости конденсатора идеального LC-контура на Колебательный контур в физике - формулы и определения с примерами = 50 пФ частота свободных электромагнитных колебаний в нем увеличилась с Колебательный контур в физике - формулы и определения с примерами = 100 кГц до Колебательный контур в физике - формулы и определения с примерами= 120 кГц. Определите индуктивность L контура.

Колебательный контур в физике - формулы и определения с примерами

Решение

Частота колебаний в контуре

Колебательный контур в физике - формулы и определения с примерами

Поскольку частота колебаний в контуре увеличилась (Колебательный контур в физике - формулы и определения с примерами), то электроемкость должна уменьшится, т. е. Колебательный контур в физике - формулы и определения с примерами.

Из условия задачи получаем систему уравнений

Откуда Колебательный контур в физике - формулы и определения с примерами
 

Вычитая из первого уравнения второе, получаем

Колебательный контур в физике - формулы и определения с примерами

Откуда находим

Колебательный контур в физике - формулы и определения с примерами

Колебательный контур в физике - формулы и определения с примерами

Ответ: L = 0,015 Гн.

Пример №2

Колебательный контур состоит из конденсатора емкостью С = 400пФ и катушки индуктивностью L=10 мГн. Определите амплитудное значение силы тока Колебательный контур в физике - формулы и определения с примерами в контуре, если амплитудное значение напряжения на конденсаторе Колебательный контур в физике - формулы и определения с примерами = 500 В.

Колебательный контур в физике - формулы и определения с примерами

Решение

Максимальная энергия электростатического поля конденсатора

Колебательный контур в физике - формулы и определения с примерами

а максимальная энергия магнитного поля катушки

Колебательный контур в физике - формулы и определения с примерами

Так как контур идеальный (R = 0), то его полная энергия не меняется с течением времени. Кроме того, в момент, когда заряд конденсатора максимален, сила тока в катушке равна нулю, а в момент, когда заряд конденсатора равен нулю, сила тока в ней максимальна. Это позволяет утверждать, что максимальные энергии в конденсаторе и катушке равны: Колебательный контур в физике - формулы и определения с примерами, т. е.

откуда Колебательный контур в физике - формулы и определения с примерами

Колебательный контур в физике - формулы и определения с примерами

Ответ: Колебательный контур в физике - формулы и определения с примерами.

Колебательный контур и свободные электромагнитные колебания в контуре

Явление возникновения ЭДС в любом контуре при изменении магнитного потока через поверхность, ограниченную контуром, называется явлением электромагнитной индукции.

Под явлением самоиндукции понимают возникновение в замкнутом проводящем контуре ЭДС индукции, создаваемой вследствие изменения силы тока в самом контуре.

Правило Ленца: возникающий в замкнутом проводящем контуре индукционный ток имеет такое направление, при котором созданный им магнитный поток через поверхность, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

Рассмотрим электрическую цепь, состоящую из последовательно соединенных конденсатора электроемкостью Колебательный контур в физике - формулы и определения с примерами и катушки (соленоида) индуктивностью Колебательный контур в физике - формулы и определения с примерами (рис. 29, а), называемую идеальным колебательным контуром или Колебательный контур в физике - формулы и определения с примерами-контуром. Электрическое сопротивление идеального контура считают равным нулю Колебательный контур в физике - формулы и определения с примерами Следовательно, идеальный колебательный контур является упрощенной моделью реального колебательного контура.

Подключив (при помощи ключа Колебательный контур в физике - формулы и определения с примерами источник тока, зарядим конденсатор до напряжения Колебательный контур в физике - формулы и определения с примерами сообщив ему заряд Колебательный контур в физике - формулы и определения с примерами (рис. 29, б). Следовательно, в начальный момент времени Колебательный контур в физике - формулы и определения с примерами конденсатор заряжен так, что на его обкладке 1 находится заряд Колебательный контур в физике - формулы и определения с примерами а на обкладке 2 — заряд Колебательный контур в физике - формулы и определения с примерами При этом электростатическое поле, создаваемое зарядами обкладок конденсатора, обладает энергией Колебательный контур в физике - формулы и определения с примерами
Колебательный контур в физике - формулы и определения с примерами

Рассмотрим процесс разрядки конденсатора в колебательном контуре. После соединения заряженного конденсатора с катушкой (при помощи ключа Колебательный контур в физике - формулы и определения с примерами (рис. 30) он начнет разряжаться, так как под действием электрического поля, создаваемого зарядами на обкладках конденсатора, свободные электроны будут перемещаться по цепи от отрицательно заряженной обкладки к положительно заряженной. На рисунке 30 стрелкой показано начальное направление тока в электрической цепи.

Таким образом, в контуре появится нарастающий по модулю электрический ток, сила Колебательный контур в физике - формулы и определения с примерами которого будет изменяться с течением времени (рис. 31, а). Но мгновенная разрядка конденсатора невозможна, так как изменение магнитного поля катушки, создаваемое нарастающим по модулю током, вызывает возникновение вихревого электрического поля. Действительно, в катушке индуктивности возникнет изменяющийся во времени магнитный поток, который вызовет появление ЭДС самоиндукции. Согласно правилу Ленца ЭДС самоиндукции стремится противодействовать вызвавшей ее причине, т. е. увеличению силы тока по модулю.

Вследствие этого модуль силы тока в колебательном контуре будет в течение некоторого промежутка времени плавно возрастать от нуля до максимального значения Колебательный контур в физике - формулы и определения с примерами определяемого индуктивностью катушки и электроемкостью конденсатора (рис. 31, б).
Колебательный контур в физике - формулы и определения с примерами

При разрядке конденсатора энергия его электростатического поля превращается в энергию магнитного поля катушки с током. Согласно закону сохранения энергии суммарная энергия идеального колебательного контура остается постоянной с течением времени (уменьшение энергии электростатического поля конденсатора равно увеличению энергии магнитного поля катушки):

Колебательный контур в физике - формулы и определения с примерами

где Колебательный контур в физике - формулы и определения с примерами — мгновенное значение заряда конденсатора и Колебательный контур в физике - формулы и определения с примерами — сила тока в катушке в некоторый момент времени Колебательный контур в физике - формулы и определения с примерами после начала разрядки конденсатора.

В момент полной разрядки конденсатора Колебательный контур в физике - формулы и определения с примерами сила тока в катушке Колебательный контур в физике - формулы и определения с примерами достигнет своего максимального по модулю значения Колебательный контур в физике - формулы и определения с примерами (см. рис. 31, б). В соответствии с законом сохранения энергии запасенная в конденсаторе энергия электростатического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:

Колебательный контур в физике - формулы и определения с примерами

После разрядки конденсатора сила тока в катушке начинает убывать по модулю. Это также происходит не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создает индукционный ток. Он имеет такое же направление, как и уменьшающийся по модулю ток в цепи, и поэтому «поддерживает» его. Индукционный ток, создаваемый ЭДС самоиндукции катушки, перезаряжает конденсатор до начального напряжения Колебательный контур в физике - формулы и определения с примерами но знак заряда на каждой обкладке оказывается противоположным знаку начального заряда. Соответственно, к моменту исчезновения тока заряд конденсатора достигнет максимального значения Колебательный контур в физике - формулы и определения с примерами При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно. Далее процесс повторится с той лишь разницей, что электрический ток в ко туре будет проходить в противоположном направлении, что отражено на рисунке 31, а.

Таким образом, в идеальном Колебательный контур в физике - формулы и определения с примерами-контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.

Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без пополнения энергии от внешних источников.

Таким образом, существование свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора, вызванной возникновением ЭДС самоиндукции в катушке. Заметим, что заряд Колебательный контур в физике - формулы и определения с примерами конденсатора и сила тока Колебательный контур в физике - формулы и определения с примерами в катушке достигают своих максимальных значений Колебательный контур в физике - формулы и определения с примерами в различные момента времени (см. рис. 31 а, б).

Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальным значениям заряда на каждой из обкладок), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Получим формулу для периода свободных электромагнитных колебаний в контуре, используя закон сохранения энергии. Поскольку полная энергия идеального Колебательный контур в физике - формулы и определения с примерами-контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство: 
Колебательный контур в физике - формулы и определения с примерами 

Процессы, происходящие в колебательном контуре, аналогичны колебаниям пружинного маятника. Для полной механической энергии пружинного маятника в любой момент времени:

Колебательный контур в физике - формулы и определения с примерами

где Колебательный контур в физике - формулы и определения с примерами — жесткость пружины, Колебательный контур в физике - формулы и определения с примерами — масса груза, Колебательный контур в физике - формулы и определения с примерами — проекция смещения тела от положения равновесия, Колебательный контур в физике - формулы и определения с примерами — проекция его скорости на ось Колебательный контур в физике - формулы и определения с примерами

Период его колебаний:

Колебательный контур в физике - формулы и определения с примерами

Проанализируем соотношения (1) и (2). Видно, что энергия электростатического поля конденсатора Колебательный контур в физике - формулы и определения с примерами является аналогом потенциальной энергии упругой деформации пружины Колебательный контур в физике - формулы и определения с примерами Соответственно, энергия магнитного поля катушки Колебательный контур в физике - формулы и определения с примерами которая обусловлена упорядоченным движением зарядов, является аналогом кинетической энергии груза Колебательный контур в физике - формулы и определения с примерами Следовательно, аналогом координаты Колебательный контур в физике - формулы и определения с примерами пружинного маятника при колебаниях в электрическом контуре является заряд конденсатора Колебательный контур в физике - формулы и определения с примерами Тогда, соответственно, аналогом проекции скорости груза будет сила тока в колебательном контуре, поскольку сила тока характеризует скорость изменения заряда конденсатора с течением времени.

Следуя проведенной аналогии, заменим в формуле для периода колебаний пружинного маятника массу Колебательный контур в физике - формулы и определения с примерами на индуктивность Колебательный контур в физике - формулы и определения с примерами и жесткость Колебательный контур в физике - формулы и определения с примерами тогда для периода свободных колебаний в Колебательный контур в физике - формулы и определения с примерами-контуре получим формулу:

Колебательный контур в физике - формулы и определения с примерами

которая называется формулой Томсона.

Несложные дальнейшие рассуждения позволяют установить аналогии между физическими величинами при электромагнитных и механических колебаниях (табл. 4).

Колебательный контур в физике - формулы и определения с примерамиДля наблюдения и исследования электромагнитных колебаний применяют электронный осциллограф, на экране которого получают временную развертку колебаний (рис. 32).

Колебательный контур в физике - формулы и определения с примерами

Зависимость заряда конденсатора от времени имеет такой же вид, как и зависимость координаты (проекции смещения) тела, совершающего гармонические колебания, от времени:

Колебательный контур в физике - формулы и определения с примерами

Также по гармоническому закону изменяются сила тока (но с другой начальной фазой) в цепи и напряжение на конденсаторе.

Для определения начальной фазы Колебательный контур в физике - формулы и определения с примерами и максимального заряда Колебательный контур в физике - формулы и определения с примерами необходимо знать заряд конденсатора и силу тока в катушке в начальный момент времени Колебательный контур в физике - формулы и определения с примерами

Отметим, что колебательный контур, в котором происходит только обмен энергией между конденсатором и катушкой, называется закрытым.

Полная энергия идеального колебательного контура Колебательный контур в физике - формулы и определения с примерами с течением времени сохраняется, поскольку в нем при прохождении тока теплота не выделяется. Реальный колебательный контур всегда имеет некоторое электрическое сопротивление Колебательный контур в физике - формулы и определения с примерами которое обусловлено сопротивлением катушки и соединительных проводов. Это приводит к тому, что электромагнитные колебания в реальном контуре с течением времени затухают, тогда как в идеальном контуре они будут происходить сколь угодно долго.

Таким образом, механическим аналогом идеального колебательного контура является пружинный маятник без учета трения, а механическим аналогом реального колебательного контура — пружинный маятник с учетом трения.

Пример решения задачи:

Идеальный колебательный контур состоит из конденсатора емкостью Колебательный контур в физике - формулы и определения с примерами пФ и катушки индуктивностью Колебательный контур в физике - формулы и определения с примерами мГн. Определите максимальное значение силы тока Колебательный контур в физике - формулы и определения с примерами в контуре, если максимальное значение напряжения на конденсаторе Колебательный контур в физике - формулы и определения с примерами
Дано:

Колебательный контур в физике - формулы и определения с примерами

Колебательный контур в физике - формулы и определения с примерами
Решение

Максимальная энергия электростатического поля конденсатора:

Колебательный контур в физике - формулы и определения с примерами
а максимальная энергия магнитного поля катушки:

Колебательный контур в физике - формулы и определения с примерами

Так как контур идеальный Колебательный контур в физике - формулы и определения с примерами то его полная энергия сохраняется с течением времени. По закону сохранения энергии Колебательный контур в физике - формулы и определения с примерами т. е.

Колебательный контур в физике - формулы и определения с примерами

Отсюда

Колебательный контур в физике - формулы и определения с примерами
Ответ: Колебательный контур в физике - формулы и определения с примерами

  • Исследовательские методы в физике
  • Вертикальное движение тел в физик
  • Неравномерное движение по окружности
  • Равномерное движение по окружности
  • Распространение механических волн в средах
  • Электромагнитное поле
  • Опыты Фарадея в физике
  • Электромагниты и их применение в физике

Если существует замкнутый контур, в котором протекает ток, создающий магнитное поле (магнитный поток), то между током и потоком существует взаимосвязь. Коэффициент пропорциональностями между этими величинами является определением индуктивности.

Также эту пропорциональность можно назвать характеристикой инерционности электрической цепи, которая напрямую связана с понятием ЭДС самоиндукции, которая возникает в цепи, когда изменяется сила тока.

Обозначение и единицы измерения

От чего зависит индуктивность

В честь Ленца, единица измерения индуктивности получила обозначение символом «L». Выражается в Генри, сокращенно Гн (в англоязычной литературе Н), в честь известного американского физика.

Если при изменении тока в один ампер за каждую секунду ЭДС самоиндукции составляет 1 вольт, то индуктивность цепи будет измеряться в 1 генри.

Как может обозначаться индуктивность в других системах:

  • В системе СГС, СГСМ – в сантиметрах. Для отличия от единицы длины обозначается абгенри;
  • В системе СГСЭ – в статгенри.

Физика ёмкостных характеристик

Устройства, обладающие способностью хранения энергии в форме электрического заряда и производящие при этом разность потенциалов, называют конденсаторами. В простейшем виде они состоят из двух или более параллельных проводящих пластин, находящихся на небольшом расстоянии друг от друга, но электрически разделённых либо воздухом, либо каким-либо другим изоляционным материалом, например, вощёной бумагой, слюдой, керамикой, пластмассой или специальным гелем.

Вам это будет интересно Работа сторонних сил в цепи постоянного тока и источники ЭДС

Если подключить к пластинам источник напряжения, то одна из них получит избыток электронов, а на другой сформируется их дефицит. Ионы и электроны на каждой из этих пластин притягиваются друг к другу, но благодаря диэлектрическому барьеру они не соединяются, а накапливаются на плоскостях проводников. В результате первая пластина (электрод) окажется заряженной отрицательно, а вторая — положительно. Неподвижные заряды создают постоянное электрическое поле, теоретически сохраняемое неограниченное количество времени в незамкнутой электрической цепи.

Поток электронов на пластины называется зарядным током, продолжающим присутствовать до тех пор, пока напряжение на пластинах не сравняется с приложенным. В этот момент конденсатор считается полностью заряженным, то есть зарядов на пластинах становится так много, что они отталкивают вновь поступающие. При подключении к заряженному устройству нагрузки электроны и ионы находят новый путь друг к другу. В этом случае конденсатор работает как источник тока до момента потери разности потенциалов на электродах.

Способность конденсатора хранить заряд Q (измеряется в кулонах) называют ёмкостью. Чем больше площадь пластин и меньше расстояние между ними (благодаря усилению эффекта притяжения зарядов между обкладками), тем большая ёмкость устройства. Степень приближения пластин ограничивается способностью диэлектрика сопротивляться разрядке пробоем между ними. Таким образом, три характеристики определяют производительность конденсатора:

  • геометрия пластин;
  • расстояние между ними;
  • диэлектрический материал между пластинами.

Свойства

Имеет следующие свойства:

  • Зависит от количества витков контура, его геометрических размеров и магнитных свойств сердечника;
  • Не может быть отрицательной;
  • Исходя из определения, скорость изменения тока в контуре, ограничена значением его индуктивности;
  • При увеличении частоты тока реактивное сопротивление катушки увеличивается;
  • Обладает свойством запасать энергию – при отключении тока запасенная энергия стремится компенсировать падение тока.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

  • L = F : I,

где F – магнитный поток, I – ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

  • Ei = -L х dI : dt.

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

  • W = L I2 : 2.

Схемы соединения катушек

Как радиотехнический элемент, катушки индуктивностей обладают свойствами соединений, полностью идентичными соединениям резисторов.

Параллельное соединение

Параллельное соединение:

L=1/(1/L1+1/L2+…+1/Ln).

Для двух элементов формула упрощается:

L=L1∙L2/(L1+L2).

Последовательное соединение

Общее значение последовательного соединения равняется сумме индуктивностей:

L=L1+L2+…+Ln.

Добротность катушки

Одно из важнейших качеств катушек – это добротность. Данный параметр представляет собой отношение реактивного (индуктивного) сопротивления к активному. Активное сопротивление – это сопротивление проводника, из которого выполнен элемент, его можно считать постоянным, за исключением температурного коэффициента сопротивления материала, из которого выполнен провод.

Реактивное сопротивление прямо пропорционально частоте. Формула расчета добротности выглядит следующим образом:

Q=2∙π∙f∙L/R,

где:

  • π – число пи, ≈3,14,
  • f – частота,
  • R – сопротивление.

Обратите внимание! С ростом частоты сигнала добротность катушки индуктивности возрастает.

Одновитковой контур и катушка

Индуктивность контура, представляющего виток провода, зависит от величины протекающего тока и магнитного потока, пронизывающего контур. Для индуктивности контура формула определяет параметр, соответственно, через поток и силу тока:

L=Ф/I.

Ослабление магнитного потока из-за диамагнитных свойств окружающей среды снижает индуктивность.

Параметр для многовитковой катушки пропорционален квадрату количества витков, поскольку увеличивается не только магнитный поток от каждого витка, но и потокосцепление:

L=L1∙N2.

Для того чтобы рассчитать индуктивность катушки формула должна учитывать не только количество витков, но и тип намотки и геометрические размеры.

Практические измерения

Значение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми. Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования. Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.

Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.

Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость. Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат. Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.

Вам это будет интересно Устройство термопары, ее виды и принцип работы

Более сложные и специализированные инструменты — мостовые измерители, испытывающие конденсаторы в мостовой схеме. Этот метод косвенного измерения обеспечивает высокую точность. Современные устройства такого типа оснащены цифровыми дисплеями и возможностью автоматизированного использования в производственной среде, они могут быть сопряжены с компьютерами и экспортировать показания для внешнего контроля.

Соленоид

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.

Параметры соленоида можно узнать из такого выражения:

L=µ0N2S/l,

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника.

Обратите внимание! Используя подвижный сердечник, можно производить оперативное изменение параметров соленоида.

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

  • B= µ0nI,

где µ0 – это магнитная проницаемость вакуума, n – это число витков, а I – значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

  • E = LI2 :2,

где L показывает значение индуктивности, а E – запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) — это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для индукционного нагрева в тигельных печах.

Тороидальная катушка (катушка с кольцевым сердечником)

Тороидальный тип обмотки рассчитывается по специальной формуле, которая предполагает, что используется соленоид с бесконечной длиной. Чтобы определять индуктивность формула для тора имеет следующий вид:

L=µ∙µ0N2S/(2π∙r),

где r – усредненный радиус тороидального сердечника.

Кольцевой сердечник прямоугольного сечения можно находить по следующей формуле:

L=µ∙µ0N2S∙h/(2π)∙ln(R/r),

где:

r – внутренний радиус сердечника;

R – внешний радиус;

h – высота.

Важно! Вторая формула позволяет узнавать результат с большей точностью.

Длинный прямой проводник

Как найти индуктивность прямого проводника? Существует формула, дающая точное значение при условии, что проводник имеет длину, значительно превышающую толщину:

L=µ0/(2π)∙l(µeln(l/r+1/4µi),

где:

  • µe и µi – магнитная проницаемость среды и материала проводника, соответственно;
  • l и r – длина и радиус проводника.

Какой магнитной проницаемостью обладает проводник, можно узнать из справочных материалов.

Колебательный контур

Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.

Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.

Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.

Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.

Единица и формулы расчёта

Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.

Математическое выражение фарада

Ёмкость конденсатора — постоянная величина, означающая потенциальную способность хранить энергию. Количество заряда, хранимое в отдельно взятый момент, определяется уравнением Q=CV, где V — приложенное напряжение. Таким образом, регулируя напряжение на пластинах, можно увеличивать или уменьшать заряд. Эта формула ёмкости в виде C=Q/V в единичных значениях определяет, в чём измеряется ёмкость конденсатора в СИ, и является математическим выражением фарада.

Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:

  • пикофарад — 10—12 Ф;
  • нанофарад — 10—9 Ф;
  • микрофарад — 10—6 Ф.

Вам это будет интересно Состав и определение конденсатора: список свойств и маркировка

Диэлектрическая проницаемость

Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:

  • А — площадь меньшей пластины;
  • d — расстояние между ними;
  • ε — абсолютная проницаемость используемого диэлектрического материала.

Диэлектрическая проницаемость вакуума ε0 является константой и имеет значение 8,84х10—12 фарад на метр. Как правило, проводящие пластины разделены слоем изоляционного материала, а не вакуума. Чтобы найти ёмкость конденсатора, пластины которого находятся в воздухе, можно воспользоваться значением ε0. Разницей диэлектрической проницаемости атмосферы и вакуума можно пренебречь, поскольку их значения очень близки.

На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:

  • 1,0006 — воздух;
  • 2,5—3,5 — бумага;
  • 3—10 — стекло;
  • 5—7 — слюда.

Поскольку эффективность конденсатора зависит от применяемого в нём изолятора, его качество как накопителя можно определить через удельную ёмкость — величину, равную отношению ёмкости к объёму диэлектрика.

Понравилась статья? Поделить с друзьями:
  • Как найти глагол в татарском языке
  • Как найти горизонтальный параллакс юпитера
  • Правила как найти неизвестный множитель делимое делитель
  • Как найти наушники airpods через локатор айфон
  • Как найти линейную скорость при вращении