Как найти инерцию в физике

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Масса - мера инертности тела

 

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

физика инерция формулы

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

определение момента инерции

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

момент инерции для чайников

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Формулы для момента инерции

 

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

определение момента инерции тела

Массу кольца можно представить в виде:

инерция тела физика

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

момент инерции формула физика

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Пример решения задачи на нахождение момента инерции

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Содержание:

Во время равномерного прямолинейного движения тело движется с постоянной по значению и направлению скоростью. Скорость неравномерного движения изменяется со временем. Рассмотрим теперь явления, вследствие которых тело изменяет собственную скорость движения или её направление.

Наблюдение. Из повседневного опыта следует: чтобы тело пришло в движение (т. е. набрало скорость), на него должно подействовать другое тело. Например, лежащий на футбольном поле мяч, придёт в движение только тогда, когда на него налетит другой мяч или по нему ударят ногой (рис. 48). Но если на мяч не действуют другие тела, то он сам по себе не изменит собственную скорость, не придёт в движение относительно Земли.

Опыт 1. На одну из двух тележек, стоящих на рельсах, положили магнит, а на другую — стальной брусок (рис. 49). Под рельсами перекинута нить, которая своими концами закреплена позади каждой из тележек и не позволяет им сблизиться. Если нить пережечь, то тележки начинают двигаться навстречу друг другу, изменяя свою скорость от нуля до некоторого значения. Причиной изменения скорости тележек является притяжение между магнитом и железным бруском, т. е. взаимодействие между ними.

Опыт 2. Толкнём шарик, лежащий на горизонтальном столе, — он начнет равномерно двигаться по прямолинейной траектории. Положим на стол магнит перед шариком на расстоянии от линии его движения. Шарик вследствие взаимодействия с магнитом начнёт увеличивать свою скорость и отклоняться в сторону магнита, т. е. он изменит направление движения (рис. 50).

Опыт 3. Один конец пружины прикрепим к игрушечному автомобилю (рис. 51), другой — к стойке на краю стола. Потянем за автомобиль в сторону от стойки — начнётся взаимодействие руки с автомобилем и пружиной, в результате чего их скорости изменяются, а пружина растягивается. Отпустим машинку — теперь взаимодействуют пружина и автомобиль — пружина начинает сжиматься и двигаться с ним в обратном направлении. Во всех этих опытах взаимодействие тел приводит к изменению их скоростей.
Инерция в физике - виды, формулы и определения с примерами

Инерция в физике - виды, формулы и определения с примерами

При взаимодействии тел может изменяться скорость движения не только тел в целом, но и отдельных их частей. Это происходит, например, если мы сжимаем в руке теннисный мяч (рис. 52). Вследствие неодинакового перемещения отдельных частей мяч сжимается и деформируется (изменяет свою форму). Также изменяют свою форму и пальцы руки. На фотографии (рис. 53) показано, как пуля пробивает стальной лист.

Инерция в физике - виды, формулы и определения с примерами

В этом случае произошло взаимодействие пули с листом, в результате чего они деформировались, а пуля ещё и изменила свою скорость движения.

Вследствие взаимодействия тел они изменяют скорость и направление своего движения, а также деформируются.

Что такое инерция

Повседневный опыт подтверждает вывод, сделанный нами из предыдущих опытов: скорость и направление движения тела могут изменяться лишь при взаимодействии его с другим телом.

Рассмотрим случаи, когда тело в начале наблюдения уже находится в движении. Увидим, что уменьшение скорости движения и остановка тела не могут происходить сами по себе, а обусловлены действием на него другого тела.

Наблюдение 1. Вы, наверное, неоднократно наблюдали, как пассажиры, едущие в транспорте, вдруг наклоняются вперёд во время торможения или прижимаются к стенке на крутом повороте.

Наблюдение 2. Когда на уроке физкультуры вы пробегаете дистанцию 60 м, то стараетесь развить максимальную скорость. На финише уже можно не бежать, но вы не можете резко остановиться и пробегаете ещё несколько метров. Подобно этому автомобиль не может остановиться мгновенно, а движется ещё определённое время при отключённом двигателе или даже во время торможения. Поэтому нельзя перебегать улицу перед приближающимся автомобилем: водитель не сможет его резко остановить.

Опыт. Тележку с бруском на нём поставим на наклонную плоскость и отпустим (рис. 54, а). Она будет двигаться вниз, набирая скорость, но достигши преграды, резко остановится. Видим, что брусок, не связанный жёстко с тележкой, будет продолжать свое движение дальше (рис. 54, б). Из приведённых примеров видим, что все тела имеют свойство сохранять скорость и направление движения и не могут мгновенно их изменить в результате действия на них другого тела. Можно предположить, что при отсутствии внешнего воздействия тело будет сохранять скорость и направление движения как угодно долго.

Явление сохранения скорости движения тела при отсутствии действия на него других тел называют инерцией.

Явление инерции открыл итальянский учёный Галилео Галилей. На основе своих опытов и размышлений он утверждал: если на тело не действуют другие тела, то оно или находится в покое, или движется прямолинейно и равномерно. В этом случае говорят, что тело движется по инерции.

Инерция — это латинское слово, которое означает «недвижимость», «бездеятельность».

Явление инерции широко используют в технике и быту. Например, чтобы насадить молоток на ручку (рис. 55), нужно другим молотком ударять по торцу ручки или торцом ручки — по массивному неподвижному предмету.

Инерция в физике - виды, формулы и определения с примерамиПримером движения по инерции является также движение молекул газа -каждая молекула в интервале времени между двумя последовательными столкновениями с другими молекулами движется по инерции.

Инертность тел и масса

Всегда ли одинаковый результат действия силы?

Результатом действия силы на тело является изменение его скорости или формы. Однако действие одной и той же силы не всегда сопровождается одинаковым эффектом. Он будет зависеть и от свойств тела, к которому приложена сила.

Инерция в физике - виды, формулы и определения с примерами

Разместим на полочке, закрепленной в штативе, два алюминиевых шарика (рис. 41). Упругую пластинку согнем, концы ее завяжем ниткой и введем между шариками. Если нитку перерезать, то пластинка распрямится и толкнет оба шарика, придав им определенные скорости. Измерив расстояния Инерция в физике - виды, формулы и определения с примерами и Инерция в физике - виды, формулы и определения с примерами на которые отлетели шарики, увидим, что они равные:

Инерция в физике - виды, формулы и определения с примерами

Если опыт повторить, поменяв один из алюминиевых шариков на стальной такого же диаметра (рис. 42), то расстояния, на которые сместятся шарики, будут различными:
Инерция в физике - виды, формулы и определения с примерами

Инерция в физике - виды, формулы и определения с примерами

Таким образом, при действии одной и той же сжатой пружины за одинаковый интервал времени шарики приобрели различные скорости. Большее изменение скорости наблюдалось у алюминиевого шарика. Скорость же стального шарика изменялась меньше. С учетом подобных явлений одни тела называют более инертными (в нашем опыте — стальной шарик) и менее инертными (алюминиевый шарик).

Инертность — это свойство тела сохранять свое состояние движения или покоя.

  • Заказать решение задач по физике

Явление инерции

Физическое явление сохранения телом состояния покоя или равномерного прямолинейного движения называют инерцией (от латин. іnertia — неподвижность, бездеятельность).

Инерция — это явление сохранения скорости движения тела при отсутствии или скомпенсированности действий на него других тел. В физике движение тела в идеальных условиях (когда на тело не действуют другие тела) называют движением по инерции. В реальности невозможно создать условия, когда действие других тел отсутствует. Поэтому в повседневной жизни движением по инерции считают случаи, когда действие на тело других тел достаточно слабо и до заметного изменения скорости своего движения тело проходит значительный путь (рис. 14.8).

Инерция в физике - виды, формулы и определения с примерами

Действие одного тела на другое

А как будет двигаться тело, на которое действуют другие тела и действия этих тел не будут скомпенсированы? Например, как будет двигаться бильярдный шар, на который налетает другой шар и его удар ничем не скомпенсирован? Как будет двигаться груз, висящий на нити, если нить перерезать и действие Земли не будет уравновешено действием нити? Что будет, если, двигаясь на велосипеде, вы прекратите вращать педали и ваше действие не будет компенсировать сопротивление движению велосипеда? В этих и многих других случаях тела изменяют скорость своего движения: бильярдные шары полетят в разные стороны с разными скоростями (рис. 14.9); груз начнет падать с увеличивающейся скоростью; велосипед станет двигаться медленнее и наконец остановится. Итак, можно сделать следующий вывод. Если действия на тело других тел не скомпенсированы, то тело изменяет скорость своего движения по значению или направлению либо одновременно по значению и направлению*.

Инерция в физике - виды, формулы и определения с примерами

Итоги:

Тело движется равномерно прямолинейно или находится в состоянии покоя только тогда, когда на него не действуют другие тела или действия других тел скомпенсированы.

Инерция — это явление сохранения скорости движения тела при отсутствии или скомпенсированности действий на него других тел. Если действия на тело других тел не скомпенсированы, то тело изменяет скорость своего движения по значению или направлению либо по значению и направлению одновременно.

Инертность тела и масса

Вспомните: вы заходите в автобус, все места заняты. Двери закрываются, автобус резко начинает движение, и вы должны приложить усилия, чтобы не упасть. Следующая остановка — и вы снова вынуждены цепляться за поручни, ведь автобус остановился достаточно резко. Почему что-то «толкает» вас вперед или назад? Вы узнаете, из-за какого свойства физических тел вы отклоняетесь назад, когда транспортное средство набирает скорость, и вперед — в момент его резкой остановки (см. рис. 15.1).

Инерция в физике - виды, формулы и определения с примерами

Что такое инертность

Наверняка вы все играли в «квача». Вспомните момент, когда вам нужно было резко изменить направление или скорость своего движения: остановиться, разогнаться, свернуть. Удавалось ли вам сделать это мгновенно? Конечно нет! Вам приходилось за кого-то цепляться, делать до остановки несколько лишних шагов, тратить время на разбег и т. д. Рассмотрим еще пример. Когда вы играете в спортзале с мячом, вам, кажется, что мяч, ударившись о пол, в тот же момент отскакивает от него. Но это не так! Если сфотографировать движение мяча в режиме скоростной фотосъемки, то увидим, что собственно удар мяча о пол длится некоторое время (рис. 15.2).

Инерция в физике - виды, формулы и определения с примерами

Вообще ни одно тело не может изменить скорость своего движения мгновенно. Говорят, что все тела «оказывают сопротивление» попытке измененить скорость их движения. В физике такое свойство тел называют инертностью. Инертность — свойство тела, которое заключается в том, что для изменения скорости движения тела в результате взаимодействия требуется время. Инертность тела проявляется тогда, когда мы пытаемся изменить скорость движения этого тела (см. рис. 15.1–15.3).

Инерция в физике - виды, формулы и определения с примерами

Определение массы тела

В результате одинакового воздействия одни тела изменяют скорость своего движения достаточно быстро, другие — намного медленнее. Например, чтобы с помощью весел придать определенную скорость легкой байдарке, нужно намного меньше времени, чем для придания такой же скорости тяжелой лодке. В таком случае говорят, что лодка более инерт­на, чем байдарка. Инертность тел характеризуется физической величиной — массой. Чем больше масса тела, тем больше времени нужно для изменения скорости его движения в результате одного и того же воздействия.

Масса тела — это физическая величина, которая является мерой инертности тела. Массу тела обозначают символом m. Единица массы в СИ — килограмм: [m]=кг. Кроме килограмма используют также другие единицы массы, например тонна (т), грамм (г), миллиграмм (мг):

Инерция в физике - виды, формулы и определения с примерами

Масса — это одна из основных единиц СИ, поэтому для нее существует эталон. Международный эталон килограмма был создан в 1880 г.*; его используют и сейчас. Эталон килограмма — это цилиндр, изготовленный из сплава платины и иридия (рис. 15.4). Масса цилиндра — ровно 1 килограмм.

Сначала в качестве эталона килограмма был принят 1 л чистой воды при температуре около +4 °C. Однако такой эталон был очень неудобным.

Инерция в физике - виды, формулы и определения с примерами

Международный эталон килограмма хранится во Франции, в Международном бюро мер и весов, расположенном в г. Севр (предместье Парижа). Эталон достают из хранилища не чаще одного раза в 15 лет. В Украине, в Национальном научном центре «Институт метрологии» (г. Харьков), хранится государственный эталон единицы массы 1 кг.

Измеряем массу тела взвешиванием:

Кроме инертности любое физическое тело имеет также свойство притягиваться к другим телам благодаря гравитационному взаимодействию *. Как вы уже, возможно, догадались, мерой гравитационного свойства тела также является масса. Именно на гравитационном свойстве тел основан самый распространенный способ измерения массы — взвешивание (рис. 15.5): чем больше масса тела, тем сильнее оно притягивается к Земле и поэтому сильнее давит на весы.

Инерция в физике - виды, формулы и определения с примерами

Подробнее об измерении масс тел взвешиванием вы узнаете при выполнении лабораторной работы № 6.

Еще об одном способе измерения массы:

Массу тела можно также измерить, основываясь на инертности тел. Поставим две тележки со сжатыми пружинами на гладкую горизонтальную поверхность (рис. 15.6, а). Распрямляясь, пружины придадут тележкам некоторые скорости. Если тележки приобретут одинаковые скорости и, соответственно, проедут до остановки одинаковое расстояние, то это означает, что их массы равны (рис. 15.6, б). Если одна из тележек, например тележка 2, приобретет меньшую скорость и, соответственно, проедет меньшее расстояние, то она имеет большую массу (рис. 15.7). При этом во сколько раз скорость движения тележки 2, будет меньше скорости движения тележки 1, во столько же раз масса тележки 2 больше массы тележки 1: Инерция в физике - виды, формулы и определения с примерами где Инерция в физике - виды, формулы и определения с примерами — массы тележек; Инерция в физике - виды, формулы и определения с примерами — скорости движения, которые приобрели тележки в результате взаимодействия. Полученное равенство позволяет определить отношение масс взаимодействующих тел по измеренным скоростям движений, которые приобретают эти тела в результате взаимодействия. Если же при этом масса одного из тел (например, Инерция в физике - виды, формулы и определения с примерами) известна, то можно определить массу второго тела Инерция в физике - виды, формулы и определения с примерами: Инерция в физике - виды, формулы и определения с примерами На первый взгляд, способ измерения масс, основанный на инертности тел, неудобен, но он является единственным, если тела невозможно взвесить (например, элементарные частицы или космические тела)*.

В большинстве таких случаев в формулу подставляют не приобретенные телами скорости движения, а изменение скорости движения каждого тела в результате взаимодействия.

Инерция в физике - виды, формулы и определения с примерами

Итоги:

Инертность — это свойство тела, которое заключается в том, что для изменения скорости движения тела в результате взаимодействия требуется время.

Масса тела (m) — это физическая величина, которая является мерой инертного и гравитационного свойств тела.

Единица массы в СИ — килограмм.

Массу тела можно определить взвешиванием (этот способ основан на том, что масса является мерой гравитационного свойства тела), а также сравнив, как изменились скорости движения тел в результате взаимодействия (способ основан на том, что масса является мерой инертности тела).

  • Масса тела в физике
  • Сила в физике
  • Силы в механике
  • Сила тяжести в физике
  • Линзы в физике
  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Звуковые и ультразвуковые колебания

Инерция


Инерция

4.2

Средняя оценка: 4.2

Всего получено оценок: 258.

4.2

Средняя оценка: 4.2

Всего получено оценок: 258.

Механика описывает движение и взаимодействие макроскопических тел. Одним из базовых понятий в этом разделе физики является понятие инерции. На его основе был сформулирован первый закон механики Ньютона, устанавливающий существование инерциальных систем отсчета. Определение термина «инерция» — сохранение телами скорости, если на них не действуют другие тела.

Явление инерции

Для любого человека привычно, что брошенный камень при отрыве от руки продолжает движение и летит самостоятельно, хотя сила руки на него уже не действует.

Явление, заключающееся в том, что тела сохраняют свою скорость, когда на них не действуют другие тела, называется явлением инерции.

Примерами инерции могут служить не только брошенные камни, но и любые другие предметы, движущиеся свободно и необязательно прямолинейно. Раскрученный маховик также вращается некоторое время по инерции, и на этой основе даже существуют игрушки с инерционным механизмом, которые могут довольно долго двигаться после запуска.

Рис. 1. Игрушки с инерционным механизмом.

Явление инерции далеко не так очевидно, как кажется. Например, для легких тел, вроде пуха, инерция, казалось бы, отсутствует. Более того, со времен Аристотеля считалось, что для того, чтобы тело двигалось равномерно и прямолинейно, необходимо постоянное действие внешней силы.

Лишь в эпоху Возрождения появилось сомнение в правоте античных философов. Г. Галилей сформулировал закон инерции, который звучит следующим образом: в отсутствие влияния других тел тело всегда сохраняет либо состояние покоя, либо прямолинейного и равномерного движения. Поэтому такое движение, которое совершается телом без влияния других тел называется «движением по инерции». В дальнейшем это утверждение было обобщено И. Ньютоном в его первом законе механики.

Первый закон Ньютона

Рис. 2. Первый закон Ньютона.

Заблуждение античных философов базируется на том факте, что в реальном мире, как правило, невозможно создать условия, при которых тело не испытывало бы влияния других тел. Всегда существуют как минимум две силы, воздействующие на движущееся тело: сила тяжести и сила трения. И если влияние силы тяжести можно исключить, двигаясь перпендикулярно ее вектору, то силу трения исключить практически невозможно. Для больших скоростей и для тел большой поверхности (по сравнению с весом) существенное значение также приобретает сила сопротивления воздуха, поэтому формулы движения должны ее учитывать.

Инертность тел

При сравнении движения тел по инерции под действием сопротивления среды можно заметить, что это движение может быть различно, даже если сопротивление среды будет одинаковым.

Например, если взять металлический и пенопластовый шарики одинакового размера, то после броска металлический шарик пролетит значительно дальше пенопластового, хотя начальная скорость и размеры обоих шариков (а значит, и сила сопротивления) будут одинаковы. Различие в поведении шариков здесь объясняется тем, что они имеют различную инертность.

Инертность тел — это свойство, состоящее в том, что для изменения скорости тела требуется некоторое время, тем большее, чем больше инертность тела. Мерой инертности тел является специальная физическая величина — масса.

Именно поэтому металлический шарик пролетит дальше пенопластового: его масса больше, следовательно, его инертность также больше, и одной и той же силе сопротивления требуется больше времени для того, чтобы остановить его.

Рис. 3. Инертность тел.

Заключение

Что мы узнали?

Инерция — это свойство всех тел, которое заключается в том, что они сохраняют свою скорость, если на них не действуют другие тела. Закон инерции был сформулирован Г. Галилеем и обобщен И. Ньютоном. Для изменения скорости тела обязательно требуется воздействие со стороны другого тела, и это воздействие должно быть тем длительнее, чем больше инертность первого тела. Мерой инертности является масса.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Карима Толегенова

    7/10

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 258.


А какая ваша оценка?

Момент инерции

Свойство любого объекта, который может вращаться.

Это скалярная величина, которая показывает, насколько трудно изменить скорость вращения объекта вокруг текущей оси вращения. Иными словами, во вращательном движении тело вращается вокруг фиксированной оси. Каждая частица в теле движется по кругу с линейной скоростью, то есть каждая частица движется с угловым ускорением.

Момент инерции

Это свойство тела, благодаря чему оно сопротивляется угловому ускорению, которое представляет собой сумму произведений массы каждой частицы в теле на квадрат ее расстояния от оси вращения.

Обозначается момент инерции символом II (альтернативно обозначается JJ).

I=mr2I=mr^2,

где mm – масса тела, rr – расстояние от тела до оси вращения.

Момент инерции играет похожую роль в механике вращения с массой в обычной линейной механике. Действительно, момент инерции напрямую зависит от массы, а также от распределения этой массы относительно оси вращения.

Чем вращение массы тела происходит дальше от оси, тем труднее изменить скорость вращение этой системы.

Момент инерции в системе СИ измеряется в кг·м2 (килограмм умноженный на квадратный метр).

Связь момента инерции со вторым законом Ньютона

Момент инерции занимает место массы во «вращательной» версии второго закона Ньютона. Если рассмотреть массу mm, прикрепленную к одному концу стержня (для простоты объяснения массу стержня приравняем к 0). Другой конец стрежня прикреплен так, что вся система может вращаться вокруг центральной точки.
Момент инерции.png

Далее система приводится во вращения, в результате действия тангенциальной силы FTFT на тело. Из второго закона Ньютона:

FT=maT или FT=m(rα)F_T = ma_T ~ или ~ F_T = m(rα)

В механике вращения крутящий момент τ=F⋅rτ = F·r занимает место силы. Умножив на rr последнее выражение, получим:

FTr=m(rα)rF_T r= m(rα) r, отсюда

τ=mr2ατ = mr^2α,

τ=Iατ = Iα

Это выражение можно использовать для определения поведения массы в ответ на действующий крутящий момент.

Момент инерции сложных фигур

Для более сложных фигур, чтобы найти момент инерции необходимо сделать несколько промежуточных вычислений. Для многих геометрических фигур существуют таблицы с уравнениями для моментов инерции. Более трудоемким будет вычисление момента инерции сложного тела, если представить его как сумму более простых тел.

Полученные моменты вращений каждого тела, объединяются в инерцию составного объекта.

Проблема, которая может возникнуть, состоит в том, что ось вращения для каждого тела будет отличаться и не будет совпадать с моментом инерции главного тела. Уравнение ниже позволяет связать момент инерции одного тела относительно момента инерции всего составного объекта:

I0=Ic+md2I_0 = I_c +md^2,

I0I_0 — момент инерции относительно точки OO (например, точка вокруг которой вращается составной главный объект), IcI_c — момент инерции относительно точки СС (например, точка вокруг которой вращается часть объекта), mm – масса части объекта, dd – расстояние между точками OO и CC.
Момент инерции важен почти во всех физических задачах, связанных с массой во вращательном движении. Он используется для расчета момента импульса и позволяет объяснить (посредством сохранения момента импульса), как изменяется вращательное движение при изменении распределения массы. А также при необходимости поиска энергии, которая хранится в виде вращательной кинетической энергии во вращающемся маховике.

Тест по теме «Момент инерции»

Понравилась статья? Поделить с друзьями:
  • Как найти частоту колебаний через длину волны
  • Как найти номер смарт карты
  • Как найти страховую медицинскую организацию
  • 8024402c ошибка обновления windows 7 как исправить ошибку
  • Как найти сколько упаковок плитки необходимо купить