bold{mathrm{Basic}} | bold{alphabetagamma} | bold{mathrm{ABGamma}} | bold{sincos} | bold{gedivrightarrow} | bold{overline{x}spacemathbb{C}forall} | bold{sumspaceintspaceproduct} | bold{begin{pmatrix}square&square\square&squareend{pmatrix}} | bold{H_{2}O} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Подпишитесь, чтобы подтвердить свой ответ
Подписаться
Войдите, чтобы сохранять заметки
Войти
Номер Строки
Примеры
-
x^{2}-x-6=0
-
-x+3gt 2x+1
-
линия:(1,:2),:(3,:1)
-
f(x)=x^3
-
доказывать:tan^2(x)-sin^2(x)=tan^2(x)sin^2(x)
-
frac{d}{dx}(frac{3x+9}{2-x})
-
(sin^2(theta))’
-
sin(120)
-
lim _{xto 0}(xln (x))
-
int e^xcos (x)dx
-
int_{0}^{pi}sin(x)dx
-
sum_{n=0}^{infty}frac{3}{2^n}
- Показать больше
Описание
Поэтапное решение задач по алгебре, тригонометрии и исчислению
step_by_step
int sin(3x)dx
ru
Блог-сообщения, имеющие отношение к Symbolab
My Notebook, the Symbolab way
Math notebooks have been around for hundreds of years. You write down problems, solutions and notes to go back…
Read More
Введите Задачу
Сохранить в блокнот!
Войти
Integral of sin 3x is given by (-1/3) cos 3x + C. The integral of sin 3x is called the anti-derivative of sin 3x as integration is the reverse process differentiation. Sin 3x is an important trigonometric formula that is used to solve various problems in trigonometry. The integral of sin 3x can be calculated using the substitution method and using the sin 3x formula.
In this article, we will calculate the integral of sin 3x, prove it using the substitution method and sin 3x formula and determine the definite integral of sin 3x using different limits.
1. | What is Integral of Sin 3x? |
2. | Integral of Sin 3x Formula |
3. | Integral of Sin 3x Using Substitution Method |
4. | Integral of Sin 3x Using Sin 3x Formula |
5. | Definite Integral of Sin 3x |
6. | FAQs on Integral of Sin 3x |
What is Integral of Sin 3x?
The integral of sin 3x can be calculated using the formula for the integral of sin ax which is given by ∫sin (ax) dx = (-1/a) cos ax + C. Mathematically, the integral of sin 3x is written as ∫sin 3x dx = (-1/3) cos 3x + C, where C is the constant of integration, dx denotes that the integration of sin 3x is with respect to x, ∫ is the symbol for integration. The integral of sin 3x can also be evaluated using the substitution method and sin 3x formula.
Integral of Sin 3x Formula
Sin 3x formula is given by sin 3x = 3 sin x — 4 sin3x and the formula for the integral of sin 3x is given by, ∫sin 3x dx = (-1/3) cos 3x + C, where C is the constant of integration.
Integral of Sin 3x Using Substitution Method
Now, we know that the integral of sin 3x is (-1/3) cos 3x + C, where C is the constant of integration. Let us prove this using the substitution method. We will use the following formulas of integration and differentiation:
- ∫sin x dx = -cos x + C
- d(ax)/dx = a
Assume 3x = u, then differentiating 3x = u with respect to x, we have 3dx = du ⇒ dx = (1/3)du. Using the above formulas, we have
∫sin 3x dx = ∫sin u (du/3)
⇒ ∫sin 3x dx = (1/3) ∫sin u du
⇒ ∫sin 3x dx = (1/3) (-cos u + C) [Because ∫sin x dx = -cos x + C]
⇒ ∫sin 3x dx = (-1/3) cos u + C/3
⇒ ∫sin 3x dx = (-1/3) cos 3x + K, where K = C/3
Hence, we have derived the integral of sin 3x using the substitution method.
Integral of Sin 3x Using Sin 3x Formula
We know that the sin 3x formula is sin 3x = 3 sin x — 4 sin3x. Next, we will prove that the integration of sin 3x is given by (-1/3) cos 3x + C using the sin 3x formula. Before proving the integral of sin 3x, we will derive the integral of sin cube x, that is, sin3x. We will use the following formulas to prove the integral of sin3x:
- cos2x + sin2x = 1 ⇒ sin2x = 1 — cos2x
- ∫sin x dx = -cos x dx
∫sin3x dx = ∫sin x. sin2x dx
= ∫sin x.(1 — cos2x) dx
= ∫sin x dx — ∫sin x. cos2x dx — (1)
= I1 — I2 , where I1 = ∫sin x dx and I2 = ∫sin x. cos2x dx
Now, I1 = ∫sin x dx = -cos x + C1, where C1 is the constant of integration —- (2)
For I2 = ∫sin x. cos2x dx, assume cos x = u ⇒ -sin x dx = du ⇒ sin x dx = -du
I2 = ∫sin x. cos2x dx
= ∫u2 (-du)
= — ∫u2 du
= — u3/3 + C2, where C2 is the constant of integration
= (-1/3) cos3x + C2 —- (3)
Subsitute the values from (2) and (3) in (1),
∫sin3x dx = (-cos x + C1) — ((-1/3) cos3x + C2)
= -cos x + (1/3) cos3x + C1 — C2
= -cos x + (1/3) cos3x + C, where C = C1 — C2
⇒ ∫sin3x dx = -cos x + (1/3) cos3x + C — (4)
Now that we have derived the integral of sin3x, we will use this formula along with some other formulas to derive the integral of sin 3x:
- ∫sin x dx = -cos x dx
- ∫sin3x dx = -cos x + (1/3) cos3x + C
- sin 3x = 3 sin x — 4 sin3x
- cos 3x = 4cos3x — 3 cos x
Using the above formulas, we have
∫sin 3x dx = ∫(3 sin x — 4 sin3x) dx
= 3 ∫sin x dx — 4 ∫sin3x dx
= 3(-cos x) — 4(-cos x + (1/3) cos3x) + C, where C is the constant of integration
= -3 cos x + 4 cos x — (4/3)cos3x + C
= cos x — (4/3)cos3x + C
= (1/3)(3cos x — 4cos3x + 3C)
= (1/3)(-cos 3x + 3C) [Because cos 3x = 4cos3x — 3 cos x]
= (-1/3) cos 3x + C
Hence, we have derived the integration of sin 3x using the sin 3x formula.
Definite Integral of Sin 3x
We have proved that the integral of sin 3x is (-1/3) cos 3x + C. Now, we will determine the values of the definite integral of sin 3x with different limits. First, we will take the limits from 0 to π/3.
Definite Integral of Sin 3x From 0 to π/3
(begin{align}int_{0}^{frac{pi}{3}}sin 3x dx &= left [ -frac{1}{3}cos 3x+C right ]_0^frac{pi}{3}\&=left ( -frac{1}{3}cos 3frac{pi}{3}+C right )-left ( -frac{1}{3}cos 3(0)+Cright )\&=-frac{1}{3}cos pi+C + frac{1}{3}cos 0-C\&= -frac{1}{3}(-1)+frac{1}{3}(1)\&=frac{2}{3}end{align})
Hence the value of the definite integral of sin 3x with limits from 0 to π/3 is equal to 2/3.
Definite Integral of Sin 3x From 0 to Pi
(begin{align}int_{0}^{pi}sin 3x dx &= left [ -frac{1}{3}cos 3x+C right ]_0^pi\&=left ( -frac{1}{3}cos 3pi+C right )-left ( -frac{1}{3}cos 3(0)+Cright )\&=-frac{1}{3}cos 3pi+C + frac{1}{3}cos 0-C\&= -frac{1}{3}(-1)+frac{1}{3}(1)\&=frac{2}{3}end{align})
Hence the value of the definite integral of sin 3x with limits from 0 to π is equal to 2/3.
Definite Integral of Sin 3x From 0 to Pi/2
(begin{align}int_{0}^{frac{pi}{2}}sin 3x dx &= left [ -frac{1}{3}cos 3x+C right ]_0^frac{pi}{2}\&=left ( -frac{1}{3}cos 3frac{pi}{2}+C right )-left ( -frac{1}{3}cos 3(0)+Cright )\&=-frac{1}{3}cos frac{3pi}{2}+C + frac{1}{3}cos 0-C\&= -frac{1}{3}(0)+frac{1}{3}(1)\&=frac{1}{3}end{align})
Hence the value of the definite integration of sin 3x with limits from 0 to π/2 is equal to 1/3.
Important Notes on Integral of Sin 3x
- The easiest way to determine the integral of sin 3x is using the formula ∫sin (ax) dx = (-1/a) cos ax + C.
- The integral of sin 3x is (-1/3) cos 3x + C and the integral of sin cube x is ∫sin3x dx -cos x + (1/3) cos3x + C.
Related Topics
- Integral of Tan 2x
- Cos 3x
- Sin 3x
FAQs on Integral of Sin 3x
What is Integral of Sin 3x in Trigonometry?
In trigonometry, the integral of sin 3x is written as ∫sin 3x dx = (-1/3) cos 3x + C, where C is the constant of integration.
How to Find the Integral of Sin 3x?
The integral of sin 3x can be calculated using the formula for the integral of sin ax which is given by ∫sin (ax) dx = (-1/a) cos ax + C. It can also be calculated using the substitution method and sin 3x formula.
What is the Definite Integral of Sin 3x from 0 to pi?
The value of the definite integral of sin 3x with limits from 0 to π is equal to 2/3.
What is the Integration of Sin3x?
The integral of sin cube x is given by ∫sin3x dx = -cos x + (1/3) cos3x + C.
What is the Integral of Sin 2x?
The integral of sin 2x dx is written as ∫ sin 2x dx = -(cos 2x)/2 + C, where C is the integration constant.
To integrate sin^3x, also written as ∫sin3x
dx, sin cubed x, sin^3(x), and (sin x)^3, we start by using standard trig identities to
simplify the integral.
If we take one of the factors out, then we can express the integration in a
different form, yet it means the same thing.
We then recall this Pythagorean trig identity.
We rearrange it for sin2x.
We substitute the rearranged trig identity for sin2x
in our integration problem to give a new expression that means the same thing.
Let u = cosx.
Then du/dx = -sinx
We rearrange it to give an expression for du.
As you can see, our expression for du is almost the same as that in our
integration problem, except du has a negative sign. We can solve this issue with
a mathematical trick as shown below.
If we were to multiply -1 with -1 then the result is +1 and we have not
changed anything. That is exactly what we are doing here. We place a -1 outside
the integral and another inside the integral. As you can see, we now have -sinx
dx, and therefore we can do a straight swap with du.
We can now rewrite the whole integration in terms of u, by replacing cosx
with u.
The -1 that was behind the integral can be multiplied out, thereby reversing
the signs on the LHS. This is the same as the expression on the RHS where we
integrate each term separately w.r.t. du.
Hence our integration solution is in terms of u is as shown above, and C is
the final integration constant.
We replace u with cosx to give the final solution.
Рассмотрим решение задачи по нахождению неопределенного интеграла от синуса в кубе, т.е.
Прежде всего заметим, что синус в третьей степени
и
а значит,
Далее воспользуемся тем, что и
где — произвольная вещественная постоянная.
Здесь при нахождении неопределенного интеграла от «синуса в кубе» также было использовано свойство линейности неопределенного интеграла:
и то, что
Таким образом
где — произвольная вещественная постоянная.
В следующем видео продемонстрировано нахождение неопределенного интеграла от синуса в третьей степени. Пояснения и комментарии помогут разобраться с ходом решения задачи и сформировать навык нахождения подобных интегралов.
Калькулятор интегралов
Некорректное выражение: ‘sin3’
Калькулятор Интегралов вычисляет неопределенный интеграл (первообразную) от функции по заданной переменной с использованием аналитического интегрирования. Также он позволяет построить график функции и её интеграла.
Показать правила синтаксиса
Калькулятор интегралов, примеры
Deutsch
English
Español
Français
Italiano
Nederlands
Polski
Português
Русский
中文
日本語
한국어
Используя этот сайт, вы подтверждаете свое согласие с Условиями и соглашениями и Политикой приватности.
© 2023
numberempire.com
Все права защищены