Как найти интеграл в вольфраме

Solve integrals with Wolfram|Alpha

More than just an online integral solver

Wolfram|Alpha is a great tool for calculating antiderivatives and definite integrals, double and triple integrals, and improper integrals. The Wolfram|Alpha Integral Calculator also shows plots, alternate forms and other relevant information to enhance your mathematical intuition.

Integral results with plots, alternate forms, series expansions and answers

Learn more about:

  • Integrals »

Tips for entering queries

Use Math Input above or enter your integral calculator queries using plain English. To avoid ambiguous queries, make sure to use parentheses where necessary. Here are some examples illustrating how to ask for an integral using plain English.

  • integrate x/(x-1)
  • integrate x sin(x^2)
  • integrate x sqrt(1-sqrt(x))
  • integrate x/(x+1)^3 from 0 to infinity
  • integrate 1/(cos(x)+2) from 0 to 2pi
  • integrate x^2 sin y dx dy, x=0 to 1, y=0 to pi
  • View more examples »

Access instant learning tools

Get immediate feedback and guidance with step-by-step solutions for integrals and Wolfram Problem Generator

Step-by-step solutions for integrals with detailed breakdowns and unlimited Wolfram Problem Generator eigenvalue practice problems

Learn more about:

  • Step-by-step solutions »
  • Wolfram Problem Generator »

What are integrals?

Integration is an important tool in calculus that can give an antiderivative or represent area under a curve.

The indefinite integral of , denoted , is defined to be the antiderivative of . In other words, the derivative of is . Since the derivative of a constant is 0, indefinite integrals are defined only up to an arbitrary constant. For example,, since the derivative of is . The definite integral of from to , denoted , is defined to be the signed area between and the axis, from to .

Both types of integrals are tied together by the fundamental theorem of calculus. This states that if is continuous on and is its continuous indefinite integral, then . This means . Sometimes an approximation to a definite integral is desired. A common way to do so is to place thin rectangles under the curve and add the signed areas together. Wolfram|Alpha can solve a broad range of integrals

How Wolfram|Alpha calculates integrals

Wolfram|Alpha computes integrals differently than people. It calls Mathematica’s Integrate function, which represents a huge amount of mathematical and computational research. Integrate does not do integrals the way people do. Instead, it uses powerful, general algorithms that often involve very sophisticated math. There are a couple of approaches that it most commonly takes. One involves working out the general form for an integral, then differentiating this form and solving equations to match undetermined symbolic parameters. Even for quite simple integrands, the equations generated in this way can be highly complex and require Mathematica’s strong algebraic computation capabilities to solve. Another approach that Mathematica uses in working out integrals is to convert them to generalized hypergeometric functions, then use collections of relations about these highly general mathematical functions.

While these powerful algorithms give Wolfram|Alpha the ability to compute integrals very quickly and handle a wide array of special functions, understanding how a human would integrate is important too. As a result, Wolfram|Alpha also has algorithms to perform integrations step by step. These use completely different integration techniques that mimic the way humans would approach an integral. This includes integration by substitution, integration by parts, trigonometric substitution and integration by partial fractions.

Вычисление интегралов и их применение — самая популярная на сегодня тема в блоге ”Wolfram|Alpha по-русски”.

В блоге  ”Wolfram|Alpha по-русски” на тему интегралов существует отдельный раздел, который называется Интегральное исчисление.

Кроме теоретических аспектов интегрального исчисления, то есть собственно вычисления интегралов, существуют еще и практические, прикладные аспекты применения интегралов. Например, это вычисление площади фигуры, приближеннное вычисление «неберущихся» интегралов и другие, которые отнесены в раздел Прикладная математика.

Далее приводится список основных публикаций блога ”Wolfram|Alpha по-русски” на тему интегралов и их применения. А также на связанную с этим тему решения дифференциальных уравнений из раздела Дифференциальные уравнения.

Вот те публикации, на которые я хочу обратить ваше особое внимание. Здесь они расположены не в хронологическом порядке, а так, как я рекомендую их прочитать. Каждая из них заслуживает вашего внимания, поскольку раскрывает определенный аспект применения Wolfram|Alpha, как инструмента интегрирования:

  1. Неопределенный интеграл в Wolfram|Alpha
  2. Определенный интеграл в Wolfram|Alpha
  3. Несобственные интегралы в Wolfram|Alpha
  4. Численное интегрирование в Wolfram|Alpha
  5. Калькулятор интегралов в Wolfram|Alpha
  6. Как найти площадь плоской фигуры в Wolfram|Alpha
  7. Как найти площадь фигуры ограниченной кривыми линиями
  8. Как найти длину дуги кривой линии в Wolfram|Alpha
  9. Двойной интеграл в Wolfram|Alpha
  10. Калькулятор двойных интегралов в Wolfram|Alpha
  11. Тройной интеграл в Wolfram|Alpha
  12. Решение обыкновенных дифференциальных уравнений в Wolfram|Alpha

Вопросам решения дифференциальных уравнений и их систем, а также прикладным вопросам применения дифференциальных уравнений, в частности, вопросам математического моделирования, о которых также идет речь в блоге  ”Wolfram|Alpha по-русски” в разделе Математическое моделирование, со временем будет посвящен отдельный пост.

Wolfram|Alpha — база знаний и набор вычислительных алгоритмов (англ. computational knowledge engine), вопросно-ответная система. Запущена 15 мая 2009 года. Не является поисковой системой.

Основные операции[править]

Примеры
  • 314+278; 314—278; 314*278; 314^278;
  • (a^2+b^2)+(a^2-b^2); (a^2+b^2)/(a^2-b^2); (a+b)^(2+2/3).

Знаки сравнения[править]

Логические символы[править]

Основные константы[править]

Основные функции[править]

{displaystyle left(a=operatorname {const} right)}

Решение уравнений[править]

Чтобы получить решение уравнения вида {displaystyle f(x)=0} достаточно записать в строке Wolfram|Alpha: f[x]=0, при этом Вы получите некоторую дополнительную информацию, которая генерируется автоматически. Если же Вам необходимо только решение, то необходимо ввести: Solve[f[x]=0, x].

Примеры
  • Solve [Cos[x]+Cos[2x]+Sin[4x]=0,x]или Cos[x]+Cos[2x]+Sin[4x]=0;
  • Solve[x^5+x^4+x+1=0,x] или x^5+x^4+x+1=0;
  • Solve[Log[3,x²+x+1]-Log[9,x²]=0,x] или Log[3,x²+x+1]-Log[9,x²]=0.

Если Ваше уравнение содержит несколько переменных, то запись: f[x, y,…,z]=0 даст весьма разнообразный набор сведений, таких как решение в целых числах, частные производные функции f и т. д. Чтобы получить решение уравнения вида {displaystyle f(x,y,...,z)=0} по какой-либо одной из переменных, нужно написать в строке: Solve[f[x, y, …, z]=0, j], где j — интересующая Вас переменная.

Примеры
  • Cos[x+y]=0 или Solve[Cos[x+y]=0,x] или Solve[Cos[x+y]=0,y];
  • x²+y²-5=0 или Solve[x²+y²-5=0,x] или Solve[x²+y²-5=0,y];
  • x+y+z+t+p+q=9.

Решение неравенств[править]

Решение в Wolfram Alpha неравенств типа {displaystyle f(x)>0}, {displaystyle fleft(xright)geqslant 0} полностью аналогично решению уравнения {displaystyle f(x)=0}.
Нужно написать в строке WolframAlpha: f[x]>0 или f[x]>=0 или Solve[f[x]>0, x] или Solve[f[x]>=0,x].

Примеры
  • Cos[10x]-1/2>0 или Solve[Cos[10x]-1/2>0,x];
  • x^2+5x+10>=0 или Solve[x^2+5x+10>=0,x].

Если Ваше неравенство содержит несколько переменных, то запись: f[x, y,…,z]>0 или f[x, y,…,z]>=0 даст весьма разнообразный набор сведений, как и в случае соответствующих уравнений. Чтобы получить решение такого неравенства по какой-либо одной из переменных нужно написать в строке: Solve[f[x, y,…,z]>0,j] или Solve[f[x, y,…,z]>=0,j], где j — интересующая Вас переменная.

Примеры
  • Cos[x+y]>0 или Solve[Cos[x+y]>0,x] или Solve[Cos[x+y]>0,y];
  • x^2+y^3-5<0 или Solve[x^2+y^3-5<0,x] или Solve[x^2+y^3-5<0,y];
  • x+y+z+t+p+q>=9.

Решение различных систем неравенств и уравнений[править]

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Примеры
  • x^3+y^3==9&&x+y=1;
  • x+y+z+p==1&&x+y-2z+3p=2&&x+y-p=-3;
  • Sin[x+y]+Cos[x+y]==Sqrt[3]/4&&x+y²=1;
  • Log[x+5]=0&&x+y+z<1.

Построение графиков функций[править]

Сервис Wolfram Alpha поддерживает возможность построения графиков функций как вида f(x), так и вида {displaystyle f(x,y)}.
Для того, чтобы построить график функции f(x) на отрезке {displaystyle xin left[{a,b}right]} нужно написать в строке Wolfram Alpha: Plot[f[x],{x, a, b}]. Если Вы хотите, чтобы диапазон изменения ординаты y был конкретным, например {displaystyle yin left[{c,d}right]}, нужно ввести: Plot[f[x],{x, a, b},{y, c, d}].

Примеры
  • Plot[x^2+x+2, {x,-1,1}];
  • Plot[x^2+x+2, {x,-1,1},{y,-1,5}];
  • Plot[Sin[x]^x, {x,-Pi,E}];
  • Plot[Sin[x]^x, {x,-Pi,E},{y,0,1}].

Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:Plot[f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}].

Примеры
  • Plot[x&&x^2&&x^3, {x,-1,1},{y,-1,1}];
  • Plot[Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}].

Для того, чтобы построить график функции {displaystyle f(x,y)} на прямоугольнике {displaystyle xin left[{a,b}right],yin left[{c,d}right]}, нужно написать в строке Wolfram Alpha: Plot[f[x, y],{x, a, b},{y, c, d}]. К сожалению, диапазон изменения аппликаты z пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции {displaystyle f(x,y)} Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).

Примеры
  • Plot[Sin[x^2+y^2],{x,-1,-0.5},{y,-2,2}];
  • Plot[xy,{x,-4,4},{y,-4,4}].

Математический анализ[править]

Wolfram Alpha способен находить пределы функций, последовательностей, различные производные, определенные и неопределенные интегралы, решать дифференциальные уравнения и их системы и многое многое другое.

Пределы[править]

Для того, чтобы найти предел последовательности {displaystyle left{{x_{n}}right}} нужно написать в строке Wolfram Alpha: Limit[x_n, n -> Infinity].

Примеры
  • Limit[n^3/(n^4 + 2*n), n -> Infinity];
  • Limit[(1+1/n)^n, n -> Infinity].

Найти предел функции f(x) при {displaystyle xto a} можно совершенно аналогично: Limit[f[x], x -> a].

Примеры
  • Limit[Sin[x]/x, x -> 0];
  • Limit[(1-x)/(1+x), x -> −1].

Производные[править]

Для того, чтобы найти производную функции f(x) нужно написать в строке WolframAlpha: D[f[x], x]. Если Вам требуется найти производную n-го порядка, то следует написать: D[f[x], {x, n}]. В том случае, если Вам требуется найти частную производную функции {displaystyle f(x,y,z,...,t)} напишите в окне гаджета: D[f[x, y, z,…,t], j], где j — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D[f[x, y, z,…,t], {j, n}], где j означает то же, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Примеры
  • D[x*E^x, x];
  • D[x^3*E^x, {x,17}];
  • D[x^3*y^2*Sin[x+y], x];
  • D[x^3*y^2*Sin[x+y], y],
  • D[x/(x+y^4), {x,6}].

Интегралы[править]

Для того, чтобы найти неопределенный интеграл от функции f(x) нужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл {displaystyle int limits _{a}^{b}{fleft(xright)dx}} так же просто: Integrate[f[x], {x, a, b}] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Примеры
  • Integrate[Sin[x]/x², x].
  • Integrate[x^10*ArcSin[x], x].
  • Integrate[(x+Sin[x])/x, {x,1,100}].
  • Integrate[Log[x^3+1]/x^5, {x,1,Infinity}].

Дифференциальные уравнения и их системы[править]

Чтобы найти общее решение дифференциального уравнения {displaystyle F(x,y,y',y'',...,y^{(n)})=0} нужно написать в строке WolframAlpha: F[x, y, y’,y»,…] (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F[x, y, y’,y»,…], y[s]==A,y'[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: {f_1,f_2,…,f_n}, где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему.
К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока что не поддерживается.

Примеры
  • y»’+y»+y=Sin[x];
  • y»+y’+y=ArcSin[x];
  • y»+y+y^2=0;
  • y»=y, y[0]=0, y'[0]=4;
  • y+x*y’=x, y[6]=2;
  • y»'[x]+2y»[x]-3y'[x]+y=x, y[0]=1, y[1]=2, y'[1]=2;
  • {x’+y’=2, x’-2y’=4}.

Ошибки при работе с системой[править]

Система может допускать некоторые ошибки при решении сложных задач[1]. К примеру, если попытаться решить неравенство {displaystyle {frac {3x^{2}-18x+24}{2x-2}}-{frac {3x-12}{2x^{2}-6x+4}}<0}, для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4)<0, то Wolfram|Alpha выдаст в качестве ответа промежуток {displaystyle xin (-{mathcal {infty }};2)cup (3;4)}, в котором будет присутствовать точка 1, но при этом происходит деление на ноль. Сейчас эта ошибка исправлена.

Примечания[править]

  1. Ошибки при работе с системой Wolfram|Alpha

Ссылки[править]

  • Wolfram Alpha(англ.)
  • Examples

Содержание

  1. Содержание
  2. Основные операции [ править ]
  3. Знаки сравнения [ править ]
  4. Логические символы [ править ]
  5. Основные константы [ править ]
  6. Основные функции [ править ]
  7. Решение уравнений [ править ]
  8. Решение неравенств [ править ]
  9. Решение различных систем неравенств и уравнений [ править ]
  10. Математический анализ [ править ]
  11. Пределы [ править ]
  12. Производные [ править ]
  13. Интегралы [ править ]
  14. Дифференциальные уравнения и их системы [ править ]
  15. Ошибки при работе с системой [ править ]
  16. Математика. Статистика & Анализ данных в Wolfram|Alpha
  17. Theme
  18. Output Type
  19. Output W />px
  20. Output Height

Wolfram|Alpha — база знаний и набор вычислительных алгоритмов (англ. computational knowledge engine ), вопросно-ответная система. Запущена 15 мая 2009 года. Не является поисковой системой.

Содержание

Основные операции [ править ]

Примеры

  • 314+278; 314—278; 314*278; 314^278;
  • (a^2+b^2)+(a^2-b^2); (a^2+b^2)/(a^2-b^2); (a+b)^(2+2/3).

Знаки сравнения [ править ]

Логические символы [ править ]

Основные константы [ править ]

Основные функции [ править ]

( a = const ) <displaystyle left(a=operatorname
ight)>

Решение уравнений [ править ]

Чтобы получить решение уравнения вида f ( x ) = 0 <displaystyle f(x)=0> достаточно записать в строке Wolfram|Alpha: f[x]=0, при этом Вы получите некоторую дополнительную информацию, которая генерируется автоматически. Если же Вам необходимо только решение, то необходимо ввести: Solve[f[x]=0, x].

Примеры

  • Solve [Cos[x]+Cos[2x]+Sin[4x]=0,x]или Cos[x]+Cos[2x]+Sin[4x]=0;
  • Solve[x^5+x^4+x+1=0,x] или x^5+x^4+x+1=0;
  • Solve[Log[3,x²+x+1]-Log[9,x²]=0,x] или Log[3,x²+x+1]-Log[9,x²]=0.

Если Ваше уравнение содержит несколько переменных, то запись: f[x, y,…,z]=0 даст весьма разнообразный набор сведений, таких как решение в целых числах, частные производные функции f <displaystyle f> и т. д. Чтобы получить решение уравнения вида f ( x , y , . . . , z ) = 0 <displaystyle f(x,y. z)=0> по какой-либо одной из переменных, нужно написать в строке: Solve[f[x, y, …, z]=0, j], где j <displaystyle j> — интересующая Вас переменная.

Примеры

  • Cos[x+y]=0 или Solve[Cos[x+y]=0,x] или Solve[Cos[x+y]=0,y];
  • x²+y²-5=0 или Solve[x²+y²-5=0,x] или Solve[x²+y²-5=0,y];
  • x+y+z+t+p+q=9.

Решение неравенств [ править ]

Решение в Wolfram Alpha неравенств типа 0>»> f ( x ) > 0 <displaystyle f(x)>0> 0>»/> , f ( x ) ⩾ 0 <displaystyle fleft(x
ight)geqslant 0> полностью аналогично решению уравнения f ( x ) = 0 <displaystyle f(x)=0> . Нужно написать в строке WolframAlpha: f[x]>0 или f[x]>=0 или Solve[f[x]>0, x] или Solve[f[x]>=0,x].

Примеры

  • Cos[10x]-1/2>0 или Solve[Cos[10x]-1/2>0,x];
  • x^2+5x+10>=0 или Solve[x^2+5x+10>=0,x].

Если Ваше неравенство содержит несколько переменных, то запись: f[x, y,…,z]>0 или f[x, y,…,z]>=0 даст весьма разнообразный набор сведений, как и в случае соответствующих уравнений. Чтобы получить решение такого неравенства по какой-либо одной из переменных нужно написать в строке: Solve[f[x, y,…,z]>0,j] или Solve[f[x, y,…,z]>=0,j], где j <displaystyle j> — интересующая Вас переменная.

Примеры

  • Cos[x+y]>0 или Solve[Cos[x+y]>0,x] или Solve[Cos[x+y]>0,y];
  • x^2+y^3-5 =9.

Решение различных систем неравенств и уравнений [ править ]

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Сервис Wolfram Alpha поддерживает возможность построения графиков функций как вида f ( x ) <displaystyle f(x)> , так и вида f ( x , y ) <displaystyle f(x,y)> . Для того, чтобы построить график функции f ( x ) <displaystyle f(x)> на отрезке x ∈ [ a , b ] <displaystyle xin left[
ight]> нужно написать в строке Wolfram Alpha: Plot[f[x],]. Если Вы хотите, чтобы диапазон изменения ординаты y <displaystyle y> был конкретным, например y ∈ [ c , d ] <displaystyle yin left[
ight]> , нужно ввести: Plot[f[x],,].

Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:Plot[f[x]&&g[x]&&h[x]&&…&&t[x],].

Для того, чтобы построить график функции f ( x , y ) <displaystyle f(x,y)> на прямоугольнике x ∈ [ a , b ] , y ∈ [ c , d ] <displaystyle xin left[
ight],yin left[
ight]> , нужно написать в строке Wolfram Alpha: Plot[f[x, y],,]. К сожалению, диапазон изменения аппликаты z <displaystyle z> пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции f ( x , y ) <displaystyle f(x,y)> Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).

Математический анализ [ править ]

Wolfram Alpha способен находить пределы функций, последовательностей, различные производные, определенные и неопределенные интегралы, решать дифференциальные уравнения и их системы и многое многое другое.

Пределы [ править ]

Для того, чтобы найти предел последовательности < x n ><displaystyle left<>
ight>> нужно написать в строке Wolfram Alpha: Limit[x_n, n -> Infinity].

Примеры

  • Limit[n^3/(n^4 + 2*n), n -> Infinity];
  • Limit[(1+1/n)^n, n -> Infinity].

Найти предел функции f ( x ) <displaystyle f(x)> при x → a <displaystyle x o a> можно совершенно аналогично: Limit[f[x], x -> a].

Производные [ править ]

Для того, чтобы найти производную функции f ( x ) <displaystyle f(x)> нужно написать в строке WolframAlpha: D[f[x], x]. Если Вам требуется найти производную n-го порядка, то следует написать: D[f[x], ]. В том случае, если Вам требуется найти частную производную функции f ( x , y , z , . . . , t ) <displaystyle f(x,y,z. t)> напишите в окне гаджета: D[f[x, y, z,…,t], j], где j <displaystyle j> — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D[f[x, y, z,…,t], ], где j <displaystyle j> означает то же, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Интегралы [ править ]

Для того, чтобы найти неопределенный интеграл от функции f ( x ) <displaystyle f(x)> нужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл ∫ a b f ( x ) d x <displaystyle int limits _^> так же просто: Integrate[f[x], ] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Дифференциальные уравнения и их системы [ править ]

Чтобы найти общее решение дифференциального уравнения F ( x , y , y ′ , y ″ , . . . , y ( n ) ) = 0 <displaystyle F(x,y,y’,y». y^<(n)>)=0> нужно написать в строке WolframAlpha: F[x, y, y’,y»,…] (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F[x, y, y’,y»,…], y[s]==A,y'[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: , где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему. К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока что не поддерживается.

Ошибки при работе с системой [ править ]

Система может допускать некоторые ошибки при решении сложных задач [1] . К примеру, если попытаться решить неравенство 3 x 2 − 18 x + 24 2 x − 2 − 3 x − 12 2 x 2 − 6 x + 4 0 <displaystyle <frac <3x^<2>-18x+24><2x-2>>-<frac <3x-12><2x^<2>-6x+4>> , для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4) x ∈ ( − ∞ ; 2 ) ∪ ( 3 ; 4 ) <displaystyle xin (-<mathcal <infty >>;2)cup (3;4)> , в котором будет присутствовать точка 1, но при этом происходит деление на ноль. Сейчас эта ошибка исправлена.

Математика. Статистика & Анализ данных в Wolfram|Alpha

Вычисление интегралов и их применение — самая популярная на сегодня тема в блоге ”Wolfram|Alpha по-русски”.

В блоге ”Wolfram|Alpha по-русски” на тему интегралов существует отдельный раздел, который называется Интегральное исчисление.

Кроме теоретических аспектов интегрального исчисления, то есть собственно вычисления интегралов, существуют еще и практические, прикладные аспекты применения интегралов. Например, это вычисление площади фигуры, приближеннное вычисление «неберущихся» интегралов и другие, которые отнесены в раздел Прикладная математика.

Далее приводится список основных публикаций блога ”Wolfram|Alpha по-русски” на тему интегралов и их применения. А также на связанную с этим тему решения дифференциальных уравнений из раздела Дифференциальные уравнения.

Вот те публикации, на которые я хочу обратить ваше особое внимание. Здесь они расположены не в хронологическом порядке, а так, как я рекомендую их прочитать. Каждая из них заслуживает вашего внимания, поскольку раскрывает определенный аспект применения Wolfram|Alpha, как инструмента интегрирования:

  • Email
  • Twitter
  • FacebookShare via Facebook »
  • More.

Theme

Output Type

Output W />px

Output Height

To embed this widget in a post on your WordPress blog, copy and paste the shortcode below into the HTML source:

To embed this widget in a post, install the Wolfram|Alpha Widget Shortcode Plugin and copy and paste the shortcode above into the HTML source.

To embed a widget in your blog’s sidebar, install the Wolfram|Alpha Widget Sidebar Plugin, and copy and paste the Widget ID below into the «id» field:

To add a widget to a MediaWiki site, the wiki must have the Widgets Extension installed, as well as the code for the Wolfram|Alpha widget.

To include the widget in a wiki page, paste the code below into the page source.

В продолжении предыдущей темы про простейшие команды Wolfram Alpha, приведем более сложные примеры, которые, возможно, будут интересны для изучения более сложных вопросов физики.

Вольфрам альфа может спокойно брать интегралы и решать простые дифференциальные уравнения. 

1. Пример для определенного интеграла: интеграл от «x» в квадрате умножить на «е» в степени минус х», по dx от нуля до бесконечности 

2. Неопределенный интеграл от функции x в четвертой степени на синус квадрат x по dx

3. Дифференциальные уравнения 

решаются уже знакомой нам командой solve[f[x]==0, x]

Понравилась статья? Поделить с друзьями:
  • Как найти производство во вьетнаме
  • Как найти скрытые ссылки на странице
  • На компьютере интернет есть а на телефоне нет как исправить
  • Как найти соглашение с пфр
  • Эксель как найти количество повторений