Как найти искомое число решение

Если число 72 занимает 8 частей из девяти от нужного числа, то первым действием мы находим, сколько будет составлять одна часть.

Для этого мы делим 72 на 8.

72:8=9.

А вторым действием находим искомое число. Это девять раз по 9.

9*9=81.

Можно, конечно, поизвращаться и решить эту же простую задачку через уравнения.

Например, пусть х — это одна часть искомого числа, тогда 9х будет искомое число:

8х=72

х=72:8=9

тогда 9х=9*9=81.

Ну или через дроби.

Пусть х — искомое число, тогда

8/9х=72 отсюда

х=(72*9)/8=81

Но, думаю, решать таким образом смысла нет. Первый способ короче, проще и понятней, а ответ один и тот же.

Можно найти любое число, если знать какую-то его часть и условие, сколько эта известная часть составляет от искомого целого числа.

Поясним на примере:

Задача 1

Необходимо найти длину отрезка, если известно, что (4 over 9) этого отрезка составляет 16 см.

Итак, нам надо найти число, которое в этом примере является длиной отрезка. Это число нам не известно. Но нам известно, что (4 over 9) длины этого отрезка составляет 16 см. То есть, нам известна часть этого отрезка – 16 см. И эта часть составляет ровно (4 over 9) от длины всего отрезка.

Правило нахождения искомого числа звучит так:

«Чтобы найти число, зная его часть, выраженную дробью, необходимо это число разделить на эту дробь»

В нашем случае, зная, что при делении числа на дробь, мы деление заменяем умножением и «переворачиваем» дробь, получим:

(16 : {4 over 9}=16*{9over4}={16*9over4}={4*9over1}=36)

Искомое число – 36. Это значит, что длина отрезка составляет 36 см.

Давайте решим еще одну задачу, чтобы закрепить полученные знания.

Трактор вспахал (2over5) всего поля. Площадь вспаханной части составила 1200 м2. Найдите площадь всего поля.

Решение

Обозначим искомое число за «х».

Воспользуемся правилом нахождения числа, если известна его часть:

«Чтобы найти число, зная его часть, выраженную дробью, необходимо это число разделить на эту дробь»:

(x = 1200:{2over5}=1200*{5over2}={1200*5over2}={600*5over1}=3000)

Получаем, что если (2over5) всего поля составляет 1200 м2 , то площадь поля составляет 3000 м2.

Ответ: 3000 м2.

Эта информация доступна зарегистрированным пользователям

В этом уроке мы научимся, зная дробь от числа, находить все число.

Также мы узнаем, как делать аналогичные действия для процентов, то есть по данному количеству процентов находить все число.

Потом применим полученные навыки для решения задач.

Сформулируем, в чем состоит задача нахождения числа по его дроби.

Имеется дробь; она говорит о том, какая часть от числа нам дана.

Имеется число, равное данной дробной части от искомого числа.

Мы уже умеем находить дробь от числа. Вспомним как это делать.

Эта информация доступна зарегистрированным пользователям

Чтобы найти дробь от числа нам нужно исходное число умножить на эту дробь, тогда получится какое-то значение, обозначающее дробь от числа.

В этой задаче было известно все число и то, какую дробную часть от него необходимо получить. Дробь от числа оставалась неизвестной.

В задаче этого урока дробь от числа нам уже известна, а все число, напротив, только предстоит найти.

Для его нахождения можно составить уравнение, аналогичное тому, которое было на картинке выше. Отличие будет только в том, какие переменные нам известны.

Решая это уравнение, вы переносите известный нам множитель, то есть дробь, в правую часть.

Как делить на дробь мы изучили в прошлом уроке. Напомним, что для этого надо домножить на взаимно обратное число к этой дроби.

Итак, вы получили выражение для неизвестного числа.

Сформулируем правило: чтобы найти дробь от числа необходимо разделить известную часть числа на дробь.

Эта информация доступна зарегистрированным пользователям

Пример 1

(mathbf{frac{3}{4}}) от числа равны 21-му, найдите исходное число.

Для решения необходимо разделить известную часть на дробь, то есть 21 разделить на (mathbf{frac{3}{4}})

(mathbf{21divfrac{3}{4}=21cdotfrac{4}{3}=frac{21cdot4}{3}=frac{7cdot4}{1}=28})

Пример 2

(mathbf{frac{2}{7}}) от числа равны 12, найдите исходное число.

Для решения надо разделить данную часть числа на данную дробь, то есть 12 разделить на (mathbf{frac{2}{7}})

(mathbf{12divfrac{2}{7}=12cdotfrac{7}{2}=frac{12cdot7}{2}=frac{6cdot7}{1}=42})

Пример 3

Далеко не всегда часть числа делится на числитель данной дроби; в таких случаях мы будем получать в ответе не целые числа, а дроби или смешанные числа.

(mathbf{frac{2}{3}}) от числа равны 11, найдите исходное число.

Во всем остальном решение ничем не будет отличаться- также разделим дробь от числа, равную (mathbf{frac{2}{3}}), на величину дроби, равную 11 и получим результат.

(mathbf{11divfrac{2}{3}=11cdotfrac{3}{2}=frac{11cdot3}{2}=frac{33}{2}=16frac{1}{2}})

Для получения ответа нам понадобилось выделить целую часть.

 Важен еще один случай.

Никто не гарантирует, что данная нам часть числа сама по себе не будет являться дробью.

Такого случая не стоит пугаться, а стоит придерживаться алгоритма, а именно делить часть числа на то, какой дробью она является.

Пример 4

(mathbf{frac{5}{6}}) от числа равны (mathbf{frac{2}{3}}), найдите все число.

Для решения этого примера разделим (mathbf{frac{2}{3}})- часть числа, на (mathbf{frac{5}{6}})- дробь.

(mathbf{frac{2}{3}divfrac{5}{6}=frac{2}{3}cdotfrac{6}{5}=frac{2cdot6}{3cdot5}=frac{2cdot2}{5}=frac{4}{5}})

Все исходное число равняется (mathbf{frac{4}{5}})

Эта информация доступна зарегистрированным пользователям

Теперь представим, что дан какой-то определенный процент от числа и необходимо найти, от какого числа брали процент.

Вспомним, что процент- это способ записи десятичной дроби.

То есть, чтобы из процента получить десятичную дробь, которую он обозначает, надо величину процента разделить на 100.

Поэтому для решения такого рода задач надо преобразовать процент в десятичную дробь, а дальше сделать все то же самое: разделить число на эту дробь.

Пример 1

Известно, что зарплата работника увеличилась на 2 000 рублей или на 25 процентов. Какая зарплата у работника была изначально?

Решение:

Переведем проценты в дроби: (mathbf{25%=25div100=0.25})

Разделим число на дробь: (mathbf{2000div0.25=8000})

Ответ: изначально зарплата работника была 8000 рублей.

Сформулируем правило.

Чтобы найти число по проценту от него, надо перевести процент в десятичную дробь, а после разделить данную часть числа на полученную дробь.

Пример 2

Сказано, что 9% от числа равны 81. Необходимо найти все число.

Решение:

Первым действием переводим проценты в десятичную дробь.

(mathbf{9%=9div100=0.09})

Вторым действием делим данное число на эту дробь.

(mathbf{81div0.09=900})

Ответ: искомое число 900

Эта информация доступна зарегистрированным пользователям

Задачи, в которых фигурируют дроби от числа часто встречаются не только в школьных учебниках и задачниках, но и в реальной жизни, поэтому стоит уделить им особое внимание.

Сначала разберем некоторые из таких задач вместе, а дальше вы попробуете свои силы в самостоятельном решении задач.

Часть задач тривиальна, иными словами, их решение очевидно, достаточно лишь увидеть в них формулу, подставить в нее данные значения и получить результат.

Пример:

Айсберг возвышается над водой на (mathbf{frac{1}{11}}) своей высоты.

Капитан корабля заметил, что от воды до макушки айсберга по вертикали 16 метров.

Какова общая высота айсберга?

Решение:

В данном случае мы сразу можем сказать, что все число- это общая высота айсберга, дробь от числа- 16 (метров), а величина дроби- (mathbf{frac{1}{11}}).

Соответственно, по правилу, для получения ответа мы делим 16 на (mathbf{frac{1}{11}}) и получаем результат.

(mathbf{16divfrac{1}{11}=16cdot11=176}) (метр)- общая высота айсберга

Ответ: 176 (метров).

Некоторые задачи для своего решения требуют более глубокого анализа.

Пример:

Магазин продал (mathbf{frac{2}{3}}) пар новых кроссовок специальной партии, после чего на складе осталось 56 пар.

Какого размера была специальная партия?

Решение:

В данной задаче, если не вчитываться в условие, интуитивно хочется просто поделить 56 на (mathbf{frac{2}{3}}) и получить ответ, но ответ не будет правильным.

Если посмотреть внимательно, то 56 пар соответствуют оставшейся части партии, в то время как дробь (mathbf{frac{2}{3}}) описывает проданную часть.

Но мы пока не знаем общего количества пар и не можем сказать, какому числу соответствует (mathbf{frac{2}{3}})

Зато мы можем вычислить размер оставшейся части.

Если вся партия — это 1, и продано (mathbf{frac{2}{3}}), значит осталась (mathbf{frac{1}{3}}) товара.

Эта дробь соответствует 56 оставшимся парам.

Дальнейшие действия аналогичны рассмотренным в предыдущей задаче.

Теперь оформим решение:

1) (mathbf{1-frac{2}{3}=frac{1}{3}}) составляет оставшаяся часть от всего размера партии

2) (mathbf{56divfrac{1}{3}=56cdot3=168}) (пар) кроссовок всего было в партии

Ответ: 168 (пар).

Вам могут встретиться задачи и с более сложными условиями, все их разобрать невозможно, но главное:

  • не давать себя запутать
  • расписать, какой части какая дробь и какое число соответствует
  • понять, где данных достаточно, чтобы узнать что- то новое
  • и так постепенно продвигаться к ответу

Эта информация доступна зарегистрированным пользователям

Задачи математики часто диктуются другими науками, в том числе экономикой.

Существуют поднауки других наук, связанные с математикой. Примерами таких могут служить математическая физика, изучающая, как следует из названия, физические модели, а также математическая экономика, о которой мы вам сейчас расскажем.

Предметом изучения этой теории является математическое описание экономических объектов, явлений и процессов.

В самом деле, интересно применить мощнейший математический аппарат к таким насущным вопросам, как изменение цен и доходов, изменение предпочтений покупателей и пр.

Истоки математической экономики идут с XVII века. Тогда преподаватели германских университетов начали использовать новый стиль преподавания, который включал в себя статистику. Там, где появляется статистика, то есть множество чисел, появляется и математика, которая выявляет какие-то закономерности.

К примеру, расчет среднего дохода крестьян не является сложной задачей и сводится к вычислению среднего арифметического, но тоже является задачей математики.

В это же время группа английских ученых создала метод «численной аргументации государственной политики», который затрагивал темы налогов, сборов, таможенных пошлин, и прочие экономические процессы, в которых участвует государство.

К XIX веку появляется и развивается классическая школа политической экономики, чьим лицом принято считать Адама Смита.

Эта информация доступна зарегистрированным пользователям

Именно в этот период математика начала активно применяться в экономике.

В дальнейшем все большее количество математических инструментов переходило в экономику, а в наши дни на нее трудятся еще и информационные технологии.

Так что в наши дни великим экономистом может быть не тот, кто изначально учился на экономиста, а успешный математик или программист.

Нахождение неизвестного слагаемого, множителя, и т.п., правила, примеры, решения

Долгий путь наработки навыков решения уравнений начинается с решения самых первых и относительно простых уравнений. Под такими уравнениями мы подразумеваем уравнения, в левой части которых находится сумма, разность, произведение или частное двух чисел, одно из которых неизвестно, а в правой части стоит число. То есть, эти уравнения содержат неизвестное слагаемое, уменьшаемое, вычитаемое, множитель, делимое или делитель. О решении таких уравнений и пойдет речь в этой статье.

Здесь мы приведем правила, позволяющие находить неизвестное слагаемое, множитель и т.п. Причем будем сразу рассматривать применение этих правил на практике, решая характерные уравнения.

Навигация по странице.

Чтобы найти неизвестное слагаемое, надо…

Женя с Колей решили покушать яблок, для чего начали их сшибать с яблони. Женя добыл 3 яблока, а в конце процесса у мальчиков оказалось 8 яблок. Сколько яблок сшиб Коля?

Для перевода этой типично задачи на математический язык, обозначим неизвестное число яблок, которые сшиб Коля, через x . Тогда по условию 3 Жениных яблока и x Колиных вместе составляют 8 яблок. Последней фразе соответствует уравнение вида 3+x=8 . В левой части этого уравнения находится сумма, содержащая неизвестное слагаемое, в правой части стоит значение этой суммы — число 8 . Так как же найти интересующее нас неизвестное слагаемое x ?

Для этого существует следующее правило: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

Это правило объясняется тем, что вычитанию придается смысл, обратный смыслу сложения. Иными словами, между сложением и вычитанием чисел существует связь, которая выражается в следующем: из того, что a+b=c следует, что c−a=b и c−b=a , и наоборот, из c−a=b , как и из c−b=a следует, что a+b=c .

Озвученное правило позволяет по одному известному слагаемому и известной сумме определить другое неизвестное слагаемое. При этом не имеет значения, какое из слагаемых неизвестно, первое или второе. Рассмотрим его применение на примере.

Вернемся к нашему уравнению 3+x=8 . Согласно правилу, нам надо из известной суммы 8 вычесть известное слагаемое 3 . То есть, выполняем вычитание натуральных чисел: 8−3=5 , так мы нашли нужное нам неизвестное слагаемое, оно равно 5 .

Принята следующая форма записи решения подобных уравнений:

  • сначала записывают исходное уравнение,
  • ниже – уравнение, получающееся после применения правила нахождения неизвестного слагаемого,
  • наконец, еще ниже, записывают уравнение, полученное после выполнения действий с числами.

Смысл такой формы записи заключается в том, что исходное уравнение последовательно заменяется равносильными уравнениями, из которых в итоге становится очевиден корень исходного уравнения. Подробно об этом говорят на уроках алгебры в 7 классе, а пока оформим решение нашего уравнения уровня 3 класса:
3+x=8 ,
x=8−3 ,
x=5 .

Чтобы убедиться в правильности полученного ответа, желательно сделать проверку. Для этого полученный корень уравнения надо подставить в исходное уравнение и посмотреть, дает ли это верное числовое равенство.

Итак, подставляем в исходное уравнение 3+x=8 вместо x число 5 , получаем 3+5=8 – это равенство верное, следовательно, мы правильно нашли неизвестное слагаемое. Если бы при проверке мы получили неверное числовое равенство, то это указало бы нам на то, что мы неверно решили уравнение. Основными причинами этого могут быть либо применение не того правила, которое нужно, либо вычислительные ошибки.

Как найти неизвестное уменьшаемое, вычитаемое?

Связь между сложением и вычитанием чисел, про которую мы уже упоминали в предыдущем пункте, позволяет получить правило нахождения неизвестного уменьшаемого через известное вычитаемое и разность, а также правило нахождения неизвестного вычитаемого через известное уменьшаемое и разность. Будем формулировать их по очереди, и сразу приводить решение соответствующих уравнений.

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Для примера рассмотрим уравнение x−2=5 . Оно содержит неизвестное уменьшаемое. Приведенное правило нам указывает, что для его отыскания мы должны к известной разности 5 прибавить известное вычитаемое 2 , имеем 5+2=7 . Таким образом, искомое уменьшаемое равно семи.

Если опустить пояснения, то решение записывается так:
x−2=5 ,
x=5+2 ,
x=7 .

Для самоконтроля выполним проверку. Подставляем в исходное уравнение найденное уменьшаемое, при этом получаем числовое равенство 7−2=5 . Оно верное, поэтому, можно быть уверенным, что мы верно определили значение неизвестного уменьшаемого.

Можно переходить к нахождению неизвестного вычитаемого. Оно находится с помощью сложения по следующему правилу: чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Решим уравнение вида 9−x=4 с помощью записанного правила. В этом уравнении неизвестным является вычитаемое. Чтобы его найти, нам надо от известного уменьшаемого 9 отнять известную разность 4 , имеем 9−4=5 . Таким образом, искомое вычитаемое равно пяти.

Приведем краткий вариант решения этого уравнения:
9−x=4 ,
x=9−4 ,
x=5 .

Остается лишь проверить правильность найденного вычитаемого. Сделаем проверку, для чего подставим в исходное уравнение вместо x найденное значение 5 , при этом получаем числовое равенство 9−5=4 . Оно верное, поэтому найденное нами значение вычитаемого правильное.

И прежде чем переходить к следующему правилу заметим, что в 6 классе рассматривается правило решения уравнений, которое позволяет выполнять перенос любого слагаемого из одной части уравнения в другую с противоположным знаком. Так вот все рассмотренные выше правила нахождения неизвестного слагаемого, уменьшаемого и вычитаемого с ним полностью согласованы.

Чтобы найти неизвестный множитель, надо…

Давайте взглянем на уравнения x·3=12 и 2·y=6 . В них неизвестное число является множителем в левой части, а произведение и второй множитель известны. Для нахождения неизвестного множителя можно использовать такое правило: чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

В основе этого правила лежит то, что делению чисел мы придали смысл, обратный смыслу умножения. То есть, между умножением и делением существует связь: из равенства a·b=c , в котором a≠0 и b≠0 следует, что c:a=b и c:b=c , и обратно.

Для примера найдем неизвестный множитель уравнения x·3=12 . Согласно правилу нам надо разделить известное произведение 12 на известный множитель 3 . Проведем деление натуральных чисел: 12:3=4 . Таким образом, неизвестный множитель равен 4 .

Кратко решение уравнения записывается в виде последовательности равенств:
x·3=12 ,
x=12:3 ,
x=4 .

Желательно еще сделать проверку результата: подставляем в исходное уравнение вместо буквы найденное значение, получаем 4·3=12 – верное числовое равенство, поэтому мы верно нашли значение неизвестного множителя.

Отдельно нужно обратить внимание на то, что озвученное правило нельзя применять для нахождения неизвестного множителя, когда другой множитель равен нулю. Например, это правило не подходит для решения уравнения x·0=11 . Действительно, если в этом случае придерживаться правила, то чтобы найти неизвестный множитель нам надо выполнить деление произведения 11 на другой множитель, равный нулю, а на нуль делить нельзя. Эти случаи мы подробно обсудим при разговоре о линейных уравнениях.

И еще один момент: действуя по изученному правилу, мы фактически выполняем деление обеих частей уравнения на отличный от нуля известный множитель. В 6 классе будет сказано, что обе части уравнения можно умножать и делить на одно и то же отличное от нуля число, это не влияет на корни уравнения.

Как найти неизвестное делимое, делитель?

В рамках нашей темы осталось разобраться, как найти неизвестное делимое при известном делителе и частном, а также как найти неизвестный делитель при известном делимом и частном. Ответить на эти вопросы позволяет уже упомянутая в предыдущем пункте связь между умножением и делением.

Чтобы найти неизвестное делимое, надо частное умножить на делитель.

Рассмотрим его применение на примере. Решим уравнение x:5=9 . Чтобы найти неизвестное делимое этого уравнения надо согласно правилу умножить известное частное 9 на известный делитель 5 , то есть, выполняем умножение натуральных чисел: 9·5=45 . Таким образом, искомое делимое равно 45 .

Покажем краткую запись решения:
x:5=9 ,
x=9·5 ,
x=45 .

Проверка подтверждает, что значение неизвестного делимого найдено верно. Действительно, при подстановке в исходное уравнение вместо переменной x числа 45 оно обращается в верное числовое равенство 45:5=9 .

Заметим, что разобранное правило можно трактовать как умножение обеих частей уравнения на известный делитель. Такое преобразование не влияет на корни уравнения.

Переходим к правилу нахождения неизвестного делителя: чтобы найти неизвестный делитель, надо делимое разделить на частное.

Рассмотрим пример. Найдем неизвестный делитель из уравнения 18:x=3 . Для этого нам нужно известное делимое 18 разделить на известное частное 3 , имеем 18:3=6 . Таким образом, искомый делитель равен шести.

Решение можно оформить и так:
18:x=3 ,
x=18:3 ,
x=6 .

Проверим этот результат для надежности: 18:6=3 – верное числовое равенство, следовательно, корень уравнения найден верно.

Понятно, что данное правило можно применять только тогда, когда частное отлично от нуля, чтобы не столкнуться с делением на нуль. Когда частное равно нулю, то возможны два случая. Если при этом делимое равно нулю, то есть, уравнение имеет вид 0:x=0 , то этому уравнению удовлетворяет любое отличное от нуля значение делителя. Иными словами, корнями такого уравнения являются любые числа, не равные нулю. Если же при равном нулю частном делимое отлично от нуля, то ни при каких значениях делителя исходное уравнение не обращается в верное числовое равенство, то есть, уравнение не имеет корней. Для иллюстрации приведем уравнение 5:x=0 , оно не имеет решений.

Совместное использование правил

Последовательное применение правил нахождения неизвестного слагаемого, уменьшаемого, вычитаемого, множителя, делимого и делителя позволяет решать и уравнения с единственной переменной более сложного вида. Разберемся с этим на примере.

Рассмотрим уравнение 3·x+1=7 . Сначала мы можем найти неизвестное слагаемое 3·x , для этого надо от суммы 7 отнять известное слагаемое 1 , получаем 3·x=7−1 и дальше 3·x=6 . Теперь осталось найти неизвестный множитель, разделив произведение 6 на известный множитель 3 , имеем x=6:3 , откуда x=2 . Так найден корень исходного уравнения.

Для закрепления материала приведем краткое решение еще одного уравнения (2·x−7):3−5=2 .
(2·x−7):3−5=2 ,
(2·x−7):3=2+5 ,
(2·x−7):3=7 ,
2·x−7=7·3 ,
2·x−7=21 ,
2·x=21+7 ,
2·x=28 ,
x=28:2 ,
x=14 .

Нахождение неизвестного слагаемого, множителя: правила, примеры, решения

Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.

Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.

Нахождение неизвестного слагаемого

Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9 . Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9 , значит, можно записать уравнение 4 + x = 9 . Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x ? Для этого надо использовать правило:

Для нахождения неизвестного слагаемого надо вычесть известное из суммы.

В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a + b = c , то c − a = b и c − b = a , и наоборот, из выражений c − a = b и c − b = a можно вывести, что a + b = c .

Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.

Возьмем то уравнение, что у нас получилось выше: 4 + x = 9 . Согласно правилу, нам нужно вычесть из известной суммы, равной 9 , известное слагаемое, равное 4 . Вычтем одно натуральное число из другого: 9 — 4 = 5 . Мы получили нужное нам слагаемое, равное 5 .

Обычно решения подобных уравнений записывают следующим образом:

  1. Первым пишется исходное уравнение.
  2. Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
  3. После этого пишем уравнение, которое получилось после всех действий с числами.

Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:

4 + x = 9 , x = 9 − 4 , x = 5 .

Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4 + x = 9 и получим: 4 + 5 = 9 . Равенство 9 = 9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.

Нахождение неизвестного вычитаемого или уменьшаемого

Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.

Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.

Например, у нас есть уравнение x — 6 = 10 . Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6 , получим 16 . То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:

x − 6 = 10 , x = 10 + 6 , x = 16 .

Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16 — 6 = 10 . Равенство 16 — 16 будет верным, значит, мы все подсчитали правильно.

Переходим к следующему правилу.

Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.

Воспользуемся правилом для решения уравнения 10 — x = 8 . Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10 — 8 = 2 . Значит, искомое вычитаемое равно двум. Вот вся запись решения:

10 — x = 8 , x = 10 — 8 , x = 2 .

Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10 — 2 = 8 и убедимся, что найденное нами значение будет правильным.

Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.

Нахождение неизвестного множителя

Посмотрим на два уравнения: x · 2 = 20 и 3 · x = 12 . В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.

Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.

Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a · b = c при a и b , не равных 0 , c : a = b , c : b = c и наоборот.

Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2 . Проводим деление натуральных чисел и получаем 10 . Запишем последовательность равенств:

x · 2 = 20 x = 20 : 2 x = 10 .

Подставляем десятку в исходное равенство и получаем, что 2 · 10 = 20 . Значение неизвестного множителя было выполнено правильно.

Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x · 0 = 11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0 , а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.

Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0 . Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.

Нахождение неизвестного делимого или делителя

Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.

Для нахождения неизвестного делимого нужно умножить делитель на частное.

Посмотрим, как применяется данное правило.

Решим с его помощью уравнение x : 3 = 5 . Перемножаем между собой известное частное и известный делитель и получаем 15 , которое и будет нужным нам делимым.

Вот краткая запись всего решения:

x : 3 = 5 , x = 3 · 5 , x = 15 .

Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5 . Верное числовое равенство – свидетельство правильного решения.

Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.

Переходим к следующему правилу.

Для нахождения неизвестного делителя нужно разделить делимое на частное.

Возьмем простой пример – уравнение 21 : x = 3 . Для его решения разделим известное делимое 21 на частное 3 и получим 7 . Это и будет искомый делитель. Теперь оформляем решение правильно:

21 : x = 3 , x = 21 : 3 , x = 7 .

Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21 : 7 = 3 , так что корень уравнения был вычислен верно.

Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0 . Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0 : x = 0 , то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0 , с делимым, отличным от 0 , решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5 : x = 0 , которое не имеет ни одного корня.

Последовательное применение правил

Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.

У нас есть уравнение вида 3 · x + 1 = 7 . Вычисляем неизвестное слагаемое 3 · x , отняв от 7 единицу. Получим в итоге 3 · x = 7 − 1 , потом 3 · x = 6 . Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.

Вот краткая запись решения еще одного уравнения ( 2 · x − 7 ) : 3 − 5 = 2 :

( 2 · x − 7 ) : 3 − 5 = 2 , ( 2 · x − 7 ) : 3 = 2 + 5 , ( 2 · x − 7 ) : 3 = 7 , 2 · x − 7 = 7 · 3 , 2 · x − 7 = 21 , 2 · x = 21 + 7 , 2 · x = 28 , x = 28 : 2 , x = 14 .

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

источники:

http://zaochnik.com/spravochnik/matematika/systems/nahozhdenie-neizvestnogo-slagaemogo-mnozhitelja/

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

Подсказка

1. Известный признак делимости на 9: целое число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Решение

1. Чтобы найти искомое число, можно выстроить следующую цепочку рассуждений:

  1. Искомое число больше 10, так как оно двузначное, а «обращённое» число не может начинаться с нуля.
  2. Оно меньше 23, поскольку 23 × 4,5 = 103,5 — число трёхзначное.
  3. Искомое число чётное, так как при умножении его на 4,5 получается целое число.
  4. Обращённое число по условию в 9 раз больше половины данного числа, значит, обращённое число кратно 9.
  5. Так как обращённое число кратно 9, то сумма его цифр делится на 9.
  6. Поскольку искомое число состоит из тех же цифр, что и обращённое, то и оно делится на 9.
  7. Между 10 и 23 есть только одно число, делящееся нацело на 9, — число 18. Легко убедиться, что оно удовлетворяет условиям задачи.

2. Для решения этой задачи можно предложить следующую схему рассуждений:

  1. Среди искомых чисел не может быть числа 10, поскольку тогда их произведение оканчивалось бы на 0.
  2. По той же причине среди них не может быть чисел, оканчивающихся на 5.
  3. Искомые числа должны быть меньше 10, так как произведение чисел от 11 до 14 намного больше, чем 3024.
  4. Значит, допустимыми являются только две группы чисел: 1, 2, 3, 4 и 6, 7, 8, 9. Легко проверить, что условию задачи удовлетворяет только вторая группа.

Понравилась статья? Поделить с друзьями:
  • Как найти ускорение автомобиля формула
  • Как найти имя подлежащие
  • Как найти наушники самсунг в коробке
  • Как исправить 2 степень искривления позвоночника
  • Как найти тень на фото