В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.
В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.
Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.
Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.
Поперечные силы и изгибающие моменты
При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).
Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.
Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.
Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!
Обозначения поперечных сил и изгибающих моментов
Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.
Например, если выбрать следующие обозначения для координатных осей:
То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.
Расчётная схема балки
Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:
А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.
К примеру, балка может иметь прямоугольное поперечное сечение:
Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.
Правила знаков для поперечных сил и изгибающих моментов
В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).
Расчётная схема
Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).
Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.
Правило знаков для поперечных сил
Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.
А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
• ПО часовой стрелке, то её нужно учесть с «плюсом»;
• ПРОТИВ часовой стрелки — учитываем её с «минусом».
Таким образом, для нашего случая, поперечная сила в сечении A будет равна:
Правило знаков для изгибающих моментов
Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.
Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.
Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.
В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.
На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
• верхние волокна, то учитываем его с «минусом»;
• нижние волокна, то нужно учесть его с «плюсом».
Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.
Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:
Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:
Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:
Как построить эпюры поперечных сил и изгибающих моментов ?
В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.
Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉
Построение эпюр для консольной балки
В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:
Будем рассчитывать балку справа налево.
Рассмотрим первый участок
Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.
Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.
Поперечные силы на первом участке
Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:
Как видишь, поперечная сила будет постоянна на первом участке:
Уже можем отразить это на эпюре поперечных сил:
Изгибающие моменты на первом участке
Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:
Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:
Откладываем полученные значения:
Расчёт второго участка
Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x2 ≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.
Поперечные силы на втором участке
Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:
Теперь можем показать окончательную эпюру поперечных сил:
Изгибающие моменты на втором участке
Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:
Вычисляем значения на границах второго участка:
Показываем окончательную эпюру изгибащих моментов:
Проверка построенных эпюр
Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.
Определение реакций в жёсткой заделке
Первым делом, нам потребуется определить реакции в заделке:
Расчёт эпюр поперечных сил и изгибающих моментов
Рассчитываем все участки теперь слева направо:
Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:
Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:
Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.
Эпюра моментов со стороны растянутых или сжатых волокон
По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.
Причем сама эпюра была построенна со стороны растянутых волокон:
Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:
Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.
Учёт распределённой нагрузки
Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.
Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:
Определение поперечной силы и изгибающего момента в сечении A
Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.
После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:
Тогда поперечная сила QA будет равна:
Изгибающий момент Mизг, A будет равен:
Расчёт эпюр поперечных сил и изгибающих моментов
Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:
Уравнение для поперечных сил будет следующее:
Рассчитаем значения на эпюре поперечных сил:
Уравнение для изгибающих моментов будет следующее:
Тогда значения на эпюре будут такими:
На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.
Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:
Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:
Построение эпюр для двухопорной балки
А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:
Определим реакции опор:
Рассчитываем первый участок:
Строим эпюры на первом участке:
Определение экстремума на эпюре моментов
Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.
Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:
Отсюда найти значение координаты:
Затем подставить это значение в уравнение для изгибающих моментов:
Теперь можем указать экстремум на эпюре:
Расчет эпюр на остальных участках
Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:
Определение экстремума:
Оценка правильности построенных эпюр поперечных сил и изгибающих моментов
И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.
Вот несколько признаков, правильно построенных эпюр:
- На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
- На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
- Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
- Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.
From Wikipedia, the free encyclopedia
In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend.[1][2] The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported (free to rotate and therefore lacking bending moments) at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end (neither simple or fixed). In reality, beam supports are usually neither absolutely fixed nor absolutely rotating freely.
The internal reaction loads in a cross-section of the structural element can be resolved into a resultant force and a resultant couple.[3] For equilibrium, the moment created by external forces/moments must be balanced by the couple induced by the internal loads. The resultant internal couple is called the bending moment while the resultant internal force is called the shear force (if it is transverse to the plane of element) or the normal force (if it is along the plane of the element). Normal force is also termed as axial force.
The bending moment at a section through a structural element may be defined as the sum of the moments about that section of all external forces acting to one side of that section. The forces and moments on either side of the section must be equal in order to counteract each other and maintain a state of equilibrium so the same bending moment will result from summing the moments, regardless of which side of the section is selected. If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause «hogging», and a positive moment will cause «sagging». It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure—that is, the point of transition from hogging to sagging or vice versa.
Moments and torques are measured as a force multiplied by a distance so they have as unit newton-metres (N·m), or pound-foot (lb·ft). The concept of bending moment is very important in engineering (particularly in civil and mechanical engineering) and physics.
Background[edit]
Tensile and compressive stresses increase proportionally with bending moment, but are also dependent on the second moment of area of the cross-section of a beam (that is, the shape of the cross-section, such as a circle, square or I-beam being common structural shapes). Failure in bending will occur when the bending moment is sufficient to induce tensile/compressive stresses greater than the yield stress of the material throughout the entire cross-section. In structural analysis, this bending failure is called a plastic hinge, since the full load carrying ability of the structural element is not reached until the full cross-section is past the yield stress. It is possible that failure of a structural element in shear may occur before failure in bending, however the mechanics of failure in shear and in bending are different.
Moments are calculated by multiplying the external vector forces (loads or reactions) by the vector distance at which they are applied. When analysing an entire element, it is sensible to calculate moments at both ends of the element, at the beginning, centre and end of any uniformly distributed loads, and directly underneath any point loads. Of course any «pin-joints» within a structure allow free rotation, and so zero moment occurs at these points as there is no way of transmitting turning forces from one side to the other.
It is more common to use the convention that a clockwise bending moment to the left of the point under consideration is taken as positive. This then corresponds to the second derivative of a function which, when positive, indicates a curvature that is ‘lower at the centre’ i.e. sagging. When defining moments and curvatures in this way calculus can be more readily used to find slopes and deflections.
Critical values within the beam are most commonly annotated using a bending moment diagram, where negative moments are plotted to scale above a horizontal line and positive below. Bending moment varies linearly over unloaded sections, and parabolically over uniformly loaded sections.
Engineering descriptions of the computation of bending moments can be confusing because of unexplained sign conventions and implicit assumptions. The descriptions below use vector mechanics to compute moments of force and bending moments in an attempt to explain, from first principles, why particular sign conventions are chosen.
Computing the moment of force[edit]
Computing the moment of force in a beam.
An important part of determining bending moments in practical problems is the computation of moments of force.
Let be a force vector acting at a point A in a body. The moment of this force about a reference point (O) is defined as[2]
where is the moment vector and is the position vector from the reference point (O) to the point of application of the force (A). The symbol indicates the vector cross product. For many problems, it is more convenient to compute the moment of force about an axis that passes through the reference point O. If the unit vector along the axis is , the moment of force about the axis is defined as
where indicates the vector dot product.
Example[edit]
The adjacent figure shows a beam that is acted upon by a force . If the coordinate system is defined by the three unit vectors , we have the following
Therefore,
The moment about the axis is then
Sign conventions[edit]
The negative value suggests that a moment that tends to rotate a body clockwise around an axis should have a negative sign. However, the actual sign depends on the choice of the three axes . For instance, if we choose another right handed coordinate system with , we have
Then,
For this new choice of axes, a positive moment tends to rotate body clockwise around an axis.
Computing the bending moment[edit]
In a rigid body or in an unconstrained deformable body, the application of a moment of force causes a pure rotation. But if a deformable body is constrained, it develops internal forces in response to the external force so that equilibrium is maintained. An example is shown in the figure below. These internal forces will cause local deformations in the body.
For equilibrium, the sum of the internal force vectors is equal to the negative of the sum of the applied external forces, and the sum of the moment vectors created by the internal forces is equal to the negative of the moment of the external force. The internal force and moment vectors are oriented in such a way that the total force (internal + external) and moment (external + internal) of the system is zero. The internal moment vector is called the bending moment.[1]
Though bending moments have been used to determine the stress states in arbitrary shaped structures, the physical interpretation of the computed stresses is problematic. However, physical interpretations of bending moments in beams and plates have a straightforward interpretation as the stress resultants in a cross-section of the structural element. For example, in a beam in the figure, the bending moment vector due to stresses in the cross-section A perpendicular to the x-axis is given by
Expanding this expression we have,
We define the bending moment components as
The internal moments are computed about an origin that is at the neutral axis of the beam or plate and the integration is through the thickness ()
Example[edit]
Computing the bending moment in a beam.
In the beam shown in the adjacent figure, the external forces are the applied force at point A () and the reactions at the two support points O and B ( and ).
For this situation, the only non-zero component of the bending moment is
where is the height in the direction of the beam. The minus sign is included to satisfy the sign convention.
In order to calculate , we begin by balancing the forces, which gives one equation with the two unknown reactions,
To obtain each reaction a second equation is required. Balancing the moments about any arbitrary point X would give us a second equation we can use to solve for and in terms of . Balancing about the point O is simplest but let’s balance about point A just to illustrate the point, i.e.
If is the length of the beam, we have
Evaluating the cross-products:
If we solve for the reactions we have
Now to obtain the internal bending moment at X we sum all the moments about the point X due to all the external forces to the right of X (on the positive side), and there is only one contribution in this case,
We can check this answer by looking at the free body diagram and the part of the beam to the left of point X, and the total moment due to these external forces is
If we compute the cross products, we have
Thanks to the equilibrium, the internal bending moment due to external forces to the left of X must be exactly balanced by the internal turning force obtained by considering the part of the beam to the right of X
which is clearly the case.
Sign convention[edit]
In the above discussion, it is implicitly assumed that the bending moment is positive when the top of the beam is compressed. That can be seen if we consider a linear distribution of stress in the beam and find the resulting bending moment. Let the top of the beam be in compression with a stress and let the bottom of the beam have a stress . Then the stress distribution in the beam is . The bending moment due to these stresses is
where is the area moment of inertia of the cross-section of the beam. Therefore, the bending moment is positive when the top of the beam is in compression.
Many authors follow a different convention in which the stress resultant is defined as
In that case, positive bending moments imply that the top of the beam is in tension. Of course, the definition of top depends on the coordinate system being used. In the examples above, the top is the location with the largest -coordinate.
See also[edit]
- Buckling
- Deflection including deflection of a beam
- Twisting moment
- Shear and moment diagrams
- Stress resultants
- First moment of area
- Influence line
- Second moment of area
- List of area moments of inertia
- Wing bending relief
References[edit]
- ^ a b Gere, J.M.; Timoshenko, S.P. (1996), Mechanics of Materials:Forth edition, Nelson Engineering, ISBN 0534934293
- ^ a b Beer, F.; Johnston, E.R. (1984), Vector mechanics for engineers: statics, McGraw Hill, pp. 62–76
- ^ Baker, Daniel W.; Haynes, William. Statics: Internal Loads.
External links[edit]
- Stress resultants for beams
- Free online Calculation tools for bending moment
Изгибом называется вид нагружения бруса, при котором к нему прикладывается поперечная нагрузка, лежащая в плоскости проходящей через продольную ось (рис.1). Брус, работающий при изгибе, называется балкой.
Изгиб называется плоским или прямым, если плоскость действия нагрузки проходит через главную центральную ось инерции сечения (рис.1).
Рис.1. Прямой изгиб
При плоском поперечном изгибе в балке возникают два вида внутренних усилий: поперечная сила Qy , где y – ось симметрии (главная центральная ось) и изгибающий момент Mx. , где x – другая главная центральная ось сечения, нормальная к оси симметрии.
Если изгибающий момент Mx является единственным внутренним силовым фактором, то такой изгиб называется чистым (рис.2). При наличии поперечной силы Qy изгиб называется поперечным. Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.
Косой изгиб — изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.
Сложный изгиб — изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.
Далее будем рассматривать плоский изгиб, то есть все силы будем прилагать в плоскости симметрии балки.
Рис.2. Чистый изгиб
Осваивать расчет балок и рам удобно, рассматривая по очереди следующие вопросы:
— Определение внутренних усилий в балках и построение эпюр внутренних усилий.
— Проверка прочности балок.
— Определение перемещений и проверка жесткости балок.
§2.Построение эпюр поперечной силы и изгибающего момента
Для того, чтобы произвести расчет балки на изгиб, необходимо знать величину наибольшего изгибающего момента М и положение сечения, в котором он возникает. Точно также, надо знать и наибольшую поперечную силу Q. Для этой цели строят эпюры изгибающих моментов и поперечных сил. По эпюрам легко судить о том, где будет максимальное значение момента или поперечной силы.
Эпюра внутренней силы – график, показывающий изменение этой силы по длине балки.
Для построения эпюр балка разбивается на участки, в пределах которых функция внутренней силы не меняет своего аналитического выражения. За границы участков принимаются сечения, в которых приложены внешние нагрузки: сосредоточенные силы, сосредоточенные моменты, начинается или заканчивается распределенная нагрузка одного направления и изменяющаяся по одному закону, а также начало и конец балки.
Последовательно на каждом участке вводится скользящая система координатных осей (начало координат совмещается с началом участка) и для произвольного сечения составляются выражения для определения поперечной силы и изгибающего момента. Затем по этим выражениям в пределах каждого участка строятся графики (эпюры) внутренних сил.
Перед тем, как определять внутренние усилия (поперечные силы и изгибающие моменты) и строить эпюры, как правило, надо найти опорные реакции, возникающие в закреплении стержня. Если опорные реакции и внутренние усилия можно найти из уравнений статики, то конструкция называется статически определимой. Чаще всего мы встречаемся с тремя видами опорных закреплений стержней: жестким защемлением (заделкой), шарнирно-неподвижной опорой и шарнирно-подвижной опорой. На рис. 3 показаны эти закрепления. Для неподвижной (рис 3,б) и подвижной (рис. 3,в) опор приведены два эквивалентных обозначения этих закреплений. Напомним, что при действии нагрузки в одной плоскости в заделке возникают три опорных реакции (вертикальная, горизонтальная реакции и сосредоточенный реактивный момент) (рис. 6.5,а); в шарнирно-неподвижной опоре – две реактивные силы (рис. 3,б); в шарнирно-подвижной опоре – одна реакция – сила, перпендикулярная плоскости опирания (рис.3,в).
Рис.3. Опорные реакции: а – в заделке; б – в шарнирно-неподвижной опоре;
в – в шарнирно-подвижной опоре.
После определения опорных реакций внутренние усилия в статически определимых конструкциях определяем с помощью метода сечений.
Как было сказано выше, при плоском поперечном изгибе в балке возникают два внутренних усилия: поперечная сила Q и изгибающий момент M. В соответствии с методом сечений поперечную силу можно найти как сумму проекций всех внешних сил, взятых с одной стороны от сечения, на ось, перпендикулярную оси стержня (ось z). Изгибающий момент равен сумме моментов всех внешних сил, взятых с одной стороны от сечения, относительно оси, проходящей через центр тяжести рассматриваемого сечения (оси y).
Для того чтобы можно было вести расчет с любого конца балки, необходимо принять правило знаков для внутренних силовых факторов.
а) б)
Рис.4. а — правило знаков для поперечной силы Q; б — правило знаков для изгибающего момента M.
Если внешняя сила вращает отрезанную часть балки по часовой стрелке, то сила является положительной, если внешняя сила вращает отрезанную часть балки против хода часовой стрелки, то сила является отрицательной.
Если под действием внешней силы изогнутая ось балки принимает вид вогнутой чаши, такой, что идущий сверху дождь будет наполнять ее водой, то изгибающий момент является положительным. Если под действием внешней силы изогнутая ось балки принимает вид выпуклой чаши, такой, что идущий сверху дождь не будет наполнять ее водой, то изгибающий момент является отрицательным.
Поперечная сила Q в каком-либо поперечном сечении балки численно равная алгебраической сумме на ось у внешних сил действующих на балку по одну сторону от рассматриваемого сечения, а изгибающий момент M равен алгебраической сумме моментов сил, относительно центра тяжести сечения.
Взаимосвязь между нагрузкой и очертаниями эпюр поперечных сил Q и изгибающих моментов M:
- На участках где изгибающий момент постоянен (чистый изгиб), поперечная сила равна нулю
- На участках, свободных от загружения равномерно распределенной нагрузкой: поперечная сила постоянна ,а изгибающий момент изменяется по линейному закону, т.е. по прямой.
- На участках, загруженных равномерно распределенной нагрузкой, поперечная сила изменяется по линейному закону, а изгибающий момент- по параболе, выпуклость которой направлена навстречу нагрузке .
- В точках приложения сосредоточенных сил на эпюре поперечных сил имеют место скачки, равные по значению силам, а на эпюре моментов — переломы, направленные навстречу силам
- В точках приложения сосредоточенных пар сил на эпюре моментов возникают скачки, равные моментам пар.
- В точках, где поперечная сила равна нулю (Q=0), значение момента принимает экстремальное значение максимальное или минимальное на рассматриваемом участке.
Указанные закономерности позволяют упростить построения эпюр поперечных сил и изгибающих моментов (в сложнoзагруженных балках) и обойтись без составления уравнений для каждого участка.
Достаточно вычислить ординаты эпюр для характерных сечений и соединить их линиями в соответствии с изложенными выше правилами. Характерными являются сечения балки, где приложены сосредоточенные силы, и моменты (включая опорные сечения), а также сечения, , ограничивающие участки с равномернораспределенной нагрузкой).
Для определения максимальных значений изгибающих моментов дополнительно подсчитываются моменты в сечениях, где поперечные силы равны нулю. Построение без составления эпюр уравнений дает особенно значительный эффект для балок, нагруженных сложной нагрузкой, имеющих много участков нагружения.
Определение поперечных сил и изгибающих моментов.
Как уже было сказано, при плоском
поперечном изгибе в поперечном сечении
балки возникают два внутренних силовых
фактора
и.
Перед определением
иопределяют реакции опор балки (рис. 6.3,
а), составляя уравнения равновесия
статики.
Для определения
иприменим метод сечений. В интересующем
нас месте сделаем мысленный разрез
балки, например, на расстоянииот левой опоры. Отбросим одну из частей
балки, например правую, и рассмотрим
равновесие левой части (рис. 6.3, б).
Взаимодействие частей балки заменим
внутренними усилиямии.
Установим следующие правила знаков для
и:
-
Поперечная сила
в сечении положительна, если ее векторы
стремятся вращать рассматриваемое
сечение по часовой стрелке; -
Изгибающий момент
в сечении положителен, если он вызывает
сжатие верхних волокон.
Рис. 6.3
Для определения данных усилий используем
два уравнения равновесия:
1.
;;.
2.
;
;
Таким образом,
а) поперечная сила
в поперечном сечении балки численно
равна алгебраической сумме проекций
на поперечную ось сечениявсех внешних сил, действующих по одну
сторону от сечения;
б) изгибающий момент в поперечном сечении
балки численно равен алгебраической
сумме моментов (вычисленных относительно
центра тяжести сечения) внешних сил,
действующих по одну сторону от данного
сечения.
При практическом вычислении руководствуются
обычно следующим:
-
Если внешняя нагрузка стремится
повернуть балку относительно
рассматриваемого сечения по часовой
стрелке, (рис. 6.4, б) то в выражении для
она дает положительное слагаемое. -
Если внешняя нагрузка создает относительно
рассматриваемого сечения момент,
вызывающий сжатие верхних волокон
балки (рис. 6.4, а), то в выражении для
в этом сечении она дает положительное
слагаемое.
Рис. 6.4
Построение эпюр ив балках.
Рассмотрим двухопорную балку
(рис. 6.5, а). На балку действует в точкесосредоточенный момент,
в точке— сосредоточенная силаи на участке— равномерно распределенная нагрузка
интенсивностью.
Определим опорные реакции
и(рис. 6.5, б).
Равнодействующая распределенной
нагрузки равна,
а линия действия ее проходит через центр
участка.
Составим уравнения моментов относительно
точеки.
Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки А(рис. 6.5, в).
Расстояниеможет изменяться в пределах ().
Значение поперечной силы не зависит
Изгибающий момент изменяется по
Для построения эпюры вычисляем ординаты
При
При |
Рис. 6.5 |
Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки(рис. 6.5, г).Расстояниеможет изменяться в пределах ().
Значение поперечной силы не зависит от
координаты сечения
,
следовательно, во всех сечениях участкапоперечные силы одинаковы и эпюраимеет вид прямоугольника. Изгибающий
момент
Изгибающий момент изменяется по линейному
закону. Определим ординаты эпюры для
границ участка.
Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки(рис. 6.5, д).Расстояниеможет изменяться в пределах ().
Поперечная сила изменяется по линейному
закону. Определим для границ участка.
Изгибающий момент
.
Эпюра изгибающих моментов на этом
участке будет параболической.
Чтобы определить экстремальное значение
изгибающего момента, приравниваем к
нулю производную от изгибающего момента
по абсциссе сечения
:
Отсюда
Для сечения с координатой
значение изгибающего момента будет
составлять
В результате получаем эпюры поперечных
сил (рис. 6.5, е) и изгибающих
моментов(рис. 6.5, ж).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #