Как найти изменение кинетической энергии тела

Содержание:

Теорема об изменении кинетической энергии:

Для рассмотрения теоремы об изменении кинетической энергии необходимо ввести новое понятие «работа силы» и рассмотреть некоторые простейшие способы ее вычисления.

Работа силы

Работа силы на каком-либо перемещении является одной из основных характеристик, оценивающих действие силы на этом перемещении. Рассмотрим элементарную работу, полную работу и мощность.

Элементарная работа силы

Элементарная работа Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике— проекция силы Теорема об изменении кинетической энергии в теоретической механике на направление скорости точки приложения силы или на направление элементарного перемещения, которое считается направленным по скорости точки.

Элементарная работа является скалярной величиной. Ее знак определяется знаком проекции силы Теорема об изменении кинетической энергии в теоретической механике, так как перемещение Теорема об изменении кинетической энергии в теоретической механике принимаем положительным. При Теорема об изменении кинетической энергии в теоретической механике элементарная работа Теорема об изменении кинетической энергии в теоретической механике, а при Теорема об изменении кинетической энергии в теоретической механике, наоборот, Теорема об изменении кинетической энергии в теоретической механике. Так как Теорема об изменении кинетической энергии в теоретической механике, где Теорема об изменении кинетической энергии в теоретической механике — угол между силой Теорема об изменении кинетической энергии в теоретической механике и направлением скорости точки  Теорема об изменении кинетической энергии в теоретической механике, то  выражение (40) можно представить в виде

Теорема об изменении кинетической энергии в теоретической механике

В этой формуле величины Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике положительны и знак Теорема об изменении кинетической энергии в теоретической механике определяется знаком Теорема об изменении кинетической энергии в теоретической механике. Если Теорема об изменении кинетической энергии в теоретической механике — острый угол, то Теорема об изменении кинетической энергии в теоретической механике положительна; если Теорема об изменении кинетической энергии в теоретической механике тупой угол, то Теорема об изменении кинетической энергии в теоретической механике отрицательна.

Теорема об изменении кинетической энергии в теоретической механике

Рис. 60

Итак, элементарная работа силы равна произведению элементарного перемещения на проекцию силы на это перемещение. Отметим частные случаи, которые можно получить из (41):

Теорема об изменении кинетической энергии в теоретической механике

Таким образом, если сила перпендикулярна элементарному перемещению, то ее элементарная работа равна нулю. В частности, работа нормальной составляющей к скорости силы Теорема об изменении кинетической энергии в теоретической механике всегда равна нулю.

Приведем другие формулы для вычисления элементарной работы силы. Из кинематики точки известно, что Теорема об изменении кинетической энергии в теоретической механике; Теорема об изменении кинетической энергии в теоретической механике. Следовательно, Теорема об изменении кинетической энергии в теоретической механике.

После этого, согласно (41), элементарная работа

Теорема об изменении кинетической энергии в теоретической механике

Элементарная работа силы равна скалярному произведению силы на дифференциал радиуса-вектора точки приложения силы.

Так как Теорема об изменении кинетической энергии в теоретической механике, то, согласно (42),

Теорема об изменении кинетической энергии в теоретической механике

Элементарная работа равна скалярному произведению элементарного импульса силы на скорость точки.

Если силу Теорема об изменении кинетической энергии в теоретической механике и радиус-вектор Теорема об изменении кинетической энергии в теоретической механике разложить по осям координат, то

Теорема об изменении кинетической энергии в теоретической механике

Из последней формулы имеем

Теорема об изменении кинетической энергии в теоретической механике

Подставляя в (42) значения Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике, получаем

Теорема об изменении кинетической энергии в теоретической механике

Формулу (44) называют обычно аналитическим выражением элементарной работы. Хотя выражение для элементарной работы (44) по форме и напоминает полный дифференциал функции координат точки, в действительности в общем случае элементарная работа не является полным дифференциалом. Элементарная работа является полным дифференциалом функции координат точки только для специального класса сил — так называемых стационарных потенциальных сил, которые рассмотрены ниже.

Полная работа силы

Для определения полной работы силы Теорема об изменении кинетической энергии в теоретической механике на перемещении от точки Теорема об изменении кинетической энергии в теоретической механике до точки Теорема об изменении кинетической энергии в теоретической механике разобьем это перемещение на Теорема об изменении кинетической энергии в теоретической механике перемещений, каждое из которых в пределе переходит в элементарное. Тогда работу Теорема об изменении кинетической энергии в теоретической механике можно выразить формулой

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — работа на Теорема об изменении кинетической энергии в теоретической механике-м элементарном перемещении, на которые разбито полное перемещение.

Так как сумма в определении работы является интегральной суммой определения криволинейного интеграла на участке кривой Теорема об изменении кинетической энергии в теоретической механике, то, используя для элементарной работы формулу (40), получаем

Теорема об изменении кинетической энергии в теоретической механике

Используя другие выражения для элементарной работы, полную работу силы можно представить также в виде

Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии в теоретической механике

где момент времени Теорема об изменении кинетической энергии в теоретической механике соответствует точке Теорема об изменении кинетической энергии в теоретической механике, а момент времени Теорема об изменении кинетической энергии в теоретической механике — точке Теорема об изменении кинетической энергии в теоретической механике.

Формула (47) особенно удобная для вычисления работы силы, когда сила известна как функция времени. Отметим, что из определения элементарной и полной работы следует:

  1. работа равнодействующей силы на каком-либо перемещении равна алгебраической сумме работ составляющих сил на том же перемещении;
  2. работа силы на полном перемещении равна сумме работ этой же силы на составляющих перемещениях, на которые любым образом разбито все перемещение.

Первое свойство, очевидно, достаточно доказать только для элементарной работы равнодействующей силы.

Если сила Теорема об изменении кинетической энергии в теоретической механике является равнодействующей силой системы сил Теорема об изменении кинетической энергии в теоретической механике, приложенных к рассматриваемой точке, то она выражается геометрической суммой этих сил. Тогда по определению элементарной работы силы имеем

Теорема об изменении кинетической энергии в теоретической механике

Первое свойство доказано.

Второе из отмеченных свойств непосредственно следует из возможности разбиения любым образом полного промежутка интегрирования на составляющие, причем определенный интеграл по полному промежутку интегрирования равен сумме интегралов по составляющим. Единицей полной работы, так же как и элементарной, в СИ является джоуль: Теорема об изменении кинетической энергии в теоретической механике.

Если проекция силы на направление скорости Теорема об изменении кинетической энергии в теоретической механике является величиной постоянной, то из (45) получим

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике—путь, пройденный точкой.

Так как Теорема об изменении кинетической энергии в теоретической механике, то последнюю формулу можно представить в виде

Теорема об изменении кинетической энергии в теоретической механике

Следует отметить, что в этой формуле как Теорема об изменении кинетической энергии в теоретической механике, так и Теорема об изменении кинетической энергии в теоретической механике могут быть переменными, но Теорема об изменении кинетической энергии в теоретической механике является постоянной величиной. Это выполняется, если Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике постоянны. Если дополнительно угол Теорема об изменении кинетической энергии в теоретической механике или Теорема об изменении кинетической энергии в теоретической механике, то тогда

Теорема об изменении кинетической энергии в теоретической механике

причем эта формула применима как для прямолинейного, так и для криволинейного движения. Для этого необходимо, чтобы сила Теорема об изменении кинетической энергии в теоретической механике была постоянной по модулю и все время направленной по касательной к траектории точки. В случае прямолинейной траектории сила Теорема об изменении кинетической энергии в теоретической механике, следовательно, должна быть все время направлена по траектории в одну и ту же сторону.

Мощность

Мощность силы или работоспособность какого-либо источника силы часто оценивают той работой, которую он может совершить за единицу времени.

Итак, по определению, мощность

Теорема об изменении кинетической энергии в теоретической механике

Учитывая (43) для элементарной работы, мощность Теорема об изменении кинетической энергии в теоретической механике можно представить в виде

Теорема об изменении кинетической энергии в теоретической механике

Таким образом, мощность равна скалярному произведению силы на скорость точки. Из формулы (48) получаем, что чем больше скорость, тем меньше сила при одной и той же мощности. Следовательно, если от источника силы с заданной мощностью нужно получить большую силу, то ее можно получить только при малой скорости. Так, например, когда железнодорожному локомотиву надо увеличить силу тяги, то для этого надо уменьшить скорость поезда.

В СИ единицей мощности является ватт: Теорема об изменении кинетической энергии в теоретической механике.

Примеры вычисления работы силы

Работа силы в общем случае зависит от характера движения точки приложения силы. Следовательно, для вычисления работы надо знать движение этой точки. Но в природе имеются силы и примеры движения, для которых работу можно вычислить сравнительно просто, зная начальное и конечное положение точки.

Рассмотрим работу силы тяжести и линейной силы упругости, изменяющейся по закону Гука, и вычисление работы силы, приложенной к какой-либо точке твердого тела в различных случаях его движения. В качестве простейших примеров движения укажем случаи, когда работа равна нулю. Так, работа любой силы равна нулю, если она приложена все время в неподвижной точке или в точках, скорость которых равна нулю, как, например, в случае, когда сила все время приложена в мгновенном центре скоростей при плоском движении тела или все время в точках, лежащих на мгновенной оси вращения, в случае вращения тела вокруг неподвижной точки. Эти случаи возможны в задачах, когда рассматривают работу силы трения в точке соприкосновения двух тел при отсутствии скольжения одного тела по другому. При этом работа силы трения равна нулю.

Теорема об изменении кинетической энергии в теоретической механике

Рис. 61

Работа силы тяжести

Силу тяжести Теорема об изменении кинетической энергии в теоретической механике материальной точки массой Теорема об изменении кинетической энергии в теоретической механике вблизи поверхности Земли можно считать постоянной, равной Теорема об изменении кинетической энергии в теоретической механике, направленной по вертикали вниз. Если взять оси координат Теорема об изменении кинетической энергии в теоретической механике, у которых ось Теорема об изменении кинетической энергии в теоретической механике направлена по вертикали вверх (рис. 61), то

Теорема об изменении кинетической энергии в теоретической механике

Вычисляя работу Теорема об изменении кинетической энергии в теоретической механике силы Теорема об изменении кинетической энергии в теоретической механике на перемещении от точки Теорема об изменении кинетической энергии в теоретической механике до точки Теорема об изменении кинетической энергии в теоретической механике по формуле (46), имеем

Теорема об изменении кинетической энергии в теоретической механике

или

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — высота опускания точки.

При подъеме точки высота Теорема об изменении кинетической энергии в теоретической механике является отрицательной. Следовательно, в общем случае работа силы тяжести Теорема об изменении кинетической энергии в теоретической механике равна

Теорема об изменении кинетической энергии в теоретической механике

Работа силы тяжести равна произведению этой силы на высоту опускания (работа положительна) или высоту подъема (работа отрицательна). Из формулы (50) следует, что работа силы тяжести не зависит от формы траектории между точками Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике, и если эти точки совпадают, то работа силы тяжести равна нулю (случай замкнутого пути). Она равна нулю, если точки Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике лежат в одной и той же горизонтальной плоскости.

Теорема об изменении кинетической энергии в теоретической механике

Рис. 62

Если имеем систему Теорема об изменении кинетической энергии в теоретической механике материальных точек, то для каждой точки с массой Теорема об изменении кинетической энергии в теоретической механике будем иметь работу ее силы тяжести

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике — начальная и конечная координаты точки.

Работа всех сил тяжести системы материальных точек

Теорема об изменении кинетической энергии в теоретической механике

так как

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — масса системы точек; Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике — начальная и конечная координаты центра масс системы точек. Вводя обозначение для изменения высоты центра масс Теорема об изменении кинетической энергии в теоретической механике, имеем

Теорема об изменении кинетической энергии в теоретической механике

Из (50′) следует, что для перемещений точек системы, при которых Теорема об изменении кинетической энергии в теоретической механике, работа сил тяжести Теорема об изменении кинетической энергии в теоретической механике.

Работа линейной силы упругости

Линейной силой упругости (или линейной восстанавливающей силой) называют силу, действующую по закону Гука (рис. 62):

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — расстояние от точки равновесия, где сила равна нулю, до рассматриваемой точки Теорема об изменении кинетической энергии в теоретической механике; Теорема об изменении кинетической энергии в теоретической механике—постоянный коэффициент жесткости.

Выберем начало координат в точке равновесия Теорема об изменении кинетической энергии в теоретической механике, тогда

Теорема об изменении кинетической энергии в теоретической механике

После этого работу на перемещении от точки Теорема об изменении кинетической энергии в теоретической механике до точки Теорема об изменении кинетической энергии в теоретической механике определим по формуле

Теорема об изменении кинетической энергии в теоретической механике

так как

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике.

Выполняя интегрирование, получаем

Теорема об изменении кинетической энергии в теоретической механике

По этой формуле вычисляют работу линейной силы упругости пружины при перемещении по любому пути из точки Теорема об изменении кинетической энергии в теоретической механике, в которой ее удлинение (начальная деформация) равно Теорема об изменении кинетической энергии в теоретической механике, в точку Теорема об изменении кинетической энергии в теоретической механике, где деформация соответственно равна Теорема об изменении кинетической энергии в теоретической механике. В новых обозначениях (51) принимает вид

Теорема об изменении кинетической энергии в теоретической механике

При перемещении из положения равновесия (пружина не деформирована), где Теорема об изменении кинетической энергии в теоретической механике, в любое положение с деформацией Теорема об изменении кинетической энергии в теоретической механике работа линейной силы упругости

Теорема об изменении кинетической энергии в теоретической механике

Работа линейной силы упругости на перемещении из состояния равновесия всегда отрицательна и равна половине произведения коэффициента жесткости на квадрат деформации. Из формулы (51) или (52) следует, что работа линейной силы упругости не зависит от формы перемещения и работа по любому замкнутому перемещению равна нулю. Она также равна нулю, если точки Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике лежат на одной сфере, описанной из точки равновесия.

Работа силы, приложенной к твердому телу

Получим формулы для вычисления элементарной и полной работы силы, приложенной в какой-либо точке твердого тела, которое совершает то или иное движение. Сначала рассмотрим поступательное и вращательное движения тела, а затем общий случай движения твердого тела.

При поступательном движении твердого тела все точки тела имеют одинаковые по модулю и направлению скорости (рис. 63). Следовательно, если сила Теорема об изменении кинетической энергии в теоретической механике приложена к точке Теорема об изменении кинетической энергии в теоретической механике, то, так как Теорема об изменении кинетической энергии в теоретической механике,

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике—радиус-вектор произвольной точки твердого тела.

На каком-либо перемещении полная работа

Теорема об изменении кинетической энергии в теоретической механике

При вращении твердого тела вокруг неподвижной оси скорость точки Теорема об изменении кинетической энергии в теоретической механике можно вычислить по векторной формуле Эйлера (рис. 64):

Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии в теоретической механике

Рис. 63    

Теорема об изменении кинетической энергии в теоретической механике

Рис. 64

тогда элементарную работу силы Теорема об изменении кинетической энергии в теоретической механике определим по формуле

Теорема об изменении кинетической энергии в теоретической механике

В смешанном векторном произведении, которое выражается в виде определителя, можно переставлять сомножители в круговом порядке:

Теорема об изменении кинетической энергии в теоретической механике

и

Теорема об изменении кинетической энергии в теоретической механике

так как

Теорема об изменении кинетической энергии в теоретической механике

является моментом силы относительно точки Теорема об изменении кинетической энергии в теоретической механике.

Учитывая, что Теорема об изменении кинетической энергии в теоретической механике— момент силы относительно оси вращения Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике, окончательно получаем

Теорема об изменении кинетической энергии в теоретической механике

Таким образом, элементарная работа силы, приложенной к какой-либо точке тела, вращающегося вокруг неподвижной оси, равна произведению момента силы относительно оси вращения на дифференциал угла поворота тела.

Полная работа

Теорема об изменении кинетической энергии в теоретической механике

В частном случае, если момент силы относительно оси вращения является постоянным, т. е. Теорема об изменении кинетической энергии в теоретической механике, работу определяют по формуле

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — угол поворота тела, на котором вычисляют работу силы.

Так как Теорема об изменении кинетической энергии в теоретической механике, то мощность в случае вращения твердого тела вокруг неподвижной оси

Теорема об изменении кинетической энергии в теоретической механике

Мощность силы, приложенной к вращающемуся вокруг неподвижной оси твердому телу, равна произведению угловой скорости тела на момент силы относительно оси вращения . тела.

Теорема об изменении кинетической энергии в теоретической механике

Рис. 65

Для свободного тела в общем случае движения скорость точки Теорема об изменении кинетической энергии в теоретической механике, в которой приложена сила Теорема об изменении кинетической энергии в теоретической механике (рис. 65),

Теорема об изменении кинетической энергии в теоретической механике

следовательно,

Теорема об изменении кинетической энергии в теоретической механике

Учитывая, что

Теорема об изменении кинетической энергии в теоретической механике

имеем

Теорема об изменении кинетической энергии в теоретической механике

Но так как Теорема об изменении кинетической энергии в теоретической механике — момент силы относительно мгновенной оси относительного вращения вокруг точки Теорема об изменении кинетической энергии в теоретической механике, Теорема об изменении кинетической энергии в теоретической механике — элементарный угол поворота вокруг этой оси, то окончательно получаем

Теорема об изменении кинетической энергии в теоретической механике

Таким образом, элементарная работа силы, приложенной в какой-либо точке твердого тела, в общем случае движения складывается из элементарной работы на элементарном поступательном перемещении вместе с какой-либо точкой тела и на элементарном вращательном перемещении вокруг этой точки.

В случае вращения твердого тела вокруг неподвижной точки, выбрав эту точку за полюс Теорема об изменении кинетической энергии в теоретической механике, по (59) для элементарной работы имеем

Теорема об изменении кинетической энергии в теоретической механике

Поворот на угол Теорема об изменении кинетической энергии в теоретической механике следует рассматривать в каждый момент времени вокруг своей мгновенной оси вращения.

Формулу (59) применяют и для плоского движения твердого тела, только в этом случае мгновенная ось относительного вращения перпендикулярна плоскости движения и проходит через произвольную точку тела.

При действии на твердое тело системы сил Теорема об изменении кинетической энергии в теоретической механике для элементарной работы силы Теорема об изменении кинетической энергии в теоретической механике, согласно полученным формулам, имеем

Теорема об изменении кинетической энергии в теоретической механике

Элементарная работа системы сил

Теорема об изменении кинетической энергии в теоретической механике

где

Теорема об изменении кинетической энергии в теоретической механике

соответственно являются главным вектором и главными моментами системы сил относительно точки Теорема об изменении кинетической энергии в теоретической механике и мгновенной оси относительного вращения, проходящей через точку полюс. Таким образом,

Теорема об изменении кинетической энергии в теоретической механике

т. е. элементарная работа системы сил, приложенных к свободному твердому телу в общем случае его движения, складывается из элементарной работы главного вектора системы сил на элементарном поступательном перемещении вместе с какой-либо точкой тела и элементарной работы главного момента этих сил относительно выбранной точки на элементарном вращательном перемещении вокруг этой точки.

Работа внутренних сил твердого тела

Докажем, что для твердого тела сумма работ внутренних сил равна нулю при любом его перемещении. Очевидно, достаточно доказать, что сумма элементарных работ всех внутренних сил равна нулю. Рассмотрим две любые точки твердого тела: Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике (рис. 66). Так как внутренние силы есть силы взаимодействия точек тела, то для этих двух точек

Теорема об изменении кинетической энергии в теоретической механике

Введем единичный вектор Теорема об изменении кинетической энергии в теоретической механике, направленный по силе Теорема об изменении кинетической энергии в теоретической механике. Тогда

Теорема об изменении кинетической энергии в теоретической механике

Сумма элементарных работ сил Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии в теоретической механике

Рис. 66

Раскрывая скалярные произведения векторов в скобках, получаем

Теорема об изменении кинетической энергии в теоретической механике

так как в кинематике твердого тела доказано, что проекции скоростей любых двух точек твердого тела на направление прямой линии, соединяющей эти точки, равны друг другу при любом движении твердого тела. В полученном выражении в скобках стоит разность этих проекций скоростей двух точек, т. е. величина, равная нулю.

Твердое тело можно считать состоящим из пар взаимодействующих точек, для каждой из которых сумма элементарных работ внутренних сил равна нулю.

Суммируя элементарные работы для всех пар точек, получаем Теорема об изменении кинетической энергии в теоретической механике.

Как уже известно, главный вектор и главный момент всех внутренних сил для любой механической системы равны нулю. Сумма работ внутренних сил равна нулю только в случае твердого тела, а для любой механической системы в общем случае она не равна нулю.

В задачах в качестве механической системы часто рассматривают систему сочлененных твердых тел. При вычислении работы всех сил, приложенных к такой системе тел, очевидно, достаточно учесть работу внутренних сил в местах сочленения твердых тел. Если твердые тела сочленяются с помощью шарниров без трения, сумма работ таких двух внутренних сил равна нулю, так как внутренние силы в точке сочленения, как действие и противодействие, равны по модулю, но противоположны по направлению, а перемещение у точек приложения сил общее.

Таким образом, сочленение твердых тел с помощью шарниров без трения при вычислении работы внутренних сил не нарушает жесткости системы тел, так как сумма работ внутренних сил в этих шарнирах равна нулю при любых перемещениях системы сочлененных твердых тел. Систему сочлененных с помощью таких шарниров твердых тел при вычислении работы всех внутренних сил можно считать одним твердым телом. Это характерно и для случая сочленения системы твердых тел с помощью нерастяжимых нитей, канатов и т. п. В этом случае работа внутренних сил натяжений также равна нулю.

Кинетическая энергия

Кинетическая энергия точки и системы: Кинетической энергией материальной точки называют половину произведения массы точки на квадрат ее скорости, т.е. Теорема об изменении кинетической энергии в теоретической механике или Теорема об изменении кинетической энергии в теоретической механике, так как скалярный квадрат любого вектора равен квадрату модуля этого вектора. Кинетическая энергия является скалярной положительной величиной. В СИ единицей кинетической энергии является джоуль: Теорема об изменении кинетической энергии в теоретической механике.

Кинетической энергией системы Теорема об изменении кинетической энергии в теоретической механике называют сумму кинетических энергий всех точек механической системы, т. е.

Теорема об изменении кинетической энергии в теоретической механике

Кинетическая энергия как точки, так и системы не зависит от направления скоростей точек. Кинетическая энергия может быть равна нулю для системы только при условии, если все точки системы находятся в покое.

Вычисление кинетической энергии системы (теорема Кёнига)

Разложим движение механической системы на переносное поступательное вместе с центром масс системы и относительное по отношению к системе координат, движущейся поступательно вместе с центром масс. Аналогично тому, как это производилось при выводе формулы для кинетического момента при таком разложении абсолютного движения, для каждой точки системы Теорема об изменении кинетической энергии в теоретической механике (см. рис. 57) имеем

Теорема об изменении кинетической энергии в теоретической механике

и соответственно

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике является относительной скоростью точки, так как подвижная система координат движется поступательно Теорема об изменении кинетической энергии в теоретической механике и, следовательно, полная производная по времени от Теорема об изменении кинетической энергии в теоретической механике совпадает с локальной производной, равной относительной скорости точки.

Подставляя значение скорости Теорема об изменении кинетической энергии в теоретической механике в выражение кинетической энергии абсолютного движения системы, т. е. ее движения относительно системы координат Теорема об изменении кинетической энергии в теоретической механике, после очевидных преобразований получаем

Теорема об изменении кинетической энергии в теоретической механике

Но

Теорема об изменении кинетической энергии в теоретической механике

так как

Теорема об изменении кинетической энергии в теоретической механике

Учитывая, что  Теорема об изменении кинетической энергии в теоретической механике—масса системы, и обозначая Теорема об изменении кинетической энергии в теоретической механике второе слагаемое в (62), имеем

Теорема об изменении кинетической энергии в теоретической механике

где

Теорема об изменении кинетической энергии в теоретической механике

Величина Теорема об изменении кинетической энергии в теоретической механике является кинетической энергией относительного движения системы относительно системы координат, движущейся поступательно вместе с ее центром масс, или кинетической энергией системы относительно центра масс.

Формула (63) выражает так называемую теорему Кёнига: кинетическая энергия системы в абсолютном движении складывается из кинетической энергии центра масс, если в нем сосредоточить всю массу системы, и кинетической энергии системы относительно центра масс.

Кинетическая энергия твердого тела

При поступательном движении твердого тела кинетическая энергия

Теорема об изменении кинетической энергии в теоретической механике

так как при поступательном движении твердого тела скорости всех точек тела одинаковы, т. е. Теорема об изменении кинетической энергии в теоретической механике, где Теорема об изменении кинетической энергии в теоретической механике — общая скорость для всех точек тела.

Таким образом, кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе всего тела.

При вращении тела вокруг неподвижной оси кинетическую энергию можно вычислить, если учесть, что скорость какой-либо точки тела Теорема об изменении кинетической энергии в теоретической механике можно выразить (см. рис. 50) как

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — кратчайшее расстояние от точки Теорема об изменении кинетической энергии в теоретической механике до оси вращения; Теорема об изменении кинетической энергии в теоретической механике — угловая скорость тела.

Тогда

Теорема об изменении кинетической энергии в теоретической механике

или

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — момент инерции тела относительно оси вращения Теорема об изменении кинетической энергии в теоретической механике.

Следовательно, кинетическая энергия тела при вращательном движении вокруг неподвижной оси равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости тела.

Из сравнения (64) и (65) следует, что эти формулы подобны, только при вращательном движении аналогом массы является момент инерции тела относительно оси вращения, а скорости— угловая скорость тела. Такая аналогия между поступательным и вращательным движениями твердого тела может наблюдаться во многих формулах, относящихся к этим двум движениям.

При плоском движении твердого тела кинетическую энергию можно вычислить по теореме Кёнига. Так как в этом случае относительное движение относительно центра масс (точнее, относительно системы координат, движущейся поступательно вместе с центром масс) является вращением вокруг центра масс с угловой скоростью Теорема об изменении кинетической энергии в теоретической механике, то

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — момент инерции тела относительно оси Теорема об изменении кинетической энергии в теоретической механике, проходящей через центр масс тела перпендикулярно плоскости движения. Следовательно, на основании (63) для плоского движения тела имеем

Теорема об изменении кинетической энергии в теоретической механике

Таким образом, при плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела вместе с центром масс и кинетической энергии от вращения вокруг оси, проходящей через центр масс и перпендикулярной плоскости движения.

Учитывая, что Теорема об изменении кинетической энергии в теоретической механике (Теорема об изменении кинетической энергии в теоретической механике — мгновенный центр скоростей), из (66), используя теорему Штейнера, получаем еще одну формулу для кинетической энергии твердого тела при плоском движении:

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — момент инерции тела относительно оси Теорема об изменении кинетической энергии в теоретической механике, проходящей через мгновенный центр скоростей перпендикулярно плоскости движения,

Если механическая система состоит из нескольких твердых тел, то следует вычислить кинетическую энергию каждого тела, а затем полученные кинетические энергии сложить. Так определяется кинетическая энергия системы тел.

Теорема об изменении кинетической энергии точки

Для материальной точки массой Теорема об изменении кинетической энергии в теоретической механике, движущейся под действием силы Теорема об изменении кинетической энергии в теоретической механике, основной закон динамики можно представить в виде

Теорема об изменении кинетической энергии в теоретической механике

Умножая обе части этого соотношения скалярно на дифференциал радиуса-вектора точки Теорема об изменении кинетической энергии в теоретической механике, имеем

Теорема об изменении кинетической энергии в теоретической механике

или

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — скорость точки.

Учитывая, что Теорема об изменении кинетической энергии в теоретической механике— элементарная работа, получаем

Теорема об изменении кинетической энергии в теоретической механике

Так как

Теорема об изменении кинетической энергии в теоретической механике

то окончательно

Теорема об изменении кинетической энергии в теоретической механике

Формула (67) выражает теорему об изменении кинетической энергии для точки в дифференциальной форме: дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Если обе части (67) разделить на Теорема об изменении кинетической энергии в теоретической механике и учесть, что Теорема об изменении кинетической энергии в теоретической механике—мощность, то теорему можно также выразить в виде

Теорема об изменении кинетической энергии в теоретической механике

Производная по времени от кинетической энергии точки равна мощности, подводимой к этой точке.

Интегрируя обе части (67) от точки Теорема об изменении кинетической энергии в теоретической механике до точки Теорема об изменении кинетической энергии в теоретической механике (см. рис. 60), получаем теорему об изменении кинетической энергии точки в конечной форме:

Теорема об изменении кинетической энергии в теоретической механике

т. е. изменение кинетической энергии точки на каком-либо перемещении равно работе силы, действующей на точку на том же перемещении.

  • Заказать решение задач по теоретической механике

Пример 1. Тело, имеющее силу тяжести Теорема об изменении кинетической энергии в теоретической механике, падает без начальной скорости на пружину с высоты Теорема об изменении кинетической энергии в теоретической механике. Определить наибольшее обжатие пружины Теорема об изменении кинетической энергии в теоретической механике, если статическое сжатие ее под действием силы тяжести этого тела равно Теорема об изменении кинетической энергии в теоретической механике. Массой пружины пренебречь (рис. 67).

Решение. Применим к движению тела теорему об изменении кинетической энергии точки

Теорема об изменении кинетической энергии в теоретической механике

приняв за начальное положение тела начало его падения с высоты Теорема об изменении кинетической энергии в теоретической механике, а за конечное — момент максимального обжатия пружины. Изменение кинетической энергии за этот промежуток времени равно нулю, так как Теорема об изменении кинетической энергии в теоретической механике и при наибольшем сжатии пружины Теорема об изменении кинетической энергии в теоретической механике. Следовательно, работа Теорема об изменении кинетической энергии в теоретической механике. На тело после его соприкосновения с пружиной действуют две силы: сила тяжести тела Теорема об изменении кинетической энергии в теоретической механике и сила упругости пружины. Сила Теорема об изменении кинетической энергии в теоретической механике совершает работу на перемещении Теорема об изменении кинетической энергии в теоретической механике, сила упругости — на перемещении Теорема об изменении кинетической энергии в теоретической механике. Следовательно,

Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии в теоретической механике

Рис. 67

Но так как в положении статического равновесия Теорема об изменении кинетической энергии в теоретической механике, то Теорема об изменении кинетической энергии в теоретической механике. Поэтому Теорема об изменении кинетической энергии в теоретической механике илиТеорема об изменении кинетической энергии в теоретической механике

Решая это квадратное уравнение, имеем

Теорема об изменении кинетической энергии в теоретической механике

Знак плюс перед корнем выбран потому, что Теорема об изменении кинетической энергии в теоретической механике. При Теорема об изменении кинетической энергии в теоретической механике наибольшее обжатие пружины Теорема об изменении кинетической энергии в теоретической механике, т. е. при динамическом действии груза на пружину ее наибольшее обжатие в два раза больше статического обжатия.

Теорема об изменении кинетической энергии в теоретической механике

Рис. 68

Пример 2. Грузу с силой тяжести Теорема об изменении кинетической энергии в теоретической механике, подвешенному в точке Теорема об изменении кинетической энергии в теоретической механике на пружине, статическое удлинение которой под действием силы тяжести Теорема об изменении кинетической энергии в теоретической механике равно Теорема об изменении кинетической энергии в теоретической механике, сообщена начальная скорость Теорема об изменении кинетической энергии в теоретической механике из положения Теорема об изменении кинетической энергии в теоретической механике вертикально вниз (рис. 68).

Определить скорость груза в положении Теорема об изменении кинетической энергии в теоретической механике, если груз, принимаемый за точку, скользит по кольцу радиусом Теорема об изменении кинетической энергии в теоретической механике без трения, Теорема об изменении кинетической энергии в теоретической механике и естественная длина пружины равна Теорема об изменении кинетической энергии в теоретической механике.

Решение. Применим к движению груза теорему об изменении кинетической энергии, приняв за начальное положение груза Теорема об изменении кинетической энергии в теоретической механике и конечное — Теорема об изменении кинетической энергии в теоретической механике. Получим

Теорема об изменении кинетической энергии в теоретической механике

Работу совершают сила тяжести груза и сила упругости пружины. Нормальная реакция кольца Теорема об изменении кинетической энергии в теоретической механике все время перпендикулярна перемещению, и ее работа равна нулю. Следовательно,

Теорема об изменении кинетической энергии в теоретической механике

В рассматриваемом случае

Теорема об изменении кинетической энергии в теоретической механике

поэтому

Теорема об изменении кинетической энергии в теоретической механике

По теореме об изменении кинетической энергии имеем

Теорема об изменении кинетической энергии в теоретической механике

и

Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии системы

Приложив к точкам системы все внешние и внутренние силы, для каждой точки системы можно выразить теорему об изменении кинетической энергии (67) в форме

Теорема об изменении кинетической энергии в теоретической механике

Суммируя правые и левые части этих соотношений по всем точкам системы и вынося знак дифференциала за знак суммы, получаем

Теорема об изменении кинетической энергии в теоретической механике

или

Теорема об изменении кинетической энергии в теоретической механике

где кинетическая энергия системы

Теорема об изменении кинетической энергии в теоретической механике

элементарная работа внешних и внутренних сил соответственно будет

Теорема об изменении кинетической энергии в теоретической механике

Формула (69) и выражает теорему об изменении кинетической энергии системы в дифференциальной форме: дифференциал от кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему.

Если обе части (69) проинтегрировать между двумя положениями системы — начальным и конечным, в которых соответственно кинетическая энергия Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике, то, изменяя порядок суммирования и интегрирования, имеем

Теорема об изменении кинетической энергии в теоретической механике

или

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике —работа внешней силы для точки системы Теорема об изменении кинетической энергии в теоретической механике при ее перемещении из начального положения Теорема об изменении кинетической энергии в теоретической механике в конечное положение Теорема об изменении кинетической энергии в теоретической механике — соответственно работа внутренней силы, действующей на точку Теорема об изменении кинетической энергии в теоретической механике.

Формула (70) выражает теорему об изменении кинетической энергии системы в конечной или интегральной форме: изменение кинетической энергии системы при ее перемещении из одного положения в другое равно сумме работ всех внешних и внутренних сил, действующих на систему, на соответствующих перемещениях точек системы при том же перемещении системы.

Частный случай: Для абсолютно твердого тела сумма работ всех внутренних сил системы равна нулю:

Теорема об изменении кинетической энергии в теоретической механике

Следовательно, теорему об изменении кинетической энергии, например, в конечной форме можно представить в виде

Теорема об изменении кинетической энергии в теоретической механике

Изменение кинетической энергии твердого тела при каком-либо перемещении равно сумме работ всех внешних сил, действующих на тело, на соответствующих перемещениях точек тела при том же перемещении твердого тела.

Теорема об изменении кинетической энергии в теоретической механике

Рис. 69

Таким образом, в отличие от рассмотренных других общих теорем динамики системы в теорему об изменении кинетической энергии могут входить внутренние силы. Они не входят в эту теорему в случае абсолютно твердого тела.

Пример 1. В маятнике Максвелла однородный цилиндр силой тяжести Теорема об изменении кинетической энергии в теоретической механике и радиусом Теорема об изменении кинетической энергии в теоретической механике падает вниз без начальной скорости, разматывая нить, намотанную на цилиндр в его среднем сечении.

Определить скорость оси цилиндра в зависимости от высоты ее опускания Теорема об изменении кинетической энергии в теоретической механике (рис. 69).

Решение. По теореме об изменении кинетической энергии цилиндра как твердого тела имеем

Теорема об изменении кинетической энергии в теоретической механике

Так как в начальный момент времени цилиндр покоится, то Теорема об изменении кинетической энергии в теоретической механике. Цилиндр совершает плоское движение. Его кинетическая энергия в момент достижения высоты Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии в теоретической механике

Поэтому

Теорема об изменении кинетической энергии в теоретической механике

Внешними силами являются сила тяжести Теорема об изменении кинетической энергии в теоретической механике и сила натяжения нити Теорема об изменении кинетической энергии в теоретической механике. Сила Теорема об изменении кинетической энергии в теоретической механике все время приложена в мгновенном центре скоростей цилиндра, имеющем скорость равную нулю. Работа силы тоже равна нулю. Следовательно,

Теорема об изменении кинетической энергии в теоретической механике

Подставляя вычисленные величины в теорему об изменении кинетической энергии, получаем

Теорема об изменении кинетической энергии в теоретической механике

Пример 2. Груз Теорема об изменении кинетической энергии в теоретической механике, имеющий силу тяжести Теорема об изменении кинетической энергии в теоретической механике, с помощью нити, переброшенной через блок Теорема об изменении кинетической энергии в теоретической механике, приводит в движение каток Теорема об изменении кинетической энергии в теоретической механике, катящийся без скольжения по горизонтальной плоскости (рис. 70). Блок Теорема об изменении кинетической энергии в теоретической механике и каток Теорема об изменении кинетической энергии в теоретической механике — однородные диски радиусом Теорема об изменении кинетической энергии в теоретической механике. Их силы тяжести равны Теорема об изменении кинетической энергии в теоретической механике. Коэффициент трения качения катка Теорема об изменении кинетической энергии в теоретической механике. Трением в осях катка и блока, а также массой нити пренебречь.

Определить скорость груза Теорема об изменении кинетической энергии в теоретической механике в зависимости от его высоты опускания.

В начальный момент система покоится.

Теорема об изменении кинетической энергии в теоретической механике

Рис. 70    

Решение. По теореме об изменении кинетической энергии системы, состоящей из груза, нити, блока и катка, имеем

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике, так как вначале система покоилась. Обозначив Теорема об изменении кинетической энергии в теоретической механикеТеорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике кинетические энергии груза, блока и катка соответственно после опускания груза на высоту Теорема об изменении кинетической энергии в теоретической механике, получаем

Теорема об изменении кинетической энергии в теоретической механике

Но

Теорема об изменении кинетической энергии в теоретической механике

Следовательно,

Теорема об изменении кинетической энергии в теоретической механике

Так как работа внутренних сил натяжений нити равна нулю, то вообще Теорема об изменении кинетической энергии в теоретической механике для всей системы твердых тел, соединенных нитью. Работа сил тяжести блока и реакции оси Теорема об изменении кинетической энергии в теоретической механике равны нулю, так как эти силы приложены в неподвижной точке Теорема об изменении кинетической энергии в теоретической механике. Сила тяжести катка Теорема об изменении кинетической энергии в теоретической механике перпендикулярна перемещению, а силы Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике приложены в мгновенном центре скоростей и, следовательно, работа их равна нулю. Работу производят сила Теорема об изменении кинетической энергии в теоретической механике и пара сил с моментом Теорема об изменении кинетической энергии в теоретической механике, препятствующим качению катка по плоскости. Имеем

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике — угол поворота катка при опускании груза Теорема об изменении кинетической энергии в теоретической механике на Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике.

Так как

Теорема об изменении кинетической энергии в теоретической механике

то

Теорема об изменении кинетической энергии в теоретической механике

Подставляя значения полученных величин в теорему об изменении кинетической энергии, получаем

Теорема об изменении кинетической энергии в теоретической механике

Заметим, что груз имеет не только силу тяжести Теорема об изменении кинетической энергии в теоретической механике, совершающую работу, но он еще обладает массой Теорема об изменении кинетической энергии в теоретической механике и, следовательно, имеет кинетическую энергию. И работа силы тяжести, и кинетическая энергия груза входят в теорему об изменении кинетической энергии.

Теорема об изменении кинетической энергии в относительном движении

Теорема об изменении кинетической энергии материальной точки. Пусть точка Теорема об изменении кинетической энергии в теоретической механике совершает переносное движение вместе с подвижной системой координат Теорема об изменении кинетической энергии в теоретической механике относительно основной системы координат Теорема об изменении кинетической энергии в теоретической механике и относительное движение по отношению к системе координат Теорема об изменении кинетической энергии в теоретической механике (рис. 71). Абсолютным движением точки Теорема об изменении кинетической энергии в теоретической механике является ее сложное движение относительно системы координат Теорема об изменении кинетической энергии в теоретической механике. Дифференциальное уравнение относительного движения точки Теорема об изменении кинетической энергии в теоретической механике в векторной форме можно представить в виде

Теорема об изменении кинетической энергии в теоретической механике

где Теорема об изменении кинетической энергии в теоретической механике— сила инерции переносного движения точки;  Теорема об изменении кинетической энергии в теоретической механике — сила инерции Кориолиса.

Теорема об изменении кинетической энергии в теоретической механике

Рис. 71    

Вывод теоремы об изменении кинетической энергии для точки в относительном движении произведем так же, как и вывод аналогичной теоремы в абсолютном движении, умножив обе части (72) скалярно на вектор элементарного относительного перемещения Теорема об изменении кинетической энергии в теоретической механике, и преобразуем левую часть полученного выражения. Значок Теорема об изменении кинетической энергии в теоретической механике над дифференциалом радиуса-вектора Теорема об изменении кинетической энергии в теоретической механике и других векторов указывает, что при дифференцировании надо брать изменение соответствующего вектора относительно подвижной системы координат Теорема об изменении кинетической энергии в теоретической механике. Таким образом,

Теорема об изменении кинетической энергии в теоретической механике

В правую часть входят элементарные работы сил Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике на относительном перемещении Теорема об изменении кинетической энергии в теоретической механике. Оказывается, что элементарная работа силы инерции Кориолиса на относительном элементарном перемещении всегда равна нулю, так как эта сила перпендикулярна относительной скорости Теорема об изменении кинетической энергии в теоретической механике и, следовательно, перпендикулярна относительному перемещению Теорема об изменении кинетической энергии в теоретической механике. В выражение силы инерции Кориолиса входит векторное произведение Теорема об изменении кинетической энергии в теоретической механике, а оно всегда перпендикулярно каждому из векторов сомножителей, в частности Теорема об изменении кинетической энергии в теоретической механике.

Итак, теорема об изменении кинетической энергии точки в дифференциальной форме имеет вид

Теорема об изменении кинетической энергии в теоретической механике

Теорема об изменении кинетической энергии в относительном движении точки выражается так же, как и в абсолютном движении, только к элементарной работе приложенной силы добавляют элементарную работу силы инерции переносного движения на относительном перемещении.

Теорема об изменении кинетической энергии системы

Для системы рассмотрим наиболее важный случай, когда в качестве переносного движения берется поступательное движение системы вместе с центром масс и, следовательно, кинетическую энергию системы в абсолютном движении можно вычислить на основании теоремы Кёнига (63): Теорема об изменении кинетической энергии в теоретической механике.

Теорему об изменении кинетической энергии системы для абсолютного движения (см. рис. 56) можно представить в виде

Теорема об изменении кинетической энергии в теоретической механике

Так как

Теорема об изменении кинетической энергии в теоретической механике

и, следовательно,

Теорема об изменении кинетической энергии в теоретической механике

то, заменяя в (74) Теорема об изменении кинетической энергии в теоретической механике и Теорема об изменении кинетической энергии в теоретической механике их значениями, получаем

Теорема об изменении кинетической энергии в теоретической механике

По свойству внутренних сил, Теорема об изменении кинетической энергии в теоретической механике.

Если теорему об изменении кинетической энергии для центра масс выразить так же, как и для точки, у которой масса равна массе всей системы, и эта точка находится под действием всех внешних сил, действующих на систему, то

Теорема об изменении кинетической энергии в теоретической механике

Отбросив в (75) эти члены, получим следующую теорему об изменении кинетической энергии системы в относительном движении по отношению к системе координат, движущейся поступательно вместе с центром масс:

Теорема об изменении кинетической энергии в теоретической механике

Сравнивая (76) с (74), видим, что теорема об изменении кинетической энергии в относительном движении системы по отношению к системе координат, движущейся поступательно вместе с центром масс системы, формулируется так же, как и для абсолютного движения системы.

  • Потенциальное силовое поле
  • Закон сохранения механической энергии
  • Принцип Даламбера
  • Динамические реакции при вращении твердого тела вокруг неподвижной оси
  • Свойства внутренних сил системы 
  • Дифференциальное уравнение движения системы
  • Теоремы об изменении количества движения и о движении центра масс
  • Теорема об изменении кинетического момента

Физическое понятие «энергия»

Физическая величина, введённая в физике для характеристики способности тела совершать работу

Полная механическая энергия тела как функция механического состояния системы (скалярная величина)

Зависит от положения и скорости тела, т. е. определяется как сумма его кинетической и потенциальной энергий

Два вида сил

1) При введении физического понятия «потенциальная энергия» признаком классификации сил является зависимость работы этих сил от а) формы траектории и б) последовательности перемещения тел из начальных положений в конечные.

2) Если работа сил не зависит от пунктов а) и б), то такие силы называются потенциальными (например, сила тяжести, сила упругости).

Соответствующие этим силам поля называются потенциальными.

3) Если работа сил зависит от пунктов а) и б) — силы называются непотенциальными (например, сила трения скольжения)

Потенциальная энергия

(скалярная величина)

1) Энергия взаимодействия тел или частей внутри тела.

2) Работа потенциальных сил со знаком «(-)» определяет изменение потенциальной энергии:

(A_{потенц. сил} = -Delta E_п).  ((1))

3) Физический смысл имеет изменение потенциальной энергии: при решении задач выбор точки (нулевого уровня), где (E_п = 0), является произвольным.

4) Потенциальная энергия взаимодействия тела массой (m) на высоте (h) от горизонтального уровня Земли:

(E_п = mgh).  ((2))

5) Потенциальная энергия упруго деформированного тела (сжатого или растянутого на величину (Delta l) с пружиной жёсткостью (k)):

(E_п = frac{kDelta l^2}{2})  ((3))

Кинетическая энергия 

(скалярная величина)

1) Работа силы или равнодействующей всех сил (механическая работа) определяет изменение кинетической энергии тела (теорема о кинетической энергии):

(A_{sumlimits_{i = 1}^{N}vec{F}_i} = sumlimits_{i = 1}^{N}vec{F}_i · Deltavec{r} = Delta E_k = frac{mv^2}{2} — frac{mv_0^2}{2},)  ((4))

где (N) — все силы (vec{F}_1, vec{F}_2… vec{F}_N), действующие на тело.

2) Взаимосвязь кинетической энергии и импульса:

(E_k = frac{mv^2}{2} = frac{(mv)^2}{2m} = frac{p^2}{2m})  ((5))

Закон изменения полной механической энергии

Работа всех непотенциальных сил изменяет механическую энергию:

(E_2 — E_1 = A_{непотенц}),  ((6))

где (E_1 = E_{k1} + E_{п1}) и (E_2 =E_{k2} + E_{п2} ) — полные механические энергии системы в механических состояниях (1) и (2)

Закон сохранения полной механической энергии

При отсутствии в механической системе непотенциальных сил или равенстве нулю работы этих сил механическая энергия системы сохраняется:

(E_2 = E_1).  ((7))

Физические системы, в которых сохраняется полная механическая энергия, называются консервативными

Энергия.

  • Работа.

  • Мощность.

  • Механическая энергия.

  • Кинетическая энергия.

  • Потенциальная энергия тела вблизи поверхности Земли.

  • Потенциальна яэнергия деформированной пружины.

  • Закон сохранения механической энергии.

  • Закон изменения механической энергии.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии.

Мы приступаем к изучению энергии — фундаментального физического понятия. Но предварительно нужно разобраться с другой физической величиной — работой силы.

к оглавлению ▴

Работа.

Пусть на тело действует постоянная сила vec F и тело, двигаясь прямолинейно по горизонтальной поерхности, совершило перемещение vec s. Сила vec F не обязательно является непосредственной причиной перемещения (так, сила тяжести не является непосредственной причиной перемещения шкафа, который передвигают по комнате).

Предположим сначала, что векторы силы и перемещения сонаправлены (рис. 1; остальные силы, действующие на тело, не указаны)

Рис. 1.A=Fs

В этом простейшем случае работа A определяется как произведение модуля силы на модуль перемещения:

A=Fs. (1)

Единицей измерения работы служит джоуль (Дж): Дж=Н cdot м. Таким образом, если под действием силы 1 Н тело перемещается на 1 м, то сила совершает работу 1 Дж.

Работа силы, перпендикулярной перемещению, по определению считается равной нулю. Так, в данном случае сила тяжести и сила реакции опоры не совершают работы.

Пусть теперь вектор силы образует с вектором перемещения острый угол alpha (рис. 2).

Разложим силу vec F на две составляющие: vec F _{parallel } (параллельную перемещению) и vec F _{perp } (перпендикулярную перемещению). Работу совершает только vec F _{parallel }. Поэтому для работы силы vec F получаем:

A=vec F _{parallel }s=Fcosalpha cdot s. Итак,

A=Fs cosalpha . (2)

Если вектор силы образует с вектором перемещения тупой угол alpha, то работа по-прежнему определяется формулой (2). В этом случае работа оказывается отрицательной.

Например, работа силы трения скольжения, действующей на тело в рассмотренных ситуациях, будет отрицательной, так как сила трения направлена противоположно перемещению. В этом случае имеем:

alpha=180^{circ}, cos alpha=-1, и для работы силы трения получаем:

A_{TP}=-F_{TP}s=-mu mgs,

где m — масса тела,mu — коэффициент трения между телом и опорой.

Соотношение (2) означает, что работа является скалярным произведением векторов силы и перемещения:

A=vec F vec s.

Это позволяет вычислять работу через координаты данных векторов:

A=F_{displaystyle x}s_{displaystyle x}+F_{displaystyle y}s_{displaystyle y}+F_{displaystyle z}s_{displaystyle z}.

Пусть на тело действуют несколько сил vec F_{1},vec F_{2},..,vec F_{n} и vec F — равнодействующая этих сил. Для работы силы vec F имеем:

A=vec F vec s=(vec F_{1}+vec F_{2}+...+vec F_{n})vec s=vec F_{1}vec s+vec F_{2}vec s+...+vec F_{n}vec s,

или

A=A_{1}+A_{2}+...+A_{n},

где A_{1}, A_{2},...,A_{n} — работы сил F_{1}, F_{2},...,F_{n}. Итак, работа равнодействующей приложенных к телу сил равна сумме работ каждой силы в отдельности.

к оглавлению ▴

Мощность.

Часто имеет значение быстрота, с которой совершается работа. Скажем, на практике важно знать, какую работу сможет выполнить данное устройство за фиксированное время.

Мощность — это величина, характеризующая скорость совершения работы. Мощность N есть отношение работы A ко времени t, за которое эта работа совершена:

N=frac{displaystyle A}{displaystyle t}.

Мощность измеряется в ваттах (Вт). 1 Вт = 1 Дж/с, то есть 1 Вт — это такая мощность, при которой работа в 1 Дж совершается за 1 с.

Предположим, что силы, действующие на тело, уравновешены, и тело движется равномерно и прямолинейно со скоростью vec v. В этом случае существует полезная формула для мощности, развиваемой одной из действующих сил vec F.

За время t тело совершит перемещение vec s= vec v t. Работа силы vec F будет равна:

A=vec F vec s=vec F vec v t.

Отсюда получаем мощность:

N=vec F vec v ,

или

N=Fv cos alpha ,

где alpha -угол между векторами силы и скорости.

Наиболее часто эта формула используется в ситуации, когда vec F — сила «тяги» двигателя автомобиля (которая на самом деле есть сила трения ведущих колёс о дорогу). В этом случае alpha = 0, и мы получаем просто:

N=Fv .

к оглавлению ▴

Механическая энергия.

Энергия является мерой движения и взаимодействия любых объектов в природе. Имеются различные формы энергии: механическая, тепловая, электромагнитная, ядерная. . .

Опыт показывает, что энергия не появляется ниоткуда и не исчезает бесследно, она лишь переходит из одной формы в другую. Это самая общая формулировка закона сохранения энергии.

Каждый вид энергии представляет собой некоторое математическое выражение. Закон сохранения энергии означает, что в каждом явлении природы определённая сумма таких выражений остаётся постоянной с течением времени.

Измеряется энергия в джоулях, как и работа.

Механическая энергия является мерой движения и взаимодействия механических объектов (материальных точек, твёрдых тел).

Мерой движения тела является кинетическая энергия. Она зависит от скорости тела. Мерой взаимодействия тел является потенциальная энергия. Она зависит от взаимного расположения тел.

Механическая энергия системы тел равна сумме кинетической энергии тел и потенциальной энергии их взаимодействия друг с другом.

к оглавлению ▴

Кинетическая энергия.

Кинетической энергией тела (принимаемого за материальную точку) называется величина

K=frac{displaystyle mv^{displaystyle 2}}{displaystyle 2},

где m — масса тела, v — его скорость.

Кинетической энергией системы из N тел называется сумма кинетических энергий каждого тела:

K=frac{displaystyle m_{displaystyle 1}v_{displaystyle 1}^{displaystyle 2}}{displaystyle 2}+frac{displaystyle m_{displaystyle 2}v_{displaystyle 2}^{displaystyle 2}}{displaystyle 2}+...+frac{displaystyle m_{displaystyle N}v_{displaystyle N}^{displaystyle 2}}{displaystyle 2}.

Если тело движется под действием силы vec F, то кинетическая энергия тела, вообще говоря, меняется со временем. Оказывается, именение кинетической энергии тела за некоторый промежуток времени равно работе силы vec F. Покажем это для случая прямолинейного равноускоренного движения.

Пусть vec{v_{1}} — начальная скорость, vec{v_{2}} — конечная скорость тела. Выберем ось X вдоль траектории тела (и, соответственно, вдоль вектора силы vec F). Для работы силы vec F получаем:

A=vec{F}vec{s}=F_{x}s_{displaystyle s}=ma_{displaystyle x}s_{displaystyle x}= ma_{displaystyle x}frac{{v_{displaystyle 2x}}^{displaystyle 2}-{v_{displaystyle 1x}}^{displaystyle 2}}{displaystyle 2a_{displaystyle x}}=frac{{displaystyle mv_{displaystyle 2x}}^{displaystyle 2}-{displaystyle mv_{displaystyle 1x}}^{displaystyle 2}}{displaystyle 2}.

(мы воспользовались формулой для s_{x} , выведенной в статье «Равноускоренное движение»). Заметим теперь, что в данном случае проекция скорости отличается от модуля скорости разве что знаком; поэтому {v_{displaystyle 1x}}^{displaystyle 2}={v_{displaystyle 1}}^{displaystyle 2} и {v_{displaystyle 2x}}^{displaystyle 2}={v_{displaystyle 2}}^{displaystyle 2} . В результате имеем:

A=frac{displaystyle mv_{displaystyle 2}^{displaystyle 2}}{displaystyle 2}-frac{displaystyle mv_{displaystyle 1}^{displaystyle 2}}{displaystyle 2}=K_{displaystyle 2}-K_{displaystyle 1}=Delta K,

что и требовалось.

На самом деле соотношение Delta K=A справедливо и в самом общем случае криволинейного движения под действием переменной силы.

Теорема о кинетической энергии. Изменение кинетической энергии тела равно работе, совершённой приложенными к телу внешними силами за рассматриваемый промежуток времени.

Если работа внешних сил положительна, то кинетическая энергия увеличивается (Delta K>0, тело разгоняется).

Если работа внешних сил отрицательна, то кинетическая энергия уменьшается (Delta K<0, тело замедляет движение). Пример — торможение под действием силы трения, работа которой отрицательна.

Если же работа внешних сил равна нулю, то кинетическая энергия тела за это время не меняется. Нетривиальный пример — равномерное движение по окружности, совершаемое грузом на нити в горизонтальной плоскости. Сила тяжести, сила реакции опоры и сила натяжения нити всегда перпендикулярны скорости, и работа каждой из этих сил равна нулю в течение любого промежутка времени. Соответственно, кинетическая энергия груза (а значит, и его скорость) остаётся постоянной в процессе движения.

Задача. Автомобиль едет по горизонтальной дороге со скоростью v и начинает резко тормозить. Найти путь s, пройденный автомобилем до полной остановки, если коэффициент трения шин о дорогу равен mu.

Решение. Начальная кинетическая энергия автомобиля K_{displaystyle 1}=frac{displaystyle mv^{displaystyle 2}}{displaystyle 2}, конечная кинетическая энергия K_{displaystyle 2}=0. Изменение кинетической энергии Delta K=K_{displaystyle 2}-K_{displaystyle 1}=-frac{displaystyle mv^{displaystyle 2}}{displaystyle 2}.

На автомобиль действуют сила тяжести m vec g, реакция опоры vec N и сила трения vec f. Сила тяжести и реакция опоры, будучи перпендикулярны перемещению автомобиля, работы не совершают. Работа силы трения:

A=-fs=- mu Ns=- mu mgs.

Из теоремы о кинетической энергии теперь получаем:

Delta K=A Rightarrow - frac{displaystyle mv^{displaystyle 2}}{displaystyle 2}=- mu mgs Rightarrow s=frac{displaystyle v^{displaystyle 2}}{displaystyle 2 mu g}.

к оглавлению ▴

Потенциальная энергия тела вблизи поверхности Земли.

Рассмотрим тело массы m, находящееся на некоторой высоте над поверхностью Земли. Высоту считаем много меньше земного радиуса. Изменением силы тяжести в процессе перемещения тела пренебрегаем.

Если тело находится на высоте h, то потенциальная энергия тела по определению равна:

W=mgh

где g — ускорение свободного падения вблизи поверхности Земли.

Высоту не обязательно отсчитывать от поверхности Земли. Как мы увидим ниже (формулы (3), (4)), физическим смыслом обладает не сама по себе потенциальная энергия, но её изменение. А изменение потенциальной энергии не зависит от уровня отсчёта. Выбор нулевого уровня потенциальной энергии в конкретной задаче диктуется исключительно соображениями удобства.

Найдём работу, совершаемую силой тяжести при перемещении тела. Предположим, что тело перемещается по прямой из точки P, находящейся на высоте h_{1}, в точку Q, находящуюся на высоте h_{2} (рис. 3).

Рис. 3.A=mg(h1-h2)[/math]

Угол между силой тяжести m vec g и перемещением тела vec s обозначим alpha . Для работы силы тяжести получим:

A=m vec g vec s=mgs cos alpha.

Но, как видно из рис. 3, s cos alpha=h_{1}-h_{2}. Поэтому

A=mg(h_{1}-h_{2})=mgh_{1}-mgh_{2},

или

A=W_{1}-W_{2}. (3)

Учитывая, что W_{1}-W_{2}=-(W_{2}-W_{1})=- Delta W, имеем также:

A=- Delta W. (4)

Можно доказать, что формулы (3) и (4) справедливы для любой траектории, по которой тело перемещается из точки P в точку Q, а не только для прямолинейного отрезка.

Работа силы тяжести не зависит от формы траектории, по которой перемещается тело, и равна разности значений потенциальной энергии в начальной и конечной точках траектории. Иными словами, работа силы тяжести всегда равна изменению потенциальной энергии с противоположным знаком. В частности, работа силы тяжести по любому замкнутому пути равна нулю.

Сила называется консервативной, если при перемещении тела работа этой силы не зависит от формы траектории, а определяется только начальным и конечным положением тела. Сила тяжести, таким образом, является консервативной. Работа консервативной силы по любому замкнутому пути равна нулю. Только в случае консервативной силы возможно ввести такую величину, как потенциальная энергия.

к оглавлению ▴

Потенциальна яэнергия деформированной пружины.

Рассмотрим пружину жёсткости k. Начальная деформация пружины равна x_{1}. Предположим,
что пружина деформируется до некоторой конечной величины деформации x_{2}. Чему равна при этом работа силы упругости пружины?

В данном случае силу на перемещение не умножишь, так как сила упругости меняется в процессе деформации пружины. Для нахождения работы переменной силы требуется интегрирование. Мы не будем приводить здесь вывод, а сразу выпишем конечный результат.

Оказывается, сила упругости пружины также является консервативной. Её работа зависит лишь от величин x_{1} и x_{2} и определяется формулой:

A=frac{kx_{displaystyle 1}^{displaystyle 2}}{displaystyle 2}-frac{displaystyle kx_{displaystyle 2}^{displaystyle 2}}{displaystyle 2}.

Величина

W=frac{displaystyle kx^{displaystyle 2}}{displaystyle 2}

называется потенциальной энергией деформированной пружины (x — величина деформации).

Следовательно,

A=W_{1}-W_{2}=- Delta W,

что полностью аналогично формулам (3) и (4).

к оглавлению ▴

Закон сохранения механической энергии.

Консервативные силы называются так потому, что сохраняют механическую энергию замкнутой системы тел.

Механическая энергия E тела равна сумме его кинетической и потенциальной энергий:

E=K+W.

Механическая энергия системы тел равна сумме их кинетических энергий и потенциальной энергии их взаимодействия друг с другом.

Предположим, что тело совершает движение под действием силы тяжести и/или силы упругости пружины. Будем считать, что трения нет. Пусть в начальном положении кинетическая и потенциальная энергии тела равны K_{1} и W_{1} , в конечном положении — K_{2} и W_{2}. Работу внешних сил при перемещении тела из начального положения в конечное обозначим A.

По теореме о кинетической энергии

K_{2}-K_{1}=A.

Но работа консервативных сил равна разности потенциальных энергий:

A=W_{1}-W_{2}.

Отсюда получаем:

K_{2}-K_{1}=W_{1}-W_{2},

или

K_{1}+W_{1}=K_{2}+W_{2}.

Левая и правая части данного равенства представляют собой механическую энергию тела в начальном и конечном положении:

E_{1}=E_{2}.

Следовательно, при движении тела в поле силы тяжести и/или на пружине механическая энергия тела остаётся неизменной при отсутствии трения. Справедливо и более общее утверждение.

Закон сохранения механической энергии. Если в замкнутой системе действуют только консервативные силы, то механическая энергия системы сохраняется.

При этих условиях могут происходить лишь превращения энергии: из кинетической в потенциальную и наоборот. Общий запас механической энергии системы остаётся постоянным.

к оглавлению ▴

Закон изменения механической энергии.

Если между телами замкнутой системы имеются силы сопротивления (сухое или вязкое трение), то механическая энергия системы будет уменьшаться. Так, автомобиль останавливается в результате торможения, колебания маятника постепенно затухают и т. д. Силы трения неконсервативны: работа силы трения очевидным образом зависит от пути, по которому перемещается тело между данными точками. В частности, работа силы трения по замкнутому пути не равна нулю.

Снова рассмотрим движение тела в поле силы тяжести и/или на пружине. Вдобавок на тело действует сила трения, которая за рассматриваемый промежуток времени совершает отрицательную работу A_{TP}. Работу консервативных сил (тяжести и упругости) по-прежнему обозначаем A.

Изменение кинетической энергии тела равно работе всех внешних сил:

K_{2}-K_{1}=A+A_{TP}.

Но A=W_{1}-W_{2}, следовательно

K_{2}-K_{1}=W_{1}-W_{2}+A_{TP}.

Отсюда

K_{2}+W_{2}-(K_{1}+W_{1})=A_{TP},

или

E_{2}-E_{1}=A_{TP}.

В левой части стоит величина Delta E=E_{2}-E_{1} — изменение механической энергии тела:

Delta E=A_{TP}.

Итак,при движении тела в поле силы тяжести и/или на пружине изменение механической энергии тела равно работе силы трения. Так как работа силы трения отрицательна,изменение механической энергии также отрицательно: механическая энергия убывает.
Справедливо и более общее утверждение.

Закон изменения механической энергии.
Изменение механической энергии замкнутой системы равно работе сил трения, действующих внутри системы.

Ясно, что закон сохранения механической энергии является частным случаем данного утверждения.

Конечно, убыль механической энергии не противоречит общефизическому закону сохранения энергии. В данном случае механическая энергия превращается в энергию теплового движения частиц вещества и их потенциальную энергию взаимодействия друг с другом, т. е. переходит во внутреннюю энергию тел системы.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Энергия.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Одним из важнейших понятий в физике является энергия, то есть способность тела совершать ту или иную работу. Механическая энергия подразделяется на кинетическую и потенциальную. Рассмотрим первый ее вид.

Кинетическая энергия – понятие и определение

Определение

Кинетическая энергия – это способность движущегося тела совершать определенную работу.

Например, движущийся автомобиль способен снести находящееся перед ним препятствие, а падающий камень – оставить вмятину на металлической пластинке.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Кинетическая энергия зависит от скорости движения и массы тела. Она описывается формулой:

(E_k=frac{mnu^2}2)

Единицей измерения кинетической энергии является Джоуль (Дж).

Проведя простые преобразования, легко вывести формулы для вычисления массы тела и скорости движения:

(m=frac{2E_k}{nu^2})

(nu=sqrt{frac{2E_k}m})

Из основной формулы видно: во сколько раз изменяется масса тела, во столько раз изменяется и величина кинетической энергии. Например, если масса будет уменьшена или увеличена в 5 раз, то и величина кинетической энергии станет соответственно меньше или больше в 5 раз.

При увеличении скорости кинетическая энергия увеличивается в квадратичной зависимости. Допустим, скорость движения тела стала в 6 раз больше. Соответственно его кинетическая энергия возросла в 36 раз.

Формула кинетической энергии тела справедлива только для скоростей значительно меньших, чем скорость света. Если же скорость движения приближается к 300 000 км/с, то тут начинает действовать теория относительности, созданная Альбертом Эйнштейном.

Кинетическая энергия зависит от особенностей рассмотрения системы. Если тело принимают как макроскопический объект, то оно будет обладать внутренней энергией. В этом случае кинетическая энергия возникнет только в момент его движения.

Это же тело можно рассматривать и с микроскопической точки зрения. Тепловое движение атомов и молекул обуславливает внутреннюю энергию тела. В то же время средняя кинетическая энергия этого движения пропорциональна абсолютной температуре тела. Коэффициент этой пропорциональной зависимости называется постоянной Больцмана.

Кинетическая энергия атомов и молекул при рассмотрении тела на микроскопическом уровне описывается формулой:

(E_k=frac32kT)

где (k) – это постоянная Больцмана.

Теорема об изменении кинетической энергии

Рассмотрим наиболее простой пример движения, при котором скорость движения и сила, действующая на тело имеют одинаковое направление. Тело совершает перемещение (S), так как сила (F) совершает работу (A). Также она изменяет и скорость движения, придавая телу некоторое ускорение. Это свидетельствует о наличии связи между работой силы и изменением скорости движения.

В данном случае работа силы будет описываться формулой:

A=FS

Запишем второй закон Ньютона в стандартном виде:

F=ma

При условии, что движение является равноускоренным (сила не зависит от координат и времени), работу можно записать так:

A=maS

Вспомним формулу из курса кинематики, связывающую перемещение, ускорение, начальную и конечную скорости движения тела:

(S=frac{nu^2-nu_0^2}{2a})

Подставляем ее в формулу работы:

(A=frac{ma(v^2-v_0^2)}{2a}=frac{mv^2}2-frac{mv_0^2}2)

Полученное равенство показывает, что разность между кинетической энергией в конечной и начальный момент времени равна работе силы. Это позволяет сформулировать теорему об изменении кинетической энергии.

Изменение кинетической энергии тела равна равнодействующей всех сил или работе силы:

(A=E_{k2}-E_{k1})

Таким образом, сила будет совершать отрицательную работу, если она направлена в сторону, противоположную движению тела. В этом случае начальная кинетическая энергия будет больше, чем конечная:

(frac{mv_0^2}2>frac{mv^2}2)

Так как сила имеет противоположное скорости направление, то модуль скорости будет уменьшаться, что и становится причиной уменьшения величины кинетической энергии.

Если же сила будет направлена в сторону движения, то кинетическая энергия будет возрастать:

(frac{mv_0^2}2<frac{mv^2}2)

Фактически теорему об изменении кинетической энергии можно рассматривать как иную формулировку второго закона Ньютона. Поэтому ее использование возможно в различных случаях, например, при рассмотрении действия силы трения, тяжести или упругости.

Примеры решения задач, как найти кинетическую энергию

Рассмотрим примеры решения задач на нахождение кинетической энергии.

Задача 1

Тело, имеющее массу 2 кг движется поступательно со скоростью 36 км/ч. Найдите, какой кинетической энергией оно обладает.

Решение

Прежде чем приступить к вычислению необходимо перевести скорость тела в единицы СИ:

36 км/ч = 10 м/с

Подставим известные значения в формулу кинетической энергии и выполним расчет:

(E_k=frac{2times10^2}2=100;Дж\)

Ответ: кинетическая энергия тела составляет 100 Джоулей.

Задача 2

Груз массой 0,2 кг прикреплен к пружине, которая закреплена горизонтально. Максимальная скорость колебания 3 м/с. Вычислить максимальную кинетическую энергию тела.

Решение

Воспользуемся выражением определения кинетической энергии:

(E_{k_{max}}=frac{mv^2}2)

Выполним вычисление:

(E_{k_{max}}=frac{0.2times3^2}2=0.9;Дж)

Ответ: максимальная кинетическая энергия пружины и груза составляет 0,9 Дж.

Задача 3

Найдите среднюю кинетическую энергию поступательного движения молекулы водорода при температуре Т = 280 К.

Решение

Для решения задачи воспользуемся уравнением, связывающим температуру и энергию:

(E_k=frac32kT)

где k – это постоянная Больцмана

Проведем вычисление:

(E_k=frac{3times1,38times10^{-23}times280}2=579,6times10^{-23};Дж)

Ответ: средняя кинетическая скорость молекулы водорода составляет (579,6times10^{-23};Дж.)

На чтение 15 мин Просмотров 2.1к.

Навигация

  1. Кинетическая энергия механической системы
  2. Энергетические характеристики
  3. Теорема об изменении кинетической энергии

Кинетическая энергия механической системы

Кинетической энергиейT материальной точки массы m, движущейся со скоростью V, называют величину

T=mV22 . (47)

Кинетической энергией механической системы называют сумму кинетических энергий включенных в эту систему материальных точек:

T=nk=1mV2k2 . (48)

В тех случаях, когда масса системы распределена непрерывно, суммирование в выражении (48) заменяют интегрированием по области распределения.

Найдем связь между значениями кинетической энергии механической системы в двух системах отсчета, одна из которых неподвижна, а другая движется поступательно со скоростью VA . В этом случае скорость Vkточки в неподвижной координатной системе и относительная скорость Vrk связаны соотношением

Vk=VA+Vrk .

Тогда вместо (48) получим

T=MV2A2+MVAVrC+Tr . (49)

Здесь VrC=mkVrkM — относительная скорость центра масс; Tr=nk=1mk(Vrk)22 — кинетическая энергия механической системы в подвижной системе координат.

Если за начало координат подвижной системы принимается центр масс механической системы С, то выражение (49) упрощается (теорема Кенига):

T=MV2C2+Tr. (50)

Использование выражений (48) и (50) позволяет сформулировать следующие правила вычисления кинетической энергии твердого тела: при поступательном движении тела массой M со скоростью V

T=MV22 ; (51)

при вращении с угловой скоростью ω вокруг неподвижной оси z тела с моментом инерции Iz

T=Izω22 ; (52)

при плоскопараллельном движении твердого тела с угловой скоростью ω при значении центрального момента инерции ICz относительно оси, перпендикулярной плоскости движения, и значении IPz момента инерции относительно мгновенной оси вращения

T=MV2C2+ICzω22=IPzω22 ; (53)

при сферическом движении с угловой скоростью вращения ω

и значении момента инерции тела Iξотносительно мгновенной оси вращения ξ

T=Iξω22 ; (54)

в общем случае движения твердого тела

T=MV2C2+ICξω22 . (55)

Здесь момент инерции ICξ вычисляется относительно мгновенной оси Cξтакого сферического движения тела, которое оно совершает в системе осей, перемещающихся поступательно вместе с центром масс С.

В качестве примера вычислим кинетическую энергию механической системы, изображенной на рис.28, как сумму кинетических энергий тел ее формирующих. В этом случае

T=Tпост1+Tврбл+Tпост3+Tвр3=P1˙s212g+I2˙ϕ222+P3˙s232g+I3˙ϕ232 .

С учетом уравнений кинематических связей ˙s1=˙ϕR и ˙s3=˙ϕ3r3 выражение для кинетической энергии рассматриваемой механической системы с двумя степенями свободы может быть записано через любые две переменные, принятые за независимые. Например, если полагать независимыми s1 и s2, то выражение для кинетической энергии примет вид

T=˙s21(P1R2+I)2gR2+˙s223P34g .

Энергетические характеристики

К энергетическим характеристикам силы относят ее мощность, работу и потенциальную энергию.

Мощностью Nсилы F, точка приложения которой движется со скоростью V, называют величину

N=FV. (56)

Работа силы dAна элементарном интервале времени dtи соответствующем этому промежутку времени элементарному смещению drточки приложения определяется по правилу

dA=Ndt=FVdt=Fdr. (57)

Работой A силы на конечном интервале времени [0;t] и соответствующем изменении радиуса – вектора точки приложения этой силы от r0 до r называют величину

A=t0Ndt=rr0Fdr . (58)

Работа момента пары сил вычисляется аналогично.

Потенциальная энергия Попределена только в тех случаях, когда выражение (57) представляет собой полный дифференциал П:

dA=dП. (59)

При выполнении условия (59) говорят, что сила потенциальна. Сопоставление формул (57) и (59) позволяет записать соотношения, связывающие проекции силы на оси выбранной координатной системы с функцией П:

Fx=Пx; Fy=Пy; Fz=Пz . (60)

Если точка приложения силы переместилась из положения M1(x1;y1;z1) в положение M2(x2;y2;z2), то путем интегрирования (59) можно получить

A12=M2M1dП=П(x1;y1;z1)П(x2;y2;z2). (61)

Заметим (см. формулы (57), (60) и (61)), что потенциальная энергия определена с точностью до постоянного слагаемого; отмеченная особенность позволяет полагать потенциальную энергию равной нулю в выбираемой нами точке (например, в начале координат). В последнем случае формула (61) принимает вид

A10=M0M1dП=П(x;y;z). (62)

Иными словами – потенциальная энергия равна работе сил по переводу системы из отклоненного положения в начальное.

В том случае, когда для совокупности сил, действующих на механическую систему, можно записать выражение потенциальной энергии П, механическую систему называют консервативной. Такие механические системы обладают важными особенностями – работа действующих сил не зависит от вида траектории и закона движения по ней; работа при движении по замкнутому контуру равна нулю (см. (61)). Из (60) легко получить условия, при выполнении которых существует функция П:

Fxy=Fyx ; Fxz=Fzx ; Fzy=Fyz. (63)

В качестве примера вычислим потенциальную энергию для трех частных, но важных для технических приложений, случаев: действуют сила тяжести, центральная сила и сила упругости пружины.

Для силы тяжести P=i0+j0kP выполняются критерии (63); тогда, в соответствии с формулами (58) и (62), имеем

П=A10=0z(Fxdx+Fydy+Fzdz)=0z(P)dz=Pz.            (64)

Для центральной силы F=F(r)rr, модуль которой зависит от расстояния rдо начала координат, так же выполняются критерии (63), поэтому

П=A10=r0rF(r)rrdr=r0rF(r)dr .         (65)

Силу упругости пружины можно считать центральной силой, направленной к началу координат; в случае прямой пропорциональности между величиной силы Fx и удлинением x пружины имеем Fx=cx. В этом случае

П=A10=0xFxdx=0x(cx)dx=cx22.          (66)

При определении энергетических характеристик системы сил суммируют соответствующие характеристики для всех сил, действующих на механическую систему.

Теорема об изменении кинетической энергии

Умножим уравнения (2.5) скалярно на скорость Vk и сложим.

nk=1mkdVkdtVk=nk=1FekVk+nk=1FikVk=Ne+Ni ,

где Ne и Ni— мощности внешних и внутренних сил, действующих на механическую систему.

Заметим, что если связи между телами, формирующими систему, допускают деформацию (см. пружину жесткостью c2 в примере 21), то точки приложения равных и противоположно направленных внутренних сил T2 имеют различные скорости, вследствие чего их суммарная мощность не будет равной нулю.

Изменив порядок суммирования и дифференцирования в левой части равенства, ее можно привести к виду

nk=1mkdVkdtVk=ddtnk=1mkV2k2=ddtnk=1mkV2k2=dTdt .

Окончательно имеем запись теоремы об изменении кинетической энергии механической системы в дифференциальной форме:

dTdt=Ne+Ni. (67)

— производная по времени от кинетической энергии механической системы равна мощности всех действующих сил.

В дифференциальной форме, основанной на понятии работы силы за элементарный промежуток времени, получим

dT=(Ne+Ni)dt=dAe+dAi. (68)

Интегрируя (68) на интервале времени [0;t], получим интегральную форму записи теоремы об изменении кинетической энергии

T1T0=Ae+Ai , (69)

где T1=T(t); T0=T(0); Ae=t0Nedt; Ai=t0Nidt.

В частном случае, когда для совокупности внешних и внутренних сил системы можно записать выражение потенциальной энергии

dAe+dAi=dП,

вместо (68) имеем соотношение

d(T+П)=0 . (70)

В такой системе выполняется закон сохранения полной механической энергии

T+П=const ,

а сама система называется консервативной.

Понравилась статья? Поделить с друзьями:
  • Как найти высоту трапеции если известны периметр
  • Как найти исина в секиро
  • Составьте план ответа на вопросы как трудились славяне
  • Как найти музыку по параметрам
  • Как найти дима комаров