Как найти изменение массы шара


Загрузить PDF


Загрузить PDF

Шар является одним из наиболее простых трехмерных тел. Чтобы найти массу шара, необходимо знать его объем и плотность. Объем можно вычислить по радиусу, длине окружности или диаметру. Можно также погрузить шар в воду и найти объем по количеству вытесненной им воды. После того как вы определите объем, умножьте его на плотность, и вы получите массу шара.

  1. Изображение с названием Calculate the Mass of a Sphere Step 1

    1

    Вспомните формулу для вычисления объема шара. Шар представляет собой трехмерное геометрическое тело. Объем шара вычисляется по следующей основной формуле:[1]

    • {text{Объем}}={frac  {4}{3}}pi r^{3}

  2. Изображение с названием Calculate the Mass of a Sphere Step 2

    2

    Найдите объем шара по известному радиусу. Радиус шара — это расстояние от его центра до внешнего края. Объем шара можно найти, если известен его радиус. В то же время радиус шара довольно сложно измерить из-за проблем с точным определением и достижением центра сплошного тела.[2]

    • Предположим, в задаче указано, что радиус шара составляет 10 сантиметров. Тогда объем можно найти следующим образом:
  3. Изображение с названием Calculate the Mass of a Sphere Step 3

    3

    Найдите объем по известному диаметру. В задаче может быть указан диаметр шара. Диаметр равен удвоенному радиусу. Иными словами, диаметр представляет собой длину отрезка, проведенного от одного края шара к другому через его центр. Чтобы вычислить объем шара по заданному диаметру (d), перепишем формулу в следующем виде:[3]

    • {text{Объем}}={frac  {4}{3}}pi ({frac  {d}{2}})^{3}
    • Применим данную формулу для нахождения объема шара диаметром 10 сантиметров.
  4. Изображение с названием Calculate the Mass of a Sphere Step 4

    4

    Перепишите формулу для того случая, если известна длина окружности. Длина окружности шара, пожалуй, легче всего поддается непосредственному измерению. Можно использовать измерительную ленту: аккуратно оберните ее вокруг шара в его самом широком месте, чтобы определить длину окружности. Длина окружности может быть также дана в условии задачи. Чтобы найти объем шара по длине окружности (C), перепишем формулу в следующем виде:[4]

  5. Изображение с названием Calculate the Mass of a Sphere Step 5

    5

    Вычислите объем по известной длине окружности. Предположим, дан шар, длина окружности которого составляет 32 сантиметра. Найдем его объем:

  6. Изображение с названием Calculate the Mass of a Sphere Step 6

    6

    Найдите объем по вытесненной воде. Легкий метод непосредственно измерить объем шара заключается в том, чтобы погрузить его в воду. Вам понадобится достаточно большой лабораторный стакан, чтобы в него вошел шар, с нанесенными на нем метками объема.[5]

    • Налейте в стакан достаточное количество воды, чтобы она полностью покрывала шар. Запишите результаты измерений.
    • Опустите шар в воду. Отметьте начальный уровень воды и то, насколько она поднялась. Запишите результат.
    • Вычтите начальный уровень воды из конечного. В результате вы получите объем шара.
      • Предположим, при опускании шара в стакан уровень воды поднялся со 100 до 625 миллилитров. В этом случае объем шара составляет 525 миллилитров. Учтите, что 1 мл=1 см3.

    Реклама

  1. Изображение с названием Calculate the Mass of a Sphere Step 7

    1

    Найдите плотность. Чтобы вычислить массу по объему, необходимо знать плотность тела. Разные материалы имеют различную плотность. Сравните, например, шар из пенопласта и железа. Железо имеет намного большую плотность, поэтому железный шар будет значительно тяжелее.

    • Плотность многих материалов можно определить по таблицам плотностей, которые можно найти в интернете, справочнике или промышленных каталогах.
    • В качестве примера ниже приведены значения плотности некоторых твердых материалов:[6]

      • алюминий = 2700 кг/м3;
      • сливочное масло = 870 кг/м3;
      • свинец = 11,350 кг/м3;
      • прессованная древесина = 190 кг/м3.
  2. Изображение с названием Calculate the Mass of a Sphere Step 8

    2

    При необходимости переведите полученный результат в другие единицы измерения. Единицы измерения при вычислении объема должны соответствовать тем, в которых приведена плотность. В противном случае необходимо перевести все в одни единицы измерения.

    • Во всех примерах в предыдущем разделе объем измерялся в кубических сантиметрах. В то же время плотность некоторых материалов приведена в килограммах на кубический метр. Поскольку в одном метре содержится 100 сантиметров, кубический метр соответствует 106 кубическим сантиметрам. Поделите приведенные значения плотности на 106, чтобы найти плотность в кг/см3. Для простоты можно просто переместить десятичную запятую на 6 знаков влево.
    • Четыре приведенных выше материала будут иметь следующую плотность:
      • алюминий = 2700 кг/м3 = 0,0027 кг/см3;
      • сливочное масло = 870 кг/м3 = 0,00087 кг/см3;
      • свинец = 11,350 кг/м3 = 0,01135 кг/см3;
      • прессованная древесина = 190 кг/м3 = 0,00019 кг/см3.
  3. Изображение с названием Calculate the Mass of a Sphere Step 9

    3

    Чтобы найти массу, умножьте объем на плотность. Вспомните, что формула для плотности имеет следующий вид: {text{Плотность}}={frac  {{text{Масса}}}{{text{Объем}}}}. Перепишем формулу так, чтобы по ней можно было найти массу: {text{Плотность}}*{text{Объем}}={text{Масса}}.[7]

    • Найдем массу шара объемом 500 см3 для приведенных выше четырех материалов (алюминия, сливочного масла, свинца и прессованной древесины):

    Реклама

  1. Изображение с названием Calculate the Mass of a Sphere Step 10

    1

    Внимательно прочитайте условие задачи. При решении задач на вычисление массы необходимо до конца прочитать условие. При этом обращайте особое внимание на то, что дано. Внимательно прочитайте условие и определите, что необходимо найти. В качестве примера рассмотрим следующую задачу:

    • Дан большой латунный шар диаметром 1,2 метра. Найдите массу шара.
  2. Изображение с названием Calculate the Mass of a Sphere Step 11

    2

    Определите, что известно. Внимательно прочитайте условие задачи. В данном примере известен диаметр, поэтому следует использовать следующую формулу:

    • {text{Объем}}={frac  {4}{3}}pi ({frac  {d}{2}})^{3}
    • Кроме того, в условии указано, что шар сделан из меди. Найдите таблицу плотностей в интернете и определите по ней плотность латуни.
      • Например, с помощью сайта EngineeringToolbox.com (на английском языке) можно определить, что плотность латуни составляет 8480 кг/м3 (также можете воспользоваться сайтом www.fxyz.ru). Поскольку диаметр шара дан в метрах, для плотности необходимо использовать килограммы на кубический метр, поэтому нет необходимости переводить ее в другие единицы измерения.
  3. Изображение с названием Calculate the Mass of a Sphere Step 12

    3

    Вычислите объем. Чтобы рассчитать объем, выберите нужную формулу, подставьте в нее известные величины и проведите необходимые вычисления:

  4. Изображение с названием Calculate the Mass of a Sphere Step 13

    4

    Используйте для вычисления массы известную плотность. Вспомним, что {text{Масса}}={text{Плотность}}*{text{Объем}}.[8]
    Подставим известные величины и найдем массу:

    Реклама

Советы

  • В данной статье предполагается, что плотность однородна по всему объему шара. В большинстве математических и физических задач это условие выполняется. Однако бывает и так, что середина и внешние слои шара имеют различную плотность.

Реклама

Об этой статье

Эту страницу просматривали 49 894 раза.

Была ли эта статья полезной?

Лабораторная работа № 2

Тема: Изучение закона сохранения импульса

Цель: экспериментально проверить справедливость закона сохранения импульса тел при прямом упругом соударении

Оборудование: 1. Два металлических шарика разной массы.

                        2. Рама для подвеса шариков.

                        3. Измерительная линейка.

Теория

   Величина, равная произведению массы материальной точки на ее скорость, называется импульсом.

p=mυ  

p — импульс тела

m — масса тела

υ — скорость тела   

   Импульс тела направлен в ту же сторону, что и скорость тела.

   Единицей измерения импульса в СИ является 1 кг·м/с.

   Изменение импульса тела происходит при взаимодействии тел, например, при ударах.

   Для системы материальных точек полный импульс равен сумме импульсов. При этом следует иметь в виду, что импульс – это векторная величина, и поэтому в общем случае импульсы складываются как векторы, т.е. по правилу параллелограмма.

   Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой. Замкнутая система – это система тел, которые взаимодействуют только друг с другом.

   Закон сохранения импульса: в замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

m1, m2 — массы взаимодействующих тел, кг

υ1υ2 — скорости тел до столкновения, м/с

υ’1υ’2 — скорости тел после столкновения, м/с

   Закон сохранения импульса можно сформулировать и так: если на тела системы действуют только силы взаимодействия между ними («внутренние силы»), то полный импульс системы тел не изменяется со временем, т.е. сохраняется. Этот закон применим к системе, состоящей из любого числа тел. Отметим еще раз, что импульс – величина векторная, поэтому сохранение полного импульса означает сохранение не только его величины, но и направления.

   Закон сохранения импульса выполняется при распаде тела на части и при абсолютно неупругом ударе, когда соударяющиеся тела соединяются в одно. Если распад или удар происходят в течение малого промежутка времени, то закон сохранения импульса приближенно выполняется для этих процессов даже при наличии внешних сил, действующих на тела системы со стороны тел, не входящих в нее, т.к. за малое время внешние силы не успевают значительно изменить импульс системы.

   Под ударом в механике понимается кратковременное взаимодейс­твие двух или более тел,  возникающее в результате их соприкосно­вения (соударение шаров, удар молота о наковальню и др.). Самым простым является прямой (центральный) удар, то есть такой удар, при котором скорости соударяющихся тел до удара направлены по линии, соединя­ющей центры тел. При соударении взаимодействие  длится такой короткий промежуток времени (иногда измеряемый тысячными долями секунды) и возни­кают столь большие внутренние силы взаимодействия, что внешними силами можно пренебречь и систему соударяющихся тел можно считать замкнутой и применять к ней закон сохранения импульса.

   В зависимости от упругих свойств тел соударения могут проте­кать весьма различно. Принято выделять два крайних случая: абсо­лютно упругий и абсолютно неупругий удары.

   Абсолютно упругим называется удар, при котором после взаимодействия тела полностью восстанавливают свою форму. Таких ударов в природе не существует, так как всегда часть энергии затрачивается на необратимую деформацию тел. Однако для некоторых  тел, например стальных закаленных шаров, потерями механической энергии при столкновении можно пренебречь и считать удар абсолютно упру­гим. В случае центрального абсолютно упругого удара двух тел с массами m1, m2  и скоростями υ1υ2  до удара и υ′1υ′после удара можно записать закон сохранения импульса тел:

   Абсолютно неупругим называется удар, при котором после соп­рикосновения тел они не восстанавливают полностью свою форму, со­единяются вместе и движутся как единое целое с одной скоростью. При этом ударе часть их механической энергии переходит в работу деформации тел (внутреннюю энергию). Столкновение двух шаров из пластилина, когда после столкновения шары слипаются и движутся вместе, является примером абсолютно неупругого удара. В случае центрального абсолютно неупругого удара двух тел с массами m1, m2  движущихся со скоростями υ1, υ2  до удара и υ′ после удара можно записать законы сохранения импульса тел:

   Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках:

  1. Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел.
  2. Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике — при забивании свай, ковке металлов и т.д

Описание работы

Установка состоит из двух стальных шаров, на длинных подвесах и измерительной линейки под шарами. Центры масс соприкасающихся шарв лежат на одном уровне от точки подвеса. Отведя один из шаров (например, большей массы) в сторону и отпустив его, можно произвести прямой (центральный) удар шаров.

Если до столкновения один из шаров покоился υ2=0, то выражение закона сохранения импульса упростится. При прямом ударе оба шара после столкновения движутся по одной прямой, поэтому от векторной формы записи закона сохранения импульса можно перейти к алгебраической и учитывая, что после столкновения оба шара движутся в одном направлении, получим:

m1υ1= m1υ′1 + m2υ′2 

   

   рис. 2

   Для определения скорости первого шара υ1 до удара  и скоростей шаров υ′1 и υ′2 после удара воспользуемся законом сохранения механической энергии. Потенциальная энергия шара в положении максимального отклонения равняется его кинетической энергии при ударе , отсюда .

   Высоту подъёма шара можно определить по его максимальному отклонению s от положения равновесия (рис.3,а).

рис. 3

Треугольник АВС прямоугольный (опирается на диаметр). Катет АВ является средней пропорциональной величиной между гипотенузой АС=2l и своей проекцией на гипотенузу АD  (рис.3,б):  АВ2=АС·AD то есть , откуда . Следовательно, величины скоростей можно выразить так: где S0,  S— максимальные отклонения первого шара до и после удара; S— максимальное отклонение второго шара после удара.

Запишем уравнение закона сохранения через выражения скоростей:

  или  m1∙S0= m1∙S1 + m2∙S2.

Таким образом, проверка закона сохранения импульса в данной работе сводится к проверке справедливости последнего уравнения.

 При малых углах отклонения шара от положения равновесия S0,  S1 и S2 можно заменить соответствующими величинами, отсчитанными по горизонтальной шкале.

Выполнение работы.

1. Перенесите рисунок 2 в отчет по работе.

2. Подготовьте в тетради таблицу для записи результатов измерений и вычислений:

m1,
г

m2,
г

S0,
мм

S1,
мм

S2,
мм

m1∙S0,
г∙мм
с

m1∙S1,
г∙мм
с

m2∙S2,
г∙мм
с

m1∙S1 + m2∙S2,
г∙мм
с

1

2

3

                 

3. Определите массы шаров m1 и m2. Запишите их результат в таблицу.

4. Отрегулируйте подвеску шаров так, чтобы их центры и точка касания находились на одной горизонтальной линии.

5. Отклоните шар большей массы на 3 см от положения расновесия (S0) и затем отпустите его. Заметьте максимальное отклонение шара большей массы после удара (S1). Повторите опыт 5 раз и найдите среднее значение отклонения S1ср. Запишите его в таблицу (S1).

6. Повторите опыт, но теперь заметьте после удара максимальное отклонение шара с меньшей массой (S2). Повторите опыт 5 раз, и найдите среднее значение отклонения S2ср. Запишите его в таблицу (S2).

7. Повторите опыт, отклоняя шар большей массы на 4 см и 5 см. Результаты измерений запишите в таблицу.

8. Используя значения S0, S1 и S2, вычислите импульс шара до удара m1∙Sи сумму импульсов шаров после удара  m1∙S1 + m2∙S2 и внесите в таблицу их результаты.

9. Сравните импульс шара до удара с суммой импульсов шаров после удара. Запишите вывод по полученным результатам работы.

10. Ответьте на контрольные вопросы.

Контрольные вопросы

1. Что называется импульсом материальной точки? По какой формуле он находится? В каких единицах он измеряется?

2. Импульс – величина векторная или скалярная?

3. Запишите формулу и формулировку закона сохранения импульса.

4. При каких условиях выполняется закон сохранения импульса?

5. Какое соударение называется абсолютно упругим?

6. Для каких видов соударений выполняется закон сохранения импульса?

Вариант выполнения измерений.

1. Определяем массы шариков m1 и m2  при помощи динамометра (или весов) и записываем в таблицу:

m1=62 г

m2=27,5 г

2. Отклоняем большой шар от положения расновесия на 3 см и отпускаем его. 

S0=3 см=30 мм

Замечаем его максимальное отклонение после удара. Повторяем опыт 5 раз, находим среднее значение отклонения и записываем в таблицу S1ср.

S1=13мм   S1=15мм   S1=18мм    S1=14мм   S1=16мм

S1ср=(13мм+15мм+18мм+14мм+16мм)/5=15,2 мм

3. Повторяем этот же опыт, но теперь замечаем после удара отклонение шара меньшей массы. Повторяем опыт 5 раз, находим среднее значение и записываем в таблицу S2ср.

S2=31мм   S2=34мм   S2=36мм    S2=35мм   S2=32мм

S2ср=(31мм+34мм+36мм+35мм+32мм)/5=34мм

4. Повторяем опыт, отклоняя шар большей массы на 4 см и 5 см. 

S0=4 см=40 мм

S1=18 мм   S1=19 мм   S1=23 мм    S1=22 мм   S1=18 мм

S1ср=(18 мм+19 мм+23 мм+22 мм+18 мм)/5=20 мм

S2=43 мм   S2=44 мм   S2=46 мм    S2=47 мм   S2=45 мм

S2ср=(43 мм + 44 мм + 46 мм + 47 мм + 45 мм)/5=45 мм

S0=5 см=50 мм

Результаты измерений записываем в таблицу.

m1,
г

m2,
г

S0,
мм

S1,
мм

S2,
мм

m1∙S0,
г∙мм
с

m1∙S1,
г∙мм
с

m2∙S2,
г∙мм
с

m1∙S1 + m2∙S2,
г∙мм
с

1

62,0 

27,5

30

15

34

2

62,0

27,5

40

20

45

3

62,0 27,5 50 25 56        

Масса сплошной детали

Это странное название статьи объясняется только тем, что детали одной и той же формы могут быть как сплошными, так и полыми (т.е. следующая статья будет называться «Масса полой детали»).

Тут самое время вспомнить, что масса тела — это его объем V, умноженный на плотность его материала rho (см. таблицы плотностей):
m~=~V~*~rho
Объем сплошной детали — это… ее объем и больше ничего.

Примечание. В приведенных ниже формулах все размеры измеряются в миллиметрах, а плотность — в граммах на кубический сантиметр.
Буквой pi обозначено отношение длины окружности к ее диаметру, составляющее примерно 3,14.

Рассмотрим несколько простых форм (более сложные, как вы помните, можно составить путем сложения или вычитания простых).


1. Масса параллелепипеда (бруска)

ПараллелепипедОбъем параллелепипеда: V~=~W~*~H~*~L, где L — длина, W — ширина, H — высота.
Тогда масса:

m~=~{{W~*~H~*~L}/1000}~*~rho


2. Масса цилиндра

ЦилиндрОбъем цилиндра: V~=~pi~*~{D^2/4}~*~H, где D — диаметр основания, H — высота цилиндра.
Тогда масса:

m~=~{{pi~*~D^2~*~H}/4000}~*~rho


3. Масса шара

шарОбъем шара: V~=~pi~*~{D^3/6}, где D — диаметр шара.
Тогда масса:

m~=~{{pi~*~D^3}/6000}~*~rho


4. Масса сегмента шара

сегмент шараОбъем сегмента шара: V~=~{1/6}pi*H*(H^2+~{3/4}D^2), где D — диаметр основания сегмента, H — высота сегмента.
Тогда масса:

m~=~{{pi~*~H~*~(4H^2+~3D^2)}/24000}~*~rho


5. Масса конуса

КонусОбъем любого конуса: V~=~{1/3}S*H, где S — площадь основания, H — высота конуса.
Для круглого конуса: V~=~{1/12}pi*D^2*H, где D — диаметр основания, H — высота конуса.
Масса круглого конуса:

m~=~{{pi~*~D^2~*~H}/12000}~*~rho


6. Масса усеченного конуса

Усеченный конусПоскольку невозможно объять необъятное, рассмотрим только круглый усеченный конус. Его объем — это разность объемов двух вложенных конусов: с основаниями D1 и D2: V~=~{1/12}pi*(D1^2*H1~-~D2^2*H2), где H1~=~H*{D1/{D1-D2}}, H2~=~H*{D2/{D1-D2}}. После никому не интересных алгебраических преобразований получаем:
V~=~{1/12}pi*H*(D1^2+D1*D2+D2^2), где D1 — диаметр большего основания, D2 — диаметр меньшего основания, H — высота усеченного конуса.
Отсюда масса:

m~=~{{pi~*~H~*~(D1^2~+~D1*D2~+~D2^2)}/12000}~*~rho


7. Масса пирамиды

ПирамидаОбъем любой пирамиды равен одной трети произведения площади ее основания на высоту (то же самое, что и для конусов (часто мы не замечаем, насколько мироздание к нам благосклонно)): V~=~{1/3}S*H, где S — площадь основания, H — высота пирамиды.
Для пирамиды с прямоугольным основанием: V~=~{1/3}W*L*H, где W — ширина, L — длина, H — высота пирамиды.
Тогда масса пирамиды:

m~=~{{W~*~L~*~H}/3000}~*~rho


8. Масса усеченной пирамиды

Усеченная пирамидаРассмотрим усеченную пирамиду с прямоугольным основанием. Ее объем — это разность объемов двух подобных пирамид с основаниями W1*L1 и W2*L2: V~=~{1/3}W1*L1*H1~-~{1/3}W2*L2*H2, где H1~=~H*{W1/{W1-W2}}, H2~=~H*{W2/{W1-W2}}.
Исчеркав половину тетрадного листа, получаем: V~=~{1/3}H*~{{W1^2L1~-~W2^2L2}/{W1~-~W2}}, где W1, L1 — ширина и длина большего основания, W2, L2 — ширина и длина меньшего основания, H — высота пирамиды.
И, оставив в покое остальную половину листа, исходя из одних соображений симметрии, мы можем написать еще одну формулу, которая отличается от предыдущей только заменой W на L и наоборот. В чем разница между длиной и шириной? Только в том, что мы их так назвали. Назовем наоборот и получим: V~=~{1/3}H*~{{L1^2W1~-~L2^2W2}/{L1~-~L2}}.
Тогда масса усеченной прямоугольной пирамиды:

m~=~{{W1^2L1~-~W2^2L2}/{W1~-~W2}}~*~{H~*~rho}/3000

или

m~=~{{L1^2W1~-~L2^2W2}/{L1~-~L2}}~*~{H~*~rho}/3000

Для пирамиды с квадратным основанием (W1=L1=A1, W2=L2=A2) формула выглядит проще:

m~=~(A1^2~+~A1A2~+~A2^2)~*~{H~*~rho}/3000


В предыдущих статьях мы видели как найти массу с ускорением и силой и без ускорения и силы. Итак, в этом посте мы рассмотрим, как рассчитать массу по силе и скорости, используя несколько подходов и задач.

Существуют различные подходы к нахождению массы, но второй закон Ньютона самый простой. Это поможет вам найти массу, используя силу и скорость. Более того, формула центростремительной силы, теорема работы-энергии и кинематические уравнения движения также помогают нам найти массу, используя силу и скорость.

Масса, сила и скорость — это слова физики, которые мы также используем в нашей повседневной жизни, и они каким-то образом взаимосвязаны. 

Сила — это не что иное, как физический эффект, вызывающий изменение состояния движения объекта или тела. Масса, фундаментальное свойство любого физического тела, говорит нам, сколько вещества содержится в этом конкретном теле. Фактически, он ведет себя как сопротивление, оказываемое телом, когда оно вынуждено изменить свое состояние с точки зрения движения или положения. Когда объект или тело меняют свое положение со временем под действием силы, это измерение относится к скорости объекта.

Как рассчитать массу по силе и скорости
Изображение Кредиты: Pixabay Бесплатное изображение

Рассмотрим каждый метод вычисление массы с помощью силы и скорость один за другим.

Как рассчитать массу по силе и скорости, используя Второй закон Ньютона:

Второй закон Ньютона можно выразить по-разному. В утверждении говорится, что когда сила действует на возражающую частицу, эта сила равна изменение импульса со временем. Следующее уравнение можно использовать для выражения этого утверждения:

Здесь буква p может использоваться для обозначения импульса объекта или частицы. Однако мы знаем, что это произведение массы и скорости объекта. В результате это записывается математически как:

р = мв

Когда мы подставляем указанное выше уравнение количества движения в уравнение силы, мы получаем следующее:

Теперь масса увеличивается только тогда, когда скорость объекта достигает скорости света. Однако здесь дело обстоит иначе. Поскольку скорость частицы или объекта не очень высока, то есть близка к скорости света, масса объекта остается постоянной. В результате мы предполагаем, что со временем изменяется только скорость, а не масса. В результате приведенное выше уравнение можно представить в виде:

………. (1)

Или,

F = ma ………. (2)

Таким образом, с точки зрения силы и скорости масса объекта может быть рассчитана следующим образом:

………. (3)

Таким образом, из уравнения (3), если мы знаем силу, действующую на тело, и то, как скорость изменяется со временем, легко вычислить массу, используя второй закон Ньютона.

Проблема: при приложении силы 25 Н скорость объекта изменяется на 5 м / с каждую секунду. Какой была бы масса объекта?

Данный:

Сила, действующая на объект F = 25 Н

Изменение скорости dv = 5 м / с

Изменение во времени dt = 1 с

Найти:

Масса объекта m =?

Решение:

Масса объекта:

∴ м = 5 кг

Таким образом, применяя силу 25 Н на объект массой 5 ​​кг, его скорость меняется на 5 м / с каждую секунду.

Как рассчитать массу по силе и скорости с использованием центростремительной силы:

Когда тело движется по изогнутой траектории, на него действует центростремительная сила, имеющая направление внутрь, или, можно сказать, к центру.. Центростремительная сила, действующая на тело, движущееся по круговой траектории радиуса R, определяется выражением:

………. (4)

Таким образом, масса объекта, движущегося по круговой траектории, определяется как:

………. (5)

Здесь Fc используется для центростремительной силы.

Так может быть измерена масса объекта, движущегося по круговой траектории. cрассчитано с использованием центростремительная сила, скорость и радиус пути.

Проблема: Под действием центростремительной силы 3 Н шар, прикрепленный к концу струны, вращается по горизонтальной окружности с угловой скоростью 5 рад / с.-1. Какая масса у мяча, если длина шнура 60 см?

Данный: 

Центростремительная сила Fc = 3 Н

Угловая скорость ⍵ = 5 рад / с

Длина шнура (радиус шнура) r = 60 см = 0.6 м.

Найти:

Масса шара m =?

Решение:

Прежде чем найти массу шара, мы находим скорость.

Скорость в терминах угловых скорость определяется выражением:

v = ⍵r

∴ v = 5 Х 0.6

∴ v = 3 м / с

Таким образом, масса мяча:

∴ м = 0.2 кг = 200 г

Таким образом, масса мяча составляет 200 граммов.

Как рассчитать массу по силе и скорости, используя Третье кинематическое уравнение движения:

Ниже приводится третье кинематическое уравнение движения:

v2 = ты2 + 2ad ………. (6)

Он показывает соотношение между начальной и конечной скоростью. Теперь мы можем применить Второй закон Ньютона (уравнение (2)) к этому уравнению и получить:

v2 = ты2 + 2 (Ф / м) д 

v2 — ты2 = 2 (Ф / м) d ………. (7)

Таким образом, используя третье кинематическое уравнение, массу объекта можно рассчитать следующим образом:

………. (8)

Если вы знаете расстояние (d), которое проходит объект, когда его скорость v отличается от его начальной скорости u в результате действия силы F. В этом случае мы можем использовать третье кинематическое уравнение движения для вычисления его массы.

Проблема: предположим, что объект движется со скоростью 3 м / с. Когда к объекту прилагается сила 20 Н, он перемещается на 5 м со скоростью 7 м / с. Определить массу объекта.

Данный:

Начальная скорость объекта u = 3 м / с

Конечная скорость объекта v = 7 м / с

Сила, приложенная к объекту F = 20 Н

Расстояние, пройденное объектом под действием силы d = 5 м

Найти: 

Масса объекта m =?

Решение:

Масса объекта:

∴ м = 5 кг

Таким образом, масса объекта составляет 5 кг.

Как рассчитать массу по силе и скорости, используя теорему об энергии работы:

Когда к объекту прикладывается сила, он перемещается на определенное расстояние. В результате, согласно теореме об энергии работы, работа, совершаемая объектом для перемещения на это расстояние, равна кинетической энергии, полученной объектом. Одним словом, работа превращается в энергию. Выражаясь математически:

W = KE ………. (9)

Однако работа, проделанная с объектом для перемещения на расстояние d, выглядит следующим образом:

W = F ᐧ d ………. (10)

А кинетическая энергия объекта со скоростью v равна:

………. (11)

Из уравнений (9), (10) и (11):

………. (12)

Таким образом, используя теорему об энергии работы, масса объекта определяется как:

………. (13)

Таким образом, мы можем утверждать, что нахождение массы из теоремы о работе энергии является частным случаем нахождения массы из третьего кинематического уравнения, где начальное значение объекта скорость равна нулю, подразумевая, что изначально считается, что он находится в состоянии покоя.

Проблема: предположим, что коробка лежит на горизонтальной поверхности. При толкании с силой 60 Н он скользит по поверхности на 15 м со скоростью 30 м / с. Определите массу объекта.

Данный: 

Усилие, приложенное к коробке F = 60 Н

Расстояние, пройденное коробкой под действием силы d = 15 м.

Скорость объекта на этом расстоянии v = 30 м / с

Найти:

Масса ящика m =?

Решение:

Масса ящика:

∴ м = 2 кг

Таким образом, масса ящика 2 кг.

Что это такое?

Прежде чем приводить формулы массы в физике, дадим ей определение. Этим термином называется физическая величина, которая пропорциональна количеству материи, заключенной в данном теле. Следует не путать ее с количеством вещества, которое выражается в молях. Масса в СИ вычисляется в килограммах. Другими ее единицами являются тонны и граммы.

Вам будет интересно:Слово «кворум». Значение и происхождение термина. Нюансы определения

Масса бывает двух важных видов:

  • инерционная;
  • гравитационная.

Первый вид рассматриваемой физической величины характеризует инерционные свойства тела, то есть способность некоторой силы изменять скорость тела, а также кинетическую энергию, которой оно обладает.

Канал ДНЕВНИК ПРОГРАММИСТА

Жизнь программиста и интересные обзоры всего. Подпишись, чтобы не пропустить новые видео.

Гравитационная масса связана с интенсивностью притяжения между любыми телами. Она играет важную роль в космосе, поскольку благодаря притяжению между звездами и планетами существует наша галактика и наша Солнечная система. Однако гравитационная масса проявляет себя и в повседневной жизни в виде наличия у всех тел некоторого веса.

Энергия

Масса и энергия

Выше были приведены разные формулы, как найти массу в физике. Завершая статью, хотелось бы отметить связь массы и энергии. Это связь носит фундаментальный характер, который отражает пространственно-временные свойства нашей Вселенной. Соответствующая формула массы в физике, полученная Альбертом Эйнштейном, имеет вид:

E = m * c2

Квадрат скорости света c является коэффициентом перевода между массой и энергией. Это выражение говорит о том, что обе величины, по сути, являются одной и той же характеристикой материи.

Записанное выражение было подтверждено экспериментально при изучении ядерных реакций и реакций элементарных частиц.

Формулы для инерции

В физике формула нахождения массы инерционной имеет следующий вид:

m = F / a

Здесь F — сила, которая на тело действует и вызывает появление у него ускорения a. Формула показывает, что чем больше будет действующая сила и чем меньше она сообщит ускорение телу, тем больше инерционная масса m.

Помимо записанного выражения, следует привести еще одну формулу нахождения массы в физике, которая связана с явлением инерции. Эта формула имеет вид:

m = p / v

Здесь p — количество движения (импульс), v — скорость тела. Чем большим количеством движения обладает тело и чем меньше его скорость, тем большую инерционную массу оно имеет.

Примеры решения задач

Задача 1

Условие:

имеется алюминиевый брусок со сторонами 3, 5 и 7 сантиметров. Какова его масса?

Найдем объем бруска:

V = 3 * 5 * 7 = 105 см 3 ;

Табличное значение плотности алюминия: 2800 кг/м 3 или 2,8 г/см 3 ;

Вычислим массу бруска:

m = 105 * 2,8 = 294 г.

Задача 2

Задача по смежной теме.

Условие:

сколько энергии потребуется для того, чтобы довести воду комнатной температуры (20 градусов Цельсия) из стакана (ёмкость 200 мл) до температуры кипения?

Формула для гравитации

Математическое описание явления гравитации стало возможным благодаря многочисленным наблюдениям за движением космических тел. Результаты всех этих наблюдений в XVII веке обобщил Исаак Ньютон в рамках закона всемирного тяготения. Согласно этому закону, два тела, которые имеют массы m1 и m2, друг к другу притягиваются с такой силой F:

F = G * m1 * m2 / r2

Где r — расстояние между телами, G — некоторая постоянная.

Если в данное выражение подставить значение массы нашей планеты и ее радиус, тогда мы получим следующую формулу массы в физике:

m = F / g

Здесь F — сила тяжести, g — ускорение, с которым тела падают на землю вблизи ее поверхности.

Как известно, наличие силы тяжести обуславливает то, что все тела имеют вес. Многие путают вес и массу, полагая, что это одна и та же величина. Обе величины действительно связаны через коэффициент g, однако вес — величина изменчивая (она зависит от ускорения, с которым движется система). Кроме того, вес измеряется в ньютонах, а масса в килограммах.

Весы, которыми человек пользуется в быту (механические, электронные), показывают массу тела, однако измеряют его вес. Перевод между этими величинами является лишь вопросом калибровки прибора.

Понятие массы и ее появление в физике

Различные массы шаров

Масса — физическое понятие, которое указывает на количество содержащейся в теле материи. В Международной системе единиц измерения ее измеряют в килограммах. Появление в физике этого понятия связано с двумя важными законами:

  1. Закон всемирного тяготения.
  2. Второй закон Ньютона.

В соответствии с концепцией всемирного тяготения два тела притягиваются друг к другу с силой, которая пропорциональна произведению двух постоянных величин. Эти постоянные величины получили название гравитационных масс этих тел. То есть гравитационная масса тела — это свойство самой материи, благодаря которому все тела притягиваются друг к другу.

Что касается второго закона Ньютона, то следует вспомнить, что любое ускорение, вызванное действием некоторой внешней силы на данное тело, пропорционально некоторой константе, которая называется инертной массой. В этом законе инертная масса определяет меру «сложности» изменения скорости движения данного тела.

Плотность и объем

Как было отмечено, масса — это неотъемлемое свойство материи, поэтому ее можно вычислить с помощью других физических характеристик тел. Этими характеристиками являются объем и плотность.

Объем представляет собой некоторую часть пространства, которая ограничена поверхностью тела. Измеряется он в кубических единицах длины, например, в м3.

Плотность — это свойство вещества, которое отражает количество материи, помещенной в единице объема.

Формула массы вещества через объем и плотность записывается так:

m = ρ * V

Чем больше объем тела и чем выше его плотность, тем большей массой оно обладает. В связи с этим фактом полезно вспомнить знаменитую загадку про то, что имеет большую массу: 1 тонна пуха или 1 тонна железа. В отсутствии выталкивающей архимедовой силы массы обоих веществ равны. Пух имеет гораздо меньшую плотность, чем железо, однако разница в плотности компенсируется аналогичной разницей в объеме.

Плотность тела — зависимость массы и объема

Например, железный куб с ребром 10 см имеет массу 7,8 кг, алюминиевый куб тех же размеров имеет массу 2,7 кг, а масса такого же куба изо льда 0,9 кг. Величина, характеризующая массу, приходящуюся на единичный объём данного вещества, называется плотностью. Плотность равна частному от массы тела и его объёма, т.е.

ρ = m/V, где ρ (читается «ро») плотность тела, m — его масса, V объём.

В Международной системе единиц СИ плотность измеряется в килограммах на кубический метр (кг/м3); также часто используются внесистемные единицы, например, грамм на кубический сантиметр (г/см3). Очевидно, 1 кг/м3 = 0,001 г/см3. Заметим, что при нагревании веществ их плотность уменьшается или (реже) увеличивается, но это изменение так незначительно, что при расчётах им пренебрегают.

Сделаем оговорку, что плотность газов непостоянна; когда говорится о плотности какого-нибудь газа, обычно имеется ввиду его плотность при 0 градусов по Цельсию и нормальном атмосферном давлении (760 миллиметров ртутного столба).

Относительная

Понятие об относительной массе применяется в атомной физике и в химии. Поскольку массы атомов и молекул имеют очень маленькие значения (≈10-27 кг), то оперировать ими на практике при решении задач оказывается крайне неудобно. Поэтому сообществом ученых было решено использовать так называемую относительную массу, то есть рассматриваемая величина выражается в единицах массы по отношению к массе известного эталона. Этим эталоном стала 1/12 массы атома углерода, которая равна 1,66057*10-27 кг. Соответствующая относительная величина получила название атомной единицы (а. е. м.).

Формулу относительной массы M можно записать так:

M = ma / (1 / 12 * mC)

Где ma — масса атома в килограммах, mC — масса атома углерода в килограммах. Например, если в это выражение подставить значение массы атома кислорода, то его а. е. м. будет равна:

M = 26,5606 * 10-27 / (1,66057 * 10-27) = 15,9949.

Поскольку а. е. м. является относительной величиной, то она не имеет размерности.

Удобство применения этого термина на практике заключается не только в небольших и целых значениях этой единицы измерения. Дело в том, что значение а. е. м. совпадает по величине с молярной массой, выраженной в граммах. Последняя представляет собой массу одного моль вещества.

Масса сплошной детали

Главная > Вычисление масс > Масса сплошной детали

9.05.2013 // Владимир Трунов

Это странное название статьи объясняется только тем, что детали одной и той же формы могут быть как сплошными, так и полыми (т.е. следующая статья будет называться «Масса полой детали»).

Тут самое время вспомнить, что масса тела — это его объем , умноженный на плотность его материала (см. таблицы плотностей): Объем сплошной детали — это… ее объем и больше ничего.

Примечание. В приведенных ниже формулах все размеры измеряются в миллиметрах, а плотность — в граммах на кубический сантиметр. Буквой обозначено отношение длины окружности к ее диаметру, составляющее примерно 3,14.

Рассмотрим несколько простых форм (более сложные, как вы помните, можно составить путем сложения или вычитания простых).

Масса параллелепипеда (бруска)

Объем параллелепипеда: , где — длина, — ширина, — высота. Тогда масса:

Масса цилиндра

Объем цилиндра: , где — диаметр основания, — высота цилиндра. Тогда масса:

Масса шара

Объем шара: , где — диаметр шара. Тогда масса:

Масса сегмента шара

Объем сегмента шара: , где — диаметр основания сегмента, — высота сегмента. Тогда масса:

Масса конуса

Объем любого конуса: , где — площадь основания, — высота конуса. Для круглого конуса: , где — диаметр основания, — высота конуса. Масса круглого конуса:

Масса усеченного конуса

Поскольку невозможно объять необъятное, рассмотрим только круглый усеченный конус. Его объем — это разность объемов двух вложенных конусов: с основаниями и : , где , . После никому не интересных алгебраических преобразований получаем: , где — диаметр большего основания, — диаметр меньшего основания, — высота усеченного конуса. Отсюда масса:

Масса пирамиды

Объем любой пирамиды равен одной трети произведения площади ее основания на высоту (то же самое, что и для конусов (часто мы не замечаем, насколько мироздание к нам благосклонно)): , где — площадь основания, — высота пирамиды. Для пирамиды с прямоугольным основанием: , где — ширина, — длина, — высота пирамиды. Тогда масса пирамиды:

Масса усеченной пирамиды

Рассмотрим усеченную пирамиду с прямоугольным основанием. Ее объем — это разность объемов двух подобных пирамид с основаниями и : , где , . Исчеркав половину тетрадного листа, получаем: , где , — ширина и длина большего основания, , — ширина и длина меньшего основания, — высота пирамиды. И, оставив в покое остальную половину листа, исходя из одних соображений симметрии, мы можем написать еще одну формулу, которая отличается от предыдущей только заменой W на L и наоборот. В чем разница между длиной и шириной? Только в том, что мы их так назвали. Назовем наоборот и получим: . Тогда масса усеченной прямоугольной пирамиды:

или

Для пирамиды с квадратным основанием (, ) формула выглядит проще:

вычисление массы

    Похожие записи
  • Масса обручального кольца
  • Масса кольца, звена
  • Масса проволоки, прутка, проката

Понравилась статья? Поделить с друзьями:
  • Как найти площадь оконного проема
  • Как найти свой стаж работы через интернет
  • Малекит elden ring как найти
  • Как найти значение икс в уравнении
  • Как найти секс на youtube