Как найти изображение предмета через линзу

Свойства тонкой линзы определяются главным образом расположением ее главных фокусов. Поэтому, зная расстояние от источника света до линзы, а также ее фокусное расстояние (положение фокусов), мы можем определить расстояние до изображения, опустив описание хода лучей внутри самой линзы. Поэтому в изображении на чертеже точного вида сферических поверхностей линзы необходимость отсутствует.

Схематически тонкие линзы обозначают отрезком со стрелками на конце. Они смотрят от центра в противоположные стороны, если линза собирающая, и они направлены к центру отрезка, если линза рассеивающая.

Внимание!

Напомним, что линзы могут давать действительные и мнительные изображения. Причем, собирающая линза может давать как действительные, так и мнимые изображения. Рассеивающая линза всегда дает только мнимые изображения.

Способ построения изображений, а также вид самих изображений в линзе зависит от того, где расположен изображаемый предмет. Он может располагаться за двойным фокусным расстоянием, в фокальной плоскости второго фокуса, между вторым и первым фокусом, в фокальной плоскости главного фокуса и на расстоянии меньше фокусного расстояния линзы.

Определение

Вторым фокусом называют точку, которая расположена на главной оптической оси от главного фокуса на расстоянии, равном фокусному расстоянию линзы. Относительно линзы он располагается на расстоянии, равном двойному фокусному расстоянию линзы.

Построение изображения в собирающей линзе

Предметы схематично изображаются в виде стрелки. Чтобы построить изображение предмета в собирающей линзе, нужно найти положение верхней и нижней точки этого изображения. Сначала находят положение точки изображения, соответствующей верхней точки предмета (точки А). Для этого из этой точки нужно пустить два луча:

Два вида лучей при построении изображений в линзе

Первый луч проходит из верхней точки предмета (точки А) параллельно главной оптической оси. На линзе (в точке С) луч преломляется и проходит через точку фокуса (точку F).

Второй луч необходимо направить из верхней точки предмета (точки А) через оптический центр линзы (точку О). Он пройдет, не преломившись.

На пересечении двух лучей обозначаем точку А1. Это и будет изображение верхней точки предмета. Таким же образом нужно поступить с нижней точкой предмета. Но на пересечении вышедших из линзы лучей нужно поставить точку В1. Изображение предмета при этом — А1 В1.

В зависимости от того, где расположен предмет, изображение может получиться действительным или мнимым, увеличенным или уменьшенным, перевернутым или прямым. Построим изображения для каждого из таких случаев.

Схема построения изображения Расположение предмета относительно линзы + характеристика изображение
Если предмет располагается за двойным фокусом Предмет располагается за двойным фокусом.

Изображение:

  • уменьшенное;
  • перевернутое;
  • действительное.
Если предмет располагается в точке двойного фокуса Предмет располагается в фокальной плоскости второго фокуса.

Изображение:

  • перевернутое;
  • действительное.
Если предмет располагается в пространстве между фокусом и двойным фокусом Предмет располагается в пространстве между фокусом и двойным фокусом.

Изображение:

  • увеличенное;
  • перевернутое;
  • действительное.
Если предмет находится в фокальной плоскости Предмет находится в фокальной плоскости.

Изображения нет, поскольку лучи идут параллельно друг другу и не пересекаются.

https://static-interneturok.cdnvideo.ru/content/konspekt_image/72857/a744ac20_1bd0_0131_9837_12313b01b931.jpg Предмет располагается между линзой и фокусом.

Изображение:

  • увеличенное;
  • прямое;
  • мнимое.

Пример №1. Построить изображение предмета, изображенного на рисунке. Определить тип изображения.

Чтобы построить изображение предмета, достаточно определить его положение одной точки — верхней. Поскольку предмет расположен параллельно линзе, для построения изображения, достаточно будет соединить найденную точку изображения для верхней точки предмета перпендикуляром, проведенным к главной оптической оси.

Чтобы построить изображение верхней точки, пустим от нее два луча — побочную оптическую ось через оптический центр и перпендикуляр к линзе. Затем найдем пересечение побочной оптической оси с преломленным лучом. Теперь пустим перпендикуляр к главной оптической оси и получим изображение. Оно является действительным, увеличенным и перевернутым.

Частный случай — построение изображения точки

Положение изображения точки можно найти тем же способом, описанным выше. Нужно лишь построить два луча и найти их пересечение после выхода из линзы (см. рисунок ниже). Так, изображению точки S соответствует точка S´.

Тонкие линзы. Построение изображений - материалы для подготовки к ЕГЭ по Физике | ЕГЭ

Особую сложность составляет случай, когда точка расположена на главной оптической оси. Сложность заключается в том, что все лучи, которые можно построить, будут совпадать с главной оптической осью. Поэтому возникает необходимость в определении хода произвольного луча. Направим луч от точки S (луч SB) к собирающей линзе. Затем построим побочную оптическую ось PQ такую, которая будет параллельна лучу SB. После этого построим фокальную плоскость и найдем точку пересечения (точка С) фокальной плоскости с побочной оптической осью. Теперь соединим полученную точку С с точкой В. Это будет преломленный луч. Продолжим его до пересечения с главной оптической осью. Точка пересечения с ней и будет изображением точки S. В данном случае оно является мнимым.

Министерство образования и науки РФ Федеральное государственное авт

Пример №2. Построить изображение точки, расположенной на главной оптической оси.

Чтобы построить изображение, пустим произвольный луч к линзе. Затем построим параллельную ему побочную оптическую ось и фокальную плоскость. Из места пересечения этой оси с фокальной плоскостью пустим луч, также проходящий через точку пересечения линзы с произвольным лучом. Построим продолжение луча до получения точки пересечения с главной оптической осью. Отметим точку пересечения — она является действительным изображением точки.

Построение изображения в рассеивающей линзе

Чтобы построить изображение предмета в рассеивающей линзе, нужно определить положения точек изображения, соответствующих верхней и нижней точкам предмета. Вот как определить положение точки изображения для верхней точки предмета:

  1. Нужно пустить луч, перпендикулярный главной оптической оси. Этот луч после преломления отклонится. Но его продолжение обязательно пересечет главный фокус линзы.
  2. Нужно пустить луч от верхней точки предмета через оптический центр линзы (построить побочную оптическую ось).
  3. Точку пересечения продолжения луча, полученного в шаге 1, с побочной оптической осью, нужно обозначить за изображение верхней точки предмета (на рисунке это точка А´).

Точно такие же действия нужно выполнить для нижней точки предмета. В результате получится точка пересечения, соответствующая изображению нижней точки предмета (на рисунке это точка А´´).

График рассеивающей линзы

Внимание! Независимо от расположения предмета относительно рассеивающей линзы, изображение всегда получается прямым, уменьшенным, мнимым.

Пример №3. Построить изображение предмета в рассеивающей линзе.

Чтобы построить изображение, пустим от верхней точки предмета побочную оптическую ось через оптический центр и проведем перпендикуляр к линзе. Затем из точки главного фокуса проведем луч через точку пересечения линзы с перпендикуляром. Пересечение этого луча с побочной оптической осью есть изображение верхней точки предмета. Теперь проведем от нее перпендикуляр к главной оптической оси. Это и будет являться изображением предмета. Оно является мнимым, уменьшенным и прямым.

Построение изображений в плоском зеркале

Определение

Плоское зеркало — это плоская поверхность, зеркально отражающая свет.

Построение изображения в зеркалах основывается на законах прямолинейного распространения и отражения света. Продемонстрируем это с помощью рисунка ниже.

http://www.physbook.ru/images/thumb/8/8c/Aksen-16.10.jpg/300px-Aksen-16.10.jpg

Построим изображение точечного источника S. От точечного источника света лучи распространяются во все стороны. На зеркало падает пучок света ASB, и изображение создается всем пучком сразу. Но для построения изображения достаточно взять любые два луча из этого пучка. Пусть это будут лучи SO и SC.  Луч SO падает перпендикулярно поверхности зеркала АВ. Поскольку угол между ним и перпендикуляром, восстановленным в точке падения, равен 0, то угол падения принимаем равным за 0. поэтому отраженный пойдет в обратном направлении OS. Луч SC отразится под углом γ=α. Отраженные лучи OS и СК расходятся и не пересекаются, но если они попадают в глаз человека, то человек увидит изображение S1, которое представляет собой точку пересечения продолжения отраженных лучей.

Таким образом, чтобы получить изображение в плоском зеркале, нужно:

  • Пустить от источника света луч, перпендикулярный к плоскости зеркала (падающий луч совпадает с отраженным лучом).
  • Пустить от источника света к плоскости зеркала еще один луч под произвольным углом.
  • Построить отраженный луч от падающего луча, построенного в шаге 2, используя закон отражения света.
  • Найти пересечение продолжений отраженных от зеркала лучей (пущенного под прямым углом и произвольным углом).

Внимание!

Изображение в зеркале всегда является мнимым. Это связано с тем, что изображение строится на пересечении продолжении лучей, а не на самих лучах.

Изображение в плоском зеркале находится от зеркала на таком же расстоянии, как предмет от этого зеркала. Это легко доказать тем, что треугольники SOC и S1OC равны по стороне и двум углам. Следовательно SO = S1O. Отсюда делаем вывод, что для построения изображения точечного источника света достаточно знать расстояние, на котором он находится от зеркала. Останется только провести к зеркалу перпендикулярную прямую и отложить на ней точку на нужном расстоянии.

При построении изображения какого-либо предмета последний представляют как совокупность точечных источников света. Поэтому достаточно найти изображение крайних точек предмета. Так, изображение А1В1 соответствует предмету АВ.

Изображение и сам предмет всегда симметричны относительно зеркала.

Пример №4. Построить изображение треугольника ABC в плоском зеркале.

Чтобы построить изображение, пустим к плоскому зеркалу перпендикулярные прямые. Затем измерим расстояние от каждой точки до зеркала и отложим их по перпендикуляру от зеркала в обратную сторону. Так для точки А мы находим точку А´, для В — В´, для С — С´.

Видно, что треугольник отразился зеркально (изображение и предмет симметричны друг другу). Так и должно быть в случае с зеркалом.

Задание EF17760

Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Сделать рисунок — построить изображение в линзе.

3.Записать формулу для нахождения площади полученной фигуры.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Оптическая сила линзы: D = 2,5 дптр.

 Сторона треугольника AC = 4 см.

4 см = 0,04 м

Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.

Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.

Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:

1d+1f=1F

Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:

12F+1f=1F

1f=1F12F=212F=12F

f=2F

Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:

S=AC·BC2

Из формулы оптической силы линзы найдем фокусное расстояние:

F=1D=12,5=0,4 (м)

Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:

dC=2FAC=2·0,40,04=0,76 (м)

Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:

10,76+1f=1F

1fC=1F10,76=0,76F0,76F=0,760,40,76·0,4

fC=0,76·0,40,760,4=0,844 (м)

Тогда длина катета A´ C´ будет равна:

AC=fCfA=fC2F=0,8440,4·2=0,044 (м)

Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей). Следовательно BC относится к B´ C´ так же, как OC относится к C´O:

BCBC=ACAC

Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:

ACBC=ACAC

Следовательно:

BC=AC

Отсюда площадь треугольника равна:

S=AC·AC2=(0,044)22=0,000968 (м2)=9,68 (см2)

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18181

Предмет S отражается в плоском зеркале ab. На каком рисунке верно показано изображение S1 этого предмета?

Ответ:


Алгоритм решения

  1. Записать, какое изображение дает плоское зеркало.
  2. Выбрать изображение, которое соответствует типу описанного изображения.

Решение

Зеркало дает мнимое изображение предмета без увеличения в зеркальном отражении. Это значит, что предмет и его изображение должны быть симметричны относительно плоскости зеркала. Симметричными являются только предмет и его изображение на последнем рисунке — Г.

Ответ: Г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18876

Какая точка является изображением точки S (см. рисунок), создаваемым тонкой собирающей линзой с фокусным расстоянием F?


Алгоритм решения

1.Построить изображение точки.

Решение

Построим изображение точки с учетом того, что линза собирающая. Для этого пустим из этой точки луч света, параллельный главной оптической оси. После прохождения через линзу луч преломится и пройдет через фокус. Затем пустим луч от этой точки через оптический центр линзы. Точка, в которой оба луча пересекутся, будет искомой. В данном случае это точка 4.

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 32.4k

Рассмотрим, как построить изображение предмета в линзе.

На основании построений было выяснено, что:

  1. Линза отображает прямую линию в прямую.
  2. Если предмет перпендикулярен главной оптической оси, то изображение будет также перпендикулярно главной оптической оси.

Пусть (AB) — предмет, изображение которого нам надо получить, перпендикулярен главной оптической оси, и точка (B) лежит на главной оптической оси.

Для построения изображения предмета достаточно построить изображение конца отрезка, не лежащего на главной оптической оси (точка (A)), и опустить перпендикуляр на главную оптическую ось.

рис-тория23.jpg

Мы уже знаем, что для построения изображения точки достаточно изобразить ход 2 лучей и найти их пересечение. Первый луч должен пройти через оптический центр линзы.

рис-тория24.jpg

Второй луч, параллельный главной оптической оси, после преломления в линзе должен пройти через фокус линзы. На пересечении этих лучей и будет находиться изображение точки (A).

рис-тория25.jpg

Остаётся только провести перпендикуляр до пересечения с главной оптической осью.

A′B′

— изображение предмета, полученного в собирающей линзе.

рис-тория26.jpg

Аналогично происходит построение изображения в рассеивающей линзе, но второй луч после преломления в линзе проходит через мнимый фокус. Изображение предмета получается мнимым.

рис-тория27.jpg

Обрати внимание!

Изображение, полученное в рассеивающей линзе, всегда мнимое, прямое, уменьшенное.

Характер же изображения, даваемого собирающей линзой, зависит от положения предмета относительно линзы.

Рассмотрим, какое изображение и в каком случае даёт собирающая линза.

Положение предмета Рисунок, вид изображения

Предмет расположен между фокусом и линзой

рис-тория28.jpg

Мнимое, прямое, увеличенное

Предмет находится в фокусе линзы

рис-тория29.jpg

Изображение отсутствует (уходит на (∞))

Предмет расположен между фокусом и двойным фокусом

рис-тория210.jpg

Действительное, перевёрнутое, увеличенное

Предмет находится в двойном фокусе

рис-тория211.jpg

Действительное, перевёрнутое, равное

Предмет находится за двойным фокусом

рис-тория212.jpg

Действительное, перевёрнутое, уменьшенное

Тонкие линзы. Построение изображений.

  • Собирающая линза: действительное изображение точки.

  • Собирающая линза: действительное изображение предмета.

  • Собирающая линза: мнимое изображение точки.

  • Собирающая линза: мнимое изображение предмета.

  • Собирающая линза: предмет в фокальной плоскости.

  • Рассеивающая линза: мнимое изображение точки.

  • Рассеивающая линза: мнимое изображение предмета.

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка S, то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке S{}.

Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы.

Точка S{} называется изображением точки S.

Если в точке S{} пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке S{} концентрируется энергия световых лучей.

Если же в точке S{} пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке S{} не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга — достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

к оглавлению ▴

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть a — расстояние от точки S до линзы, f — фокусное расстояние линзы. Имеются два принципиально разных случая: a>f и a<f (а также промежуточный случай a=f). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: a>f. Точечный источник света S расположен дальше от линзы, чем левая фокальная плоскость (рис. 1).

Рис. 1. Случай a>f: действительное изображение точки S

Луч SO, идущий через оптический центр, не преломляется. Мы возьмём произвольный луч SX, построим точку S{}, в которой преломлённый луч пересекается с лучом SO, а затем покажем, что положение точки S{} не зависит от выбора луча SX (иными словами, точка S{} является одной и той же для всевозможных лучей SX ). Тем самым окажется, что все лучи, исходящие из точки S, после преломления в линзе пересекаются в точке S{} и теорема об изображении будет доказана для рассматриваемого случая a>f.

Точку S{} мы найдём, построив дальнейший ход луча SX. Делать это мы умеем: параллельно лучу SX проводим побочную оптическую ось OP до пересечения с фокальной плоскостью в побочном фокусе P, после чего проводим преломлённый луч XP до пересечения с лучом SO в точке S{}.

Теперь будем искать расстояние b от точки S{} до линзы. Мы покажем, что это расстояние выражается только через a и f, т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча SX.

Опустим перпендикуляры SA и S{} на главную оптическую ось. Проведём также SK параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

triangle SAO sim triangle S{}, (1)
triangle SXS{}, (2)
triangle SXK sim triangle OPF. (3)

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

frac{displaystyle AO}{displaystyle OA{} (4)

Но AO=SK=a, OA{}, так что соотношение (4) переписывается в виде:

frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}-1. (5)

Отсюда находим искомое расстояние от точки S{} до линзы:

b=frac{displaystyle af}{displaystyle a-displaystyle f}. (6)

Как видим, оно и в самом деле не зависит от выбора луча SX. Следовательно, любой луч SX после преломления в линзе пройдёт через построенную нами точку S{}, и эта точка будет действительным изображением источника S

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника S пересекаются после линзы в одной точке — его изображении S{} — то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник S не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

— луч, идущий через оптический центр линзы — он не преломляется;
— луч, параллельный главной оптической оси — после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2.

Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то удобный луч остаётся лишь один — идущий вдоль главной оптической оси. В качестве второго луча приходится брать «неудобный» (рис. 3).

Рис. 3. Построение изображения точки S, лежащей на главной оптической оси

Посмотрим ещё раз на выражение ( 5). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

1+frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}.

Теперь разделим обе части этого равенства на a:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (7)

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для a>f. В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6). Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что b не зависит от расстояния SA (рис. 1, 2) между источником S и главной оптической осью!

Это означает, что какую бы точку M отрезка SA мы ни взяли, её изображение будет находиться на одном и том же расстоянии b от линзы. Оно будет лежать на отрезке S{} — а именно, на пересечении отрезка S{} с лучом MO, который пойдёт сквозь линзу без преломления. В частности, изображением точки A будет точка A{}.

Тем самым мы установили важный факт: изображением отрезка SA лужит отрезок S{}. Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить — прямым или перевёрнутым получается изображение.

к оглавлению ▴

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая a>f. Здесь можно выделить три характерных ситуации.

1. f<a<2f. Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4; двойной фокус обозначен 2F). Из формулы линзы следует, что в этом случае будет b>2f (почему?).

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах — эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым — чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г — (это заглавная греческая «гамма»):

Gamma =frac{displaystyle A{}.

Из подобия треугольников triangle ABO и triangle A{} получим:

Gamma =frac{displaystyle A{}. (8)

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. a=2f. В этом случае из формулы (6) находим, что и b=2f. Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5).

Рис. 5.a=2f: размер изображения равен размеру предмета

3. a>2f. В этом случае из формулы линзы следует, что b<2f (почему?). Линейное увеличение линзы будет меньше единицы — изображение действительное, перевёрнутое, уменьшенное (рис. 6).

Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов — словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая a>2f нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

к оглавлению ▴

Собирающая линза: мнимое изображение точки.

Второй случай: a<f. Точечный источник света S расположен между линзой и фокальной плоскостью (рис. 7).

Рис. 7. Случай a < f: мнимое изображение точки

Наряду с лучом SO, идущим без преломления, мы снова рассматриваем произвольный луч SX. Однако теперь на выходе из линзы получаются два расходящихся луча OE и XP. Наш глаз продолжит эти лучи до пересечения в точке S{}.

Теорема об изображении утверждает, что точка S{} будет одной и той же для всех лучей SX, исходящих из точки S. Мы опять докажем это с помощью трёх пар подобных треугольников:

triangle SAOsim triangle S{}

Снова обозначая через b расстояние от S{} до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

frac{displaystyle a}{displaystyle b}=frac{displaystyle AO}{displaystyle A{}. (9)

Отсюда

b=frac{displaystyle fa}{displaystyle f-displaystyle a}. (10)

Величина b не зависит от луча SX, что и доказывает теорему об изображении для нашего случая a<f. Итак, S{} — мнимое изображение источника S. Если точка S не лежит на главной оптической оси, то для построения изображения S{} удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8).

Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси

Ну а если точка S лежит на главной оптической оси, то деваться некуда — придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9).

Рис. 9. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая a<f. Сначала переписываем это соотношение в виде:

1-frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f},

а затем делим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (11)

Сравнивая (7) и (11), мы видим небольшую разницу: перед слагаемым 1/b стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина b, вычисляемая по формуле (10), не зависит также от расстояния SA между точкой S и главной оптической осью. Как и выше (вспомните рассуждение с точкой M), это означает, что изображением отрезка SA на рис. 9 будет отрезок S{}.

к оглавлению ▴

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10). Оно получается мнимым, прямым и увеличенным.

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло — лупу. Случай a<f полностью разобран. Как видите, он качественно отличается от нашего первого случая a>f. Это не удивительно — ведь между ними лежит промежуточный «катастрофический» случай a=f.

к оглавлению ▴

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай:a=f. Источник света S расположен в фокальной плоскости линзы (рис. 11).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости — а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника S, расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.

Рис. 11. a=f: изображение отсутствует

Где же изображение точки S? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае — изображение S{} находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

к оглавлению ▴

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч SO и произвольный луч SX (рис. 12). На выходе из линзы имеем два расходящихся луча OE и XY, которые наш глаз достраивает до пересечения в точке S{}.

Рис. 12. Мнимое изображение точки S в рассеивающей линзе

Нам снова предстоит доказать теорему об изображении — о том, что точка S{} будет одной и той же для всех лучей SX. Действуем с помощью всё тех же трёх пар подобных треугольников:

triangle SAOsim triangle S{}.

Имеем:

frac{displaystyle a}{displaystyle b}= frac{displaystyle AO}{displaystyle A{} (12)

Отсюда

b=frac{displaystyle af}{displaystyle a+displaystyle f}. (13)

Величина b не зависит от луча span
SX, поэтому продолжения всех преломлённых лучей span
XY пересекутся в точке S{} — мнимом изображении точки S. Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10). В случае a=f их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации a>f и a<f.

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника — случай тут, как мы и сказали выше, имеется только один.

Если точка S не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой — параллельно главной оптической оси (рис. 13).

Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14).

Рис. 14. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

1-frac{displaystyle a}{displaystyle b}=-frac{displaystyle a}{displaystyle f},

а потом разделим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=-frac{displaystyle 1}{displaystyle f}. (14)

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7), (11) и (14) можно записать единообразно:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f},

если соблюдать следующую договорённость о знаках:

— для мнимого изображения величина b считается отрицательной;
— для рассеивающей линзы величина f считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

к оглавлению ▴

Величина b , вычисляемая по формуле (13), опять-таки не зависит от расстояния SA между точкой S и главной оптической осью. Это снова даёт нам возможность построить изображение предмета AB, которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15).

Рис. 15. Изображение мнимое, прямое, уменьшенное

Разберем задачи ЕГЭ по теме: Тонкие линзы. Построение изображений.

1. Тонкая собирающая линза с фокусным расстоянием F находится между двумя точечными источниками света на расстоянии d=15 см от одного из них. Источники расположены на главной оптической оси на расстоянии L=22,5 см друг от друга. Найдите фокусное расстояние линзы, если их изображения получились в одной точке. Ответ выразите в сантиметрах.
Дано:
d_1 = 15 см = 0,15 м
L = 22,5 см=0,225 м
Найти:
Фокусное расстояние F — ?

Решение:
Тонкая собирающая линза дает различные виды изображений: увеличенные (уменьшенные), прямые (обратные), действительные (мнимые). Характеристика изображения зависит от расстояния от предмета до линзы, т.е. от соотношения d и F.
Так как в задаче говорится о получении изображений в одной точке, то один из точечных источников должен находиться за фокусом линзы – он дает действительное изображение. Второй точечный источник должен находиться перед фокусом – он дает мнимое изображение.

На рис. 1 представлено получение изображения для точечного источника света S_1, находящегося на расстоянии больше фокусного, S_1 — изображение точечного источника света S_1.

На рис. 2 представлено получение изображения для точечного источника света S_2, находящегося на расстоянии меньше фокусного, S_2— изображение точечного источника света S_2.
После создания модели, поясняющей условие этой задачи, можно переходить к её решению. Для этого надо применить формулу тонкой линзы для двух случаев. С учетом правила знаков f_1>0,f_2<0, так как изображение в первом случае действительное, во втором – мнимое.

frac{1}{d_1}+frac{1}{f_1}=frac{1}{F} (1)

frac{1}{d_2}-frac{1}{f_2}=frac{1}{F} (2)

Сложим эти два уравнения и учтем, что frac{1}{f_1}+left(-frac{1}{f_2}right)=0. Так как изображения в двух случаях получались в одной точке, то f_1=f_2.

frac{1}{d_1}+frac{1}{d_2}=frac{2}{F}

frac{d_1+d_2}{d_1cdot d_2}=frac{2}{F}

F=frac{2d_1cdot d_2}{d_1+d_2}

Определим, что d_2=L-d_1; d_2=0,225-0,15=0,075 (м).

F=frac{2cdot 0,15cdot 0,075}{0,15+0,075}=0,1 (м) =10 (см).

Ответ: 10

2. Какая из точек (1, 2, 3 или 4) является изображением точки S, созданным тонкой собирающей линзой с фокусным расстоянием F (см. рисунок)?

Решение:

Для получения изображения точечного источника S необходимо осуществить построение двух любых лучей, исходящих от этого источника. Самым «удобным» лучом является луч, проходящий через оптический центр линзы. Такие лучи, после прохождения через линзу, не меняют своего направления. На рисунке таким лучом является луч 1-1ʹ.
Второй и третий лучи от точечного источника S попадают на линзу произвольно. Дальнейший ход таких лучей определяется следующим алгоритмом:

  1. необходимо построить побочные оптические оси, параллельные падающим лучам (на рисунке они проведены пунктирной линией);
  2. провести фокальную плоскость и найти точки пересечения этой плоскости с побочными оптическими осями;
  3. продолжить ход световых лучей после прохождения через линзу (на рисунке это лучи 2ʹ и 3ʹ).

Поэтому изображением точечного источника S (точки S) будет являться точка 2.
При решении этой задачи мы рассмотрели ход трех лучей сквозь линзу, для получения ответа достаточно взять любую комбинацию лучей (1-1ʹ и 2 — 2ʹ) или (1-1ʹ и 3 — 3ʹ ).
Ответ: 2

3. Спираль лампочки расположена вблизи главной оптической оси тонкой рассеивающей линзы на расстоянии а от неё перпендикулярно этой оси, причем F < a < 2F, где F – модуль фокусного расстояния линзы. Затем рассеивающую линзу заменили на собирающую с фокусным расстоянием F. Установите соответствие между видом линзы, использованной в опыте, и свойствами даваемого ею изображения.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Виды линз Свойства изображения
А) линза рассеивающая 1) мнимое, прямое, уменьшенное
Б) линза собирающая 2) мнимое, перевёрнутое, увеличенное
3) действительное, перевёрнутое, увеличенное
4) действительное, прямое, увеличенное

Решение
Решение подобных задач опирается на умение строить изображения протяженных (имеющих размеры) предметов при прохождении лучей через линзу.

Рис.1

На рис.1 выполнено построение изображения предмета АВ в тонкой собирающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный за линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
увеличенное (размер изображения превышает размер предмета),
перевернутое (направления стрелок АВ и АʹВʹ противоположны),
действительное (предмет и его изображения находятся по разные стороны от линзы).

Рис.2

На рис.2 выполнено построение изображения предмета АВ в тонкой рассеивающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный перед линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
уменьшенное (размер изображения меньше размера предмета),
прямое (направления стрелок АВ и АʹВʹ совпадают),
мнимое (предмет и его изображения находятся с одной стороны от линзы).
Полученные изображения и их характеристики приводят к следующему ответу:

4. На рисунке показан ход лучей от точечного источника света S через тонкую линзу. Какова оптическая сила этой линзы? (Ответ дать в диоптриях.)

Решение:

На рисунке представлен ход световых лучей от точечного источника света S. Луч, проходящий через оптический центр, не меняет своего направления. Второй луч, идущий параллельно главной оптической оси, после преломления идет через фокус. Это позволяет определить фокусное расстояние линзы. Согласно рисунку, оно равно двум клеткам. С учётом указанного масштаба, длина одной клетки равна 4 см. Таким образом, фокусное расстояние этой линзы F=8 см = 0,08 м.

Так как оптическая сила линзы D=frac{1}{F}=frac{1}{0,08}=12,5 (дптр).

Ответ: 12,5

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
 

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тонкие линзы. Построение изображений.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Содержание:

Линзы:

На уроках природоведения вы. наверное, пользовались микроскопом. Кое-кто из ваших друзей (а может, и вы сами) имеет очки. Вероятнее всего, большинство из вас знакомы с биноклем, зрительной тру бой, телескопом. У всех этих приборов есть общее: их основной частью является линза.

Равные виды линз

Линзой (сферической*) называют прозрачное тело, ограниченное с двух сторон сферическими поверхностями (в частности, одна из поверхностей может быть плоскостью). По форме линзы делятся на выпуклые (рис. 3.50) и вогнутые (рис. 3.51).

Если толщина линзы d во много раз меньше радиусов Линзы в физике - виды, формулы и определения с примерами

Обычно выпуклые линзы являются собирающими: параллельные лучи, которые падают на собирающую линзу, пройдя сквозь нее, пересекаются в одной точке (рис. 3.53).

Вогнутые линзы чаще всего бывают рассеивающими: параллельные лучи после прохождения сквозь рассеивающую линзу выходят расходящимся пучком (рис. 3.54).

Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Характеристики линз

Проведем прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу. Эту прямую называют главной оптической осью линзы. Точку линзы, которая расположена на главной оптической оси и через которую луч света проходит, не изменяя своего направления, называют оптическим центром линзы (рис. 3.55). На рисунках оптический центр линзы обычно обозначают буквой О.

Точку, в которой собираются после преломления лучи, параллельные главной оптической оси собирающей линзы, называют действительным фокусом собирающей линзы (рис. 3.56).

Если пучок лучей, параллельных главной оптической оси, направить на рассеивающую линзу, то после преломления они выйдут расходящимся пучком.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Однако их продолжения соберутся в одной точке на главной оптической оси линзы (рис. 3.57). Эту точку называют мнимым фокусом рассеивающей линзы.

На рисунках фокус линзы обозначают буквой F.

Расстояние от оптического центра линзы до фокуса называют фокусным расстоянием линзы.

Фокусное расстояние обозначается символом F и измеряется в метрах. Фокусное расстояние собирающей линзы договорились считать положительным (F>0), а рассеивающей — отрицательным (F<0).

Очевидно, что чем сильнее преломляющие свойства линзы, тем меньшим будет ее фокусное расстояние (рис. 3.58).

Физическая величина, характеризующая преломляющие свойства линзы и обратная фокусному расстоянию, называется оптической силой линзы.

Оптическая сила линзы обозначается символом D и вычисляется по формулеЛинзы в физике - виды, формулы и определения с примерами
где F — фокусное расстояние линзы.

Единицей оптической силы является диоптрия

Линзы в физике - виды, формулы и определения с примерами

1 диоптрия (дптр) — это оптическая сила такой линзы, фокусное рас стояние которой равняется 1 м.

Если линза собирающая, то ее оптическая сила положительна. Оптическая сила рассеивающей линзы отрицательна. Например, оптическая сила линз в бабушкиных очках +3 дптр, а в маминых -3 дптр. Это означает, что в бабушкиных очках стоят собирающие линзы, а в маминых — рассеивающие.
 

Пример №1

Оптическая сила линзы равняется -1,6 дптр. Каково фокусное расстояние этой линзы? Эта линза собирающая или рассеивающая?

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Анализ физической проблемы

Для определения фокусного расстояния этой линзы воспользуемся формулой для вычисления оптической силы линзы. Поскольку 1)< 0, то линза рассеивающая.

Поиск математической модели, решение:

Линзы в физике - виды, формулы и определения с примерами

Определим числовое значение искомой величины:

Линзы в физике - виды, формулы и определения с примерами

Ответ: F = -62,5 см, линза рассеивающая.

Итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линзы бывают собирающими и рассеивающими, а по форме — выпуклыми и вогнутыми.

Линза называется собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке. Эту точку называют действительным фокусом линзы.

Линза называется рассеивающей, если параллельные лучи, падающие на нее, после преломления в линзе идут расходящимся пучком, однако продолжения этих преломленных лучей пересекаются в одной точке. Эта точка называется мнимым фокусом линзы.

Физическая величина, характеризующая преломляющие свойства линзы и являющаяся обратной фокусному расстоянию линзы, называется оптической силой линзы = Оптическая сила линзы измеряется в диоптриях (дптр).
 

Формула тонкой линзы

Сейчас никого не удивляет, что можно увидеть бактерии и другие микроорганизмы, рассмотреть невидимые невооруженным глазом детали рельефа поверхности Луны или полюбоваться портретом, нарисованным на маковом зернышке. Все это стало возможным потому, что с по мощью линзы получают разные по размеру изображения предметов.
Линзы в физике - виды, формулы и определения с примерами

Изображение предмета, полученное с помощью линзы

Расположив последовательно зажженную свечу, собирающую линзу и экран, получим на экране четкое изображение пламени свечи (рис. 3.59). Изображение может быть как большим, так и меньшим, чем само пламя, или равным ему — в зависимости от расстояния между свечой и экраном. Чтобы выяснить, при каких условиях с помощью линзы образуется то или иное изображение предмета, рассмотрим приемы его построения.
 

Строим изображение предмета, которое дает тонкая линза

Любой предмет можно представить как совокупность точек. Каждая точка предмета, который светится собственным или
Линзы в физике - виды, формулы и определения с примерами

  1. — луч, проходящий через оптический центр О линзы (не преломляется и не изменяет своего направления);
  2. — луч, параллельный главной оптической оси / линзы (после преломления в линзе идет через фокус F);
  3. — луч, проходящий через фокус F (после преломления в линзе идет параллельно главной оптической оси/линзы)
  4. отраженным светом, испускает лучи во всех направлениях.

Для построения изображения точки S, получаемого с помощью линзы, достаточно найти точку пересечения Линзы в физике - виды, формулы и определения с примерами, любых двух лучей, выходящих из точки S и проходящих сквозь линзу (точка Линзы в физике - виды, формулы и определения с примерами и будет действительным изображением точки S). Кстати, в точке Линзы в физике - виды, формулы и определения с примерамипересекаются все лучи, выходящие из точки S, однако для построения изображения достаточно двух лучей (любых из трех показанных на рис. 3.60).

Изобразим схематически предмет стрелкой АВ и удалим его от линзы на расстояние, большее, чем 2F (за двойным фокусом) (рис. 3.61, а). Сначала построим изображение Линзы в физике - виды, формулы и определения с примерами точки В. Для этого воспользуемся двумя «удобными* лучами (луч 1 и луч 2). Эти лучи после преломления в линзе пересекутся в точке Линзы в физике - виды, формулы и определения с примерами. Значит, точка Линзы в физике - виды, формулы и определения с примерами является изображением точки В. Для построения изображения Линзы в физике - виды, формулы и определения с примерами точки А из точки Линзы в физике - виды, формулы и определения с примерамиопустим перпендикуляр на главную оптическую ось /. Точка пересечения перпендикуляра и оси / и является точкой Линзы в физике - виды, формулы и определения с примерами

Значит, Линзы в физике - виды, формулы и определения с примерамии является изображением предмета АВ, полученное с помощью линзы. Мы видим: если предмет расположен за двойным фокусом собирающей линзы, то его изображение, полученное с помощью линзы, будет уменьшенным, перевернутым, действительным. Такое изображение получается, например, на пленке фотоаппарата (рис. 3.61, б) или сетчатке глаза.

На рис. 3.62, а показано построение изображения предмета АВ, полученного с помощью собирающей линзы, в случае, когда предмет расположен
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изображение предмета в этом случае будет увеличенным, перевернутым, действительным. Такое изображение позволяет получить проекционная аппаратура на экране (рис. 3.62, б).

Если поместить предмет между фокусом и линзой, то изображения на экране мы не увидим. Но, посмотрев на предмет сквозь линзу, увидим изображение предмета — оно будет прямое, увеличенное.

Используя «удобные лучи» (рис. 3.63, а), увидим, что после преломления в линзе реальные лучи, вышедшие из точки В, пойдут расходящимся пучком. Однако их продолжения пересекутся в точке В,. Напоминаем, что в этом случае мы имеем дело с мнимым изображением предмета. То есть если предмет расположен между фокусом и линзой, то его изображение бу дет увеличенным, прямым, мнимым, расположенным с той же стороны от линзы, что и сам предмет. Такое изображение можно получить с помощью лупы (рис. 3.63, б) или микроскопа.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Итак, размеры и вид изображения, полученного с помощью собирающей линзы, зависят от расстояния между предметом и этой линзой.

Внимательно рассмотрите рис. 3.64, на котором показано построение изображения предмета, полученного с помощью рассеивающей линзы. Построение показывает, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение предмета, расположенное с той же стороны от линзы, что и сам предмет.

Мы часто сталкиваемся с ситуацией, когда предмет значительно больше, чем линза (рис. 3.65), или когда часть линзы закрыта непрозрачным экраном (например, линза объектива фотоаппарата). Как создается изображение в этих случаях? На рисунке видно, что лучи 2 и 3 при этом не проходят через линзу. Однако мы, как и раньше, можем использовать эти лучи для построения изображения, получаемого с помощью линзы. Поскольку реальные лучи, вышедшие из точки В, после преломления в линзе пересекаются в одной точке — Линзы в физике - виды, формулы и определения с примерами то «удобные лучи*, с помощью которых мы строим изображение, тоже пересеклись бы в точке Линзы в физике - виды, формулы и определения с примерами

Как выглядит формула тонкой линзы

Существует математическая зависимость между расстоянием d от предмета до линзы, расстоянием f от изображения предмета до линзы и фокусным расстоянием F линзы. Эта зависимость называется формулой тонкой линзы и записывается так:
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пользуясь формулой тонкой линзы для решения задач, следует иметь в виду: расстояние f (от изображения предмета до линзы) следует брать со знаком минус, если изображение мнимое, и со знаком плюс, если изображение действительное; фокусное расстояние F собирающей линзы положительное, а рассеивающей — отрицательное.

Пример №2

Рассматривая монету с помощью лупы, оптическая сила которой +5 дптр, мальчик расположил монету на расстоянии 2 см от лупы. Определите, на каком расстоянии от лупы мальчик наблюдал изображение монет

Дано:

d = 2 см = 0,02 м

D = + 5 дптр

f- ?

Анализ физической проблемы, поиск математической модели

Лупу можно считать тонкой линзой, поэтому чтобы найти расстояние от лупы до изображения, воспользуемся
формулой тонкой линзыЛинзы в физике - виды, формулы и определения с примерами Фокусное расстояние F неизвестно, но мы знаем, что Линзы в физике - виды, формулы и определения с примерами (2), где

D — оптическая сила линзы, данная в условии задачи.
Решение и анализ результатов

Подставив формулу (2) в формулу (1), получаем
Линзы в физике - виды, формулы и определения с примерами
Проверим единицу: Линзы в физике - виды, формулы и определения с примерами

Найдем числовое Линзы в физике - виды, формулы и определения с примерами

Проанализируем результат: знак ♦-* говорит о том, что изображение является мнимым.

Ответ: f = -21 см, изображение мнимое.

Итоги:

В зависимости от вида линзы (собирающая или рассеивающая) и местоположения предмета относительно этой линзы получают разные изображения предмета с помощью линзы (см.таблицу):

Линзы в физике - виды, формулы и определения с примерами

Таким образом, по типу изображения можно судить так и о местоположении предмета относительно нее.

Расстояние d от предмета до линзы, расстояние f от изображения до линзы и фокусное расстояние F связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

Что такое линза

Многие люди носят очки. А задумывались ли вы над вопросами: что собой представляют стекла очков и какова их роль? Стекла очков есть не что иное, как линзы. Ни один оптический прибор (от простой лупы до сложных телескопов) не обходится без линз. Что же такое линза?

Линза представляет собой прозрачное тело, ограниченное криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Материалом для линз обычно служит оптическое или органическое стекло.

Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

На рисунках 261, 262 представлены сечения линз двух типов: двояковыпуклой (см. рис. 261) и двояковогнутой (см. рис. 262). Одна из поверхностей линзы может быть плоской, как, например, на рисунке 263. Такие линзы называются плосковыпуклая (см. рис. 263, а) и плосковогнутая, (см. рис. 263, б).

Линзы в физике - виды, формулы и определения с примерами

Прямая, проходящая через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей (рис. 264), называется главной оптической осью линзы. Радиусы Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами есть радиусы кривизны поверхностей линзы (см. рис. 264).

Если толщина линзы мала но сравнению с радиусами Линзы в физике - виды, формулы и определения с примерами кривизны ее поверхностей (см. рис. 264), то линза называется тонкой. Ее часто изображают Линзы в физике - виды, формулы и определения с примерами Всякая тонкая линза имеет точку, проходя через которую, луч не меняет своего направления (лучи 1 и 2 на рисунке 264). Эта точка О называется оптическим центром линзы. В дальнейшем мы будем рассматривать только тонкие линзы, изготовленные из вещества, оптически более плотного, чем среда (воздух), в которой они находятся.

Как линзы меняют направление падающих на них лучей после преломления? Ответ получим с помощью опыта.

Линзы в физике - виды, формулы и определения с примерами

Направим на двояковыпуклую линзу (рис. 265, а) параллельно главной оптической оси лучи света. После преломления в линзе они пересекают главную оптическую ось в одной точке F. Значит, двояковыпуклая линза собирает преломленные лучи, поэтому такая линза называется собирающей. Также превращают параллельный пучок в сходящийся линзы 2, 3, изображенные на рисунке 270. При замене линзы на двояковогнутую (рис. 265, б) лучи после преломления в линзе расходятся, а центральный луч, как и в первом случае, не испытывает преломления. Итак, двояковогнутая линза рассеивает параллельный пучок падающих на нее лучей, поэтому такая линза называется рассеивающей. Рассеивают параллельный пучок и линзы 5, 6 (см. рис. 270).

Линзы в физике - виды, формулы и определения с примерами

Точка F (см. рис. 265, а, рис. 266, а), в которой пересекаются преломленные линзой лучи, падающие параллельно главной оптической оси, или их продолжения (см. рис. 265, б, рис. 266, б), называется главным фокусом линзы. Так как параллельные лучи можно пустить как с одной, так и с другой стороны линзы, то и главных фокуса у линзы два. Оба фокуса лежат на главной оптической оси симметрично относительно оптического центра линзы (см. рис. 266). А в какой точке собирает линза лучи, идущие под углом к главной оптической оси? Оказывается, в точке Линзы в физике - виды, формулы и определения с примерами которая находится в плоскости Линзы в физике - виды, формулы и определения с примерами(см. рис. 266, а), проходящей через главный фокус перпендикулярно главной оптической оси. Эта плоскость называется фокальной плоскостью, а точка Линзы в физике - виды, формулы и определения с примерами в отличие от главного фокуса, называется фокусом.

Обратите внимание, что у собирающей линзы в фокусе пересекаются сами преломленные лучи, несущие энергию, поэтому фокус называется действительным. У рассеивающей линзы в фокусе пересекаются продолжения преломленных лучей. Такой фокус называют мнимым.

Расстояние от оптического центра до главного фокуса называется фокусным расстоянием. Его тоже принято обозначать буквой F.

Линзы в физике - виды, формулы и определения с примерами

Линза, имеющая более выпуклые поверхности, преломляет лучи сильнее. Линза 1 (рис. 267, а) преломляет лучи сильнее, чем линза 2 (рис. 267, 6). Фокусное расстояние Линзы в физике - виды, формулы и определения с примерами у линзы 1 меньше, чем Линзы в физике - виды, формулы и определения с примерами у линзы 2.

Чтобы количественно оценить преломляющую способность линзы, введем величину, обратную фокусному расстоянию, и назовем ее оптической силой линзы (обозначается буквой D):

Линзы в физике - виды, формулы и определения с примерами
Оптическая сила измеряется в диоптриях (сокращенно дптр). Очевидно, что D = 1 дптр, если фокусное расстояние линзы F = 1 м.

А как оценивается оптическая сила рассеивающей линзы, у которой фокус мнимый? В этом случае фокусное расстояние считается отрицательным, а следовательно, и оптическая сила — отрицательной величиной.

Например, если F = -0,5 м, то оптическая сила

Линзы в физике - виды, формулы и определения с примерами

Теперь для вас не будет загадкой рекомендация врача-окулиста: «Вам нужны очки со стеклами +1,5 диоптрии или -2 диоптрии».
 

Для любознательных:

Не следует думать, что любая линза с выпуклой поверхностью будет обязательно собирающей, а с вогнутой — рассеивающей. Собирающей является всякая линза, у которой середина толще краев (например, линзы 2, 2, 3 на рисунке 270), а рассеивающей — линза, у которой середина тоньше краев (см. рис. 270, линзы 4, 5, 6). И не забывайте, что все наши рассуждения справедливы, если вещество линзы (стекло) имеет большую оптическую плотность, чем окружающая среда (воздух).

В природе собирающими линзами являются капельки росы, в быту — наполненные водой прозрачные сосуды — кувшин, пластиковая бутылка. Подумайте и ответьте, какие это линзы.

Главные выводы:

  1. Линзы меняют направление падающих на них лучей после преломления, за исключением тех, которые проходят через оптический центр линзы.
  2. Собирающая линза после преломления делает параллельный пучок лучей сходящимся, рассеивающая линза — расходящимся.
  3. Лучи, идущие параллельно главной оптической оси, после преломления в собирающей линзе пересекаются в главном фокусе. В рассеивающей линзе в главном фокусе пересекаются продолжения преломленных лучей.
  4. Величина, обратная фокусному расстоянию, определяет оптическую силу линзы.

Построение изображений в тонких линзах

Глядя в окуляр микроскопа на уроках биологии, задумывались ли вы, как получается увеличенное изображение клеток? Главными частями микроскопа являются линзы. Именно они позволяют получать увеличенное или уменьшенное (например, в фотоаппарате) изображение предмета.

Какие изображения предмета создает линза?

Линзы в физике - виды, формулы и определения с примерами

Проведем опыт. На столе расположим экран, собирающую линзу и зажженную свечу (рис. 271, а), удаленную от линзы на расстояние б/, большее, чем удвоенное фокусное, т. е. d > 2F. Будем передвигать экран до тех пор, пока не увидим на нем четкое изображение пламени свечи. Чем оно отличается от изображения, которое мы увидим в зеркале, поместив перед ним эту же свечу? Во-первых, оно уменьшенное, во-вторых, перевернутое. Ио самое главное, что это изображение, в отличие от мнимого изображения в зеркале, реально существует. На экране концентрируется энергия света. Чувствительный термометр, помещенный в изображение пламени свечи, покажет повышение температуры. Поэтому полученное в линзе изображение называют действительным, в отличие от мнимых изображений, наблюдаемых в плоском зеркале.

Подтвердим сказанное построением (рис. 271, б). Для получения изображения точки А достаточно использовать два луча, ход которых после преломления в линзе известен. Луч 1 идет параллельно главной оптической оси и после преломления в линзе проходит через главный фокус. Луч 2 идет через оптический центр и не меняет своего направления после прохождения сквозь линзу. Точка А’, являющаяся пересечением прошедших линзу лучей Линзы в физике - виды, формулы и определения с примерамии 2′, есть действительное изображение точки А. Заметим, что через точку А пройдет и любой другой преломленный луч идущий от точки А, благодаря чему энергия, излученная точкой А пламени свечи, будет сконцентрирована в точке А’.

Продолжим опыт. Поставим свечу на расстоянии d = 2F. Перемещая экран, мы увидим на нем действительное, перевернутое изображение пламени свечи, но размер его будет равен размеру пламени самой свечи (рис. 272). Сделайте сами построение изображения для этого случая.

Линзы в физике - виды, формулы и определения с примерами

Передвигая свечу ближе к линзе (F < d < 2F) и удаляя экран, мы увидим на нем действительное, перевернутое, увеличенное изображение пламени свечи (построение сделайте сами).

Линзы в физике - виды, формулы и определения с примерами

Наконец поставим свечу на расстоянии d от линзы, меньше фокусного, т. е. d

Линзы в физике - виды, формулы и определения с примерами

А какие изображения предмета дает рассеивающая линза? Пусть параллельно главной оптической оси надает луч 1 (рис. 275). После линзы преломленный луч Линзы в физике - виды, формулы и определения с примерами идет так, что только его продолжение проходит через фокус. Луч 2 не испытывает преломления. Видно, что лучи Линзы в физике - виды, формулы и определения с примерами и 2′ не пересекаются. В точке А’ пересекаются их продолжения. Тогда изображение точки А, а значит, и всего предмета АВ — мнимое. Как все мнимые изображения, оно прямое, но уменьшенное. Даст ли рассеивающая линза действительное изображение, если менять положение предмета? Может ли оно быть увеличенным? Ответьте на эти вопросы сами, сделав соответствующие построения изображений предмета в тетради.

Главные выводы:

  1. Собирающая линза дает как действительные, так и мнимые изображения, рассеивающая — только мнимые.
  2. Все мнимые изображения — прямые, все действительные — перевернутые.
  3. Для нахождения изображения точки наиболее целесообразно использовать луч, идущий параллельно главной оптической оси линзы, и луч, идущий через ее оптический центр.

Пример №3

С помощью стеклянной линзы на экране, удаленном от линзы на расстояние f = 36 см, получено увеличенное в 3 раза изображение предмета. Определите расстояние от предмета до линзы и оптическую силу линзы.

Дано:

Н = Зh

f = 36 см

d — ?

D — ?

Решение

Построим изображение предмета в линзе (рис. 276).

Линзы в физике - виды, формулы и определения с примерами

Поскольку изображение есть на экране, то оно действительное. Кроме того, оно увеличенное, значит, предмет находится между фокусом и двойным фокусом, а линза собирающая.

По условию размер предмета АВ в 3 раза меньше размера изображения А’В’. Из подобия треугольников АОВ и А’ОВ’ следует, что таким же будет и соотношение их сторон ВО и OB’, Значит, искомое расстояние d будет в 3 раза меньше заданного расстояния f. Это дает первый ответ: Линзы в физике - виды, формулы и определения с примерами Для ответа на второй вопрос используем подобие другой нары треугольников — CFO и A’FB’. И здесь подобные стороны треугольников различаются в 3 раза.
Так как одна из них — OF равна фокусному расстоянию F линзы, а другая — FB’ равна разности f — F, то их связь можно записать так: 3F = f — F, или 4F = f = 36 см. Вычислив значение фокусного расстояния Линзы в физике - виды, формулы и определения с примерами найдем и искомое значение оптической силы D линзы: Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Оптическая сила и фокусное расстояние линзы

Граница разделения двух, прозрачных для света, тел может быть искривленной. Если прозрачное тело ограничить искривленными поверхностями, получим линзу (нем. linse — «чечевица»).

Линза — это прозрачное тело, ограниченное двумя выпуклыми или вво-гнутыми прозрачными поверхностями, преломляющими лучи света.
Одна из поверхностей линз может быть плоской. Линзы изготавливают из какого-либо прозрачного для света вещества: стекла, кварца, разных пластмасс, каменной соли, но чаще всего — из специальных сортов стекла.

Наибольшее распространение получили линзы, ограниченные сферическими поверхностями. В зависимости от взаимного размещения сферических поверхностей, ограничивающих линзу, различают 6 типов линз: двояковыпуклая, плоско-выпуклая, вогнуто-выпуклая (рис. 165, а, б, в); двояковогнутая, плоско-вогнутая, выпукло-ввогнутая (рис. 165, г, д, е).
Линзы в физике - виды, формулы и определения с примерами

Любая линза имеет характерные точки и линии. Выясним, какие именно.

1.    Прямую, проходящую через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей, которые ограничивают линзу, называют ее главной оптической осью (рис. 166).

2.    Точку О, которая лежит на главной оптической оси в центре линзы, называют оптическим центром линзы (рис. 166).

Линзы в физике - виды, формулы и определения с примерами

Опыт 1. Направим на линзу пучок лучей, параллельных ее главной оптической оси. Проходя через линзу, световые лучи преломляются и пересекаются в одной точке, лежащей на главной оптической оси линзы (рис. 167).

Линзы в физике - виды, формулы и определения с примерами

Эту точку называют главным фокусом линзы F.

3.    Главный фокус линзы F — точка, в которой сходятся все, параллельные главной оптической оси, лучи после их преломления в линзе.

4.    Фокусное расстояние f — расстояние от оптического центра линзы О до главного фокуса F.

Каждая линза имеет два главных фокуса.

Любая тонкая линза характеризуется двумя основными параметрами -фокусным расстоянием и оптической силой. Оптическую силу линзы обозначают большой буквой D и определяют по формуле:

Линзы в физике - виды, формулы и определения с примерами
Единицей оптической силы является одна диоптрия (1 дптр), 1 дптр = Линзы в физике - виды, формулы и определения с примерами.

Как видно из опыта, линза преобразует пучок параллельных лучей в сходящийся, то есть собирает его в одну точку. Такую линзу называют собирательной.

Собирательная линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления собирает на этой оси в одну точку.

Опыт 2. Возьмем линзу другого типа и направим на нее параллельный главной оптической оси пучок лучей света. Лучи, преломившись на границе воздух-стекло, выходят из линзы расходящимся пучком, или рассеиваются (рис. 168).

Линзы в физике - виды, формулы и определения с примерами

Такую линзу называют рассеивающей.

Рассеивающая линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления отклоняет от этой оси.

Если пучок лучей, выходящий из рассеивающей линзы, продолжить в противоположном направлении, то продолжения лучей пересекутся в точке F, которая лежит на оптической оси с той же стороны, с которой свет падает на линзу. Эту точку F называют мнимым главным фокусом рассеивающей линзы (рис. 169).

Опыт 3. Пропустим световые лучи только через оптические центры линз. В результате опыта убеждаемся (рис. 170), что световые лучи, проходящие через оптический центр линзы, не преломляются, то есть не изменяют своего направления.

Линзы в физике - виды, формулы и определения с примерами

С помощью линз можно не только собирать или рассеивать световые лучи, но и строить изображение предметов. Как раз благодаря этому свойству линзы широко используют в практических целях.

Каким же образом строятся изображения предметов с помощью линз?

Изображение предмета — это воссоздание вида, формы и цвета предмета световыми лучами, проходящими через оптическую систему линз, которые имеют одну общую оптическую ось.

Если изображение предмета образовано пересечением самих лучей, то его называют действительным, если их продолжением — мнимым.

Определить ход лучей, отраженных всеми точками поверхности тела, невозможно. Поэтому для построения изображения будем использовать такие лучи, ход которых известен:

  • 1.    Луч, проходящий через оптический центр линзы, не преломляется (рис. 171, а).
  • 2.    Луч, параллельный главной оптической оси линзы, после преломления в линзе проходит через главный фокус линзы (рис. 171, б).
  • 3.    Луч, проходящий через главный фокус линзы, после преломления в ней, проходит параллельно главной оптической оси (рис. 171, в).

Линзы в физике - виды, формулы и определения с примерами

Рассмотрим случаи, при которых получается то или другое изображение, и особенности этих изображений.

1.    Предмет АВ размещен между линзой и ее фокусом F.

Линзы в физике - виды, формулы и определения с примерами

Построим изображение точки А, использовав для этого упомянутые лучи. Луч АС (рис. 172), параллельный главной оси линзы, преломившись в линзе, пройдет через главный фокус, а луч АО не изменит своего направления. Как видно на рисунке, эти лучи расходятся. Чтобы построить изображение точки А, следует продолжить лучи в противоположном направлении до пересечения, это будет точка Линзы в физике - виды, формулы и определения с примерами Это изображение точки есть мнимым. Такое же построение хода лучей можно выполнить для всех точек предмета, находящихся между точками А и В. Изображение этих промежуточных точек будут лежать междуЛинзы в физике - виды, формулы и определения с примерами. Таким образом, Линзы в физике - виды, формулы и определения с примерами — изображение предмета АВ.

Если предмет находится между линзой и ее фокусом, то получают увеличенное, прямое, мнимое его изображение, размещенное дальше от линзы, чем сам предмет.

Такое изображение получают, когда пользуются лупой — прибором для рассматривания мелких предметов (например, чтения мелкого текста).

2.    Предмет размещен в главном фокусе линзы F.

Для построения изображения предмета АВ снова воспользуемся лучами АС и АО (рис. 173). После прохождения лучей сквозь линзу мы увидим, что они параллельны между собой. Следовательно, изображение предмета АВ мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Если в главном фокусе разместить источник света, то мы превратим пучок расходящихся лучей на пучок параллельных лучей, который хорошо освещает отдаленные предметы.

Если предмет размещен в главном фокусе линзы F, изображение предмета получить нельзя.

3.    Предмет размещен между главным фокусом линзы F и двойным фокусом линзы 2F.

Во время построения изображения (рис. 174) мы видим, что лучи АС и АО после прохождения линзы пересекаются в точке Линзы в физике - виды, формулы и определения с примерами. В этой точке образуется действительное изображение точки А. Изображение Линзы в физике - виды, формулы и определения с примерамипредмета АВ также будет действительным.

Линзы в физике - виды, формулы и определения с примерами

Если предмет находится между фокусом F и двойным фокусом 2F линзы, то образуется увеличенное, перевернутое и действительное изображение предмета; оно размещено с противоположной относительно предмета стороны линзы на расстоянии, больше двойного фокусного расстояния.

Такое изображение используют в проекционном аппарате, киноаппарате. Чтобы изображение на экране было прямым, диапозитивы или киноленту устанавливают в аппарат в перевернутом виде.

4.    Предмет находится в двойном фокусе линзы. 2F.

В этом случае линза дает (рис. 175) перевернутое, действительное изображение предмета такого же размера, как и он сам. Это изображение размещено в ее двойном фокусе 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

5.    Если предмет находится за двойным фокусом линзы 2F (рис. 176), линза дает уменьшенное, перевернутое и действительное изображение предмета, которое размещено между ее главным фокусом F и двойным фокусом 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

Такое изображение используют в фотоаппарате.

Пример №4

Почему не рекомендуется поливать растения днем, когда они освещены солнечными лучами, особенно те, на листьях которых остаются капельки воды?

Ответ: потому что капельки играют роль линз, фокусирующих солнечные лучи, и растения получают ожоги.

Пример №5

На рисунке 177 показан ход лучей в линзах. Какие это линзы?
Линзы в физике - виды, формулы и определения с примерами
Ответ: (слева направо) источник света, собирательная линза, рассеивающая линза.

Простые оптические приборы

Знания законов отражения и преломления света в зеркалах и линзах дали возможность создать ряд оптических приборов, имеющих важное значение для современной науки и техники. Их используют специалисты разных отраслей. Это микроскоп биолога и фотоаппарат журналиста, кинокамера оператора и телескоп астронома, перископ подводника и т. п. Кроме того, оптическими приборами являются очки миллионов людей разного возраста и специальностей.

Самый простой оптический прибор — лупа.

Лупа (франц. loupe — «нарост») — оптический прибор, являющийся собирательной линзой, применяется для рассматривания мелких деталей, плохо заметных невооруженным глазом.

Общий вид луп разного вида представлен на рисунке 181, а.

Чтобы увидеть изображение предмета увеличенным, лупу следует разместить так, чтобы данный предмет был между лупой и ее фокусом (рис. 181, б).

Лучи, падающие на лупу от крайних точек предмета, преломляются в линзе и сходятся.
Линзы в физике - виды, формулы и определения с примерами

Каким же образом все это видит наш глаз?

Оказывается, наш глаз не замечает преломления лучей. Лучи, идущие от предмета сквозь линзу, воспринимаются глазом как прямолинейные. Нам кажется, что лучи, идущие от лупы к глазу, продолжаются после лупы, не преломляясь. Благодаря этому мы видим предмет увеличенным по сравнению с его действительными размерами.

Лупа дает увеличение в 10-40 раз.

Значительное увеличение изображения предметов можно получить с помощью двух линз, размещенных в металлической трубе на определенном расстоянии друг от друга. Такой прибор называют микроскопом.

Микроскоп (греч. mikro — «маленький», skopeo — «смотрю») — оптический прибор для рассматривания мелких предметов и их деталей (рис. 182, а).

Ход лучей в микроскопе показан на рисунке 182, б. Линзу, размещенную со стороны глаза, называют окуляром (лат. oculus — «глаз»), а линзу, размещенную со стороны данного предмета, называют объективом (лат. objectivus — «предметный»).

Первое увеличение изображения предмета дает объектив. Предмет в микроскопе размещается немного дальше от фокуса обьектива. В результате этого выходит увеличенное и перевернутое изображение предмета.
Линзы в физике - виды, формулы и определения с примерами

Это изображение увеличивается еще раз линзой-окуляром: оно будто служит для окуляра предметом. Окуляр, подобно лупе, размещают на расстоянии (меньше фокусного) от промежуточного изображения. В итоге мы получаем новое, более увеличенное изображение.

Если, например, объектив микроскопа дает изображение предмета, увеличенное в 20 раз, а окуляр увеличивает это изображение в 15 раз, то общее увеличение, которое дает микроскоп, будет уже 20*15 = 300 раз.

Современные электронные микроскопы дают увеличение в десятки тысяч раз. Например, так выглядят под микроскопом бактерии, увеличенные в 25 000 раз (рис. 183).

Посмотрите еще раз на схему микроскопа (рис. 182, б). Объектив микроскопа — линза — имеет меньшее фокусное расстояние, чем окуляр этого прибора. А что будет, если мы возьмем объектив, который имеет большее фокусное расстояние, чем окуляр?

В этом случае мы получим новый прибор, который называют телескопом, или рефрактором (лат. refringo — «преломляю»). Такой телескоп создал еще в 1611 г. немецкий астроном Иоганн Кеплер. А вообще первый телескоп на основе зрительной трубы построил в 1609 г. Галилео Галилей.

Телескоп (греч. tele — «далеко», skopeo — «смотреть») — оптический прибор для астрономических исследований космических объектов (рис. 184).

Прохождение в телескопе лучей от небесного тела показано на рисунке 185.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

Как следует из рисунка, изображение небесного тела в телескопе мы видим под большим углом зрения, в отличие от невооруженного глаза. Окуляр телескопа, как и окуляр микроскопа, действует как обычная лупа.

Следует отметить, что, рассматривая с помощью телескопа отдаленные предметы на Земле, мы видим их перевернутыми. Однако для наблюдения за небесными телами это обстоятельство не столь важно.

Самый большой телескоп-рефрактор установлен в Йеркской обсерватории университета в Чикаго (США). Его объектив в диаметре достигает 102 см.

Другой тип — это телескопы-рефлекторы (лат. reflecto — «отображаю»). В таких телескопах, кроме преломления лучей света, используют другое их свойство — способность отражаться от зеркальных поверхностей.

Изображение небесного тела отражается с помощью маленького плоского зеркальца и рассматривается с помощью окуляра (рис. 186), который увеличивает отраженное изображение.

Линзы в физике - виды, формулы и определения с примерами

Первый рефлектор с диаметром зеркала 2,5 см и фокусным расстоянием 16,5 см построил в 1668 г. Исаак Ньютон. Сегодня самым большим в мире является зеркальный телескоп HESS II, установленный в Намибии, его площадь достигает 600 Линзы в физике - виды, формулы и определения с примерами. Устройство предназначено для изучения происхождения космических лучей.

Линзы в физике - виды, формулы и определения с примерами

Фотоаппарат — это оптический прибор, с помощью которого на цифровом устройстве (англ, digital device — «техническое устройство или приспособление, предназначенное для получения и обработки информации в цифровой форме, используя цифровые технологии»), фотопленке, фотопластинке, фотобумаге получают изображение предмета.

Сегодня существует много различных типов фотоаппаратов (рис. 187, а). Они отличаются формой и размерами, но их строение и основные части одинаковы. Ход лучей в фотоаппарате изображен на рисунке 187, б.

  • Заказать решение задач по физике

Подробное объяснение формулы тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 58).

Линзы в физике - виды, формулы и определения с примерами

Основные типы линз и лучи, используемые для построения изображений в них, даны на рисунках 59, 60.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами
Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием I м: 1 дптр= 1 Линзы в физике - виды, формулы и определения с примерами.

Между фокусным расстоянием F тонкой линзы, расстоянием от предмета до линзы d и расстоянием от линзы до изображения f существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы, рассматривая ход характерных лучей (рис. 61).

Линзы в физике - виды, формулы и определения с примерами

Пусть расстояние от предмета до линзы d, расстояние от линзы до изображения f, фокусное расстояние линзы F, расстояние от предмета до переднего главного фокуса а, расстояние от заднего главного фокуса до изображения а’.

Из рисунка 61 видно, что Линзы в физике - виды, формулы и определения с примерами следовательно

Линзы в физике - виды, формулы и определения с примерами

Из формул (1) и (2) следует формула Ньютона:

Линзы в физике - виды, формулы и определения с примерами

С учетом того, что d = а + F, f = а’ + F, получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Поперечным увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h. Из выражения (3) находим

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы тонкой линзы следует запомнить правило знаков:

  • для собирающей линзы, действительных источника и изображения величины F, d, f считают положительными;
  • для рассеивающей линзы, мнимых источника и изображения величины F, d,f считают отрицательными.

Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с F>0 является собирающей (положительной), а с F< 0 — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды.

В современных оптических приборах используются системы линз для улучшения качества изображений. Оптическая сила D системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами:

Линзы в физике - виды, формулы и определения с примерами

Пример №6

Предмет расположен на расстоянии d = 0,15 м от рассеивающей линзы с фокусным расстоянием F=-0,30 м. На каком расстоянии f от линзы получается изображение данного предмета?

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Отрицательное значение f соответствует мнимому изображению предмета.

Ответ: f =-0,10 м, изображение мнимое.

Пример №7

На каком расстоянии d от рассеивающей линзы с оптической силой D = -4 дптр надо поместить предмет, чтобы его мнимое изображение получилось в k = b раз меньше (Г = Линзы в физике - виды, формулы и определения с примерами) самого предмета?

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для увеличения

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Из формулы линзы

Линзы в физике - виды, формулы и определения с примерами

с учетом выражения для f получаем

Линзы в физике - виды, формулы и определения с примерами

Ответ: d= 1 м.

Пример №8

Определите фокусное расстояние F собирающей линзы, дающей мнимое изображение предмета, помещенного перед ней на расстоянии d- 0,4 м, если расстояние от линзы до изображения f =-1,2 м. 

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Ответ: F= 0,6 м.

Разбираем формулу тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 80).

Линзы в физике - виды, формулы и определения с примерами

Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — 1 диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием

Линзы в физике - виды, формулы и определения с примерами

Линзы можно представить в виде совокупности частей трехгранных призм. На рисунке 81, а изображена модель двояковыпуклой линзы, собранной из частей призм, повернутых основаниями к центру линзы. Соответственно, модель двояковогнутой линзы будет представлена частями призм, повернутых основаниями от центра линзы (рис. 81, б).

Преломляющие углы этих призм можно подобрать таким образом, чтобы падающие на нее параллельные лучи после преломления в призмах собрались в одной точке Линзы в физике - виды, формулы и определения с примерами

Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси. Такие лучи получили название параксиальных.

Отметим условия, при одновременном выполнении которых линза является собирающей:

  • толщина в центре больше толщины у краев,
  • ее показатель преломления больше показателя преломления окружающей среды.

При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Между фокусным расстоянием тонкой линзы, расстоянием от предмета до линзы и от линзы до изображения существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей. Обратим внимание на луч, идущий через оптический центр Линзы в физике - виды, формулы и определения с примерами линзы, луч, параллельный главной оптической оси линзы, и луч, проходящий через главный фокус линзы.

Построим изображение предмета Линзы в физике - виды, формулы и определения с примерами в тонкой собирающей линзе (рис. 82). Пусть расстояние от предмета до линзы Линзы в физике - виды, формулы и определения с примерами расстояние от линзы до изображения Линзы в физике - виды, формулы и определения с примерами фокусное расстояние линзы Линзы в физике - виды, формулы и определения с примерами расстояние от предмета до переднего главного фокуса Линзы в физике - виды, формулы и определения с примерами расстояние от заднего главного фокуса до изображения Линзы в физике - виды, формулы и определения с примерами высота предмета Линзы в физике - виды, формулы и определения с примерами высота его изображения Линзы в физике - виды, формулы и определения с примерами

Из рисунка 82 видно, что Линзы в физике - виды, формулы и определения с примерами Из подобия треугольников следует:

Линзы в физике - виды, формулы и определения с примерами

Используя соотношения (1) и (2), получим:

Линзы в физике - виды, формулы и определения с примерами

Соотношение Линзы в физике - виды, формулы и определения с примерами называется формулой Ньютона.

С учетом того, что Линзы в физике - виды, формулы и определения с примерами (см. рис. 82), находим: Линзы в физике - виды, формулы и определения с примерами и подставляем в формулу (4):

Линзы в физике - виды, формулы и определения с примерами

Разделив обе части последнего выражения на Линзы в физике - виды, формулы и определения с примерами получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Линейным (поперечным) увеличением Г называется отношение линейного размера изображения Линзы в физике - виды, формулы и определения с примерами к линейному размеру предмета Линзы в физике - виды, формулы и определения с примерами Из соотношения (3) находим линейное увеличение тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» И. Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы линзы следует твердо запомнить правило знаков:

Заметим, что предмет или источник является мнимым, только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с Линзы в физике - виды, формулы и определения с примерами является собирающей (положительной), а с Линзы в физике - виды, формулы и определения с примерами — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды (вспомните, как плохо мы видим под водой без плавательных очков).

В современных оптических приборах для улучшения качества изображений используются системы линз. Оптическая сила Линзы в физике - виды, формулы и определения с примерами системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пример №9

На каком расстоянии Линзы в физике - виды, формулы и определения с примерами от рассеивающей линзы с оптической силой Линзы в физике - виды, формулы и определения с примерами дптр надо поместить предмет, чтобы его мнимое изображение получилось в Линзы в физике - виды, формулы и определения с примерами раз меньше Линзы в физике - виды, формулы и определения с примерами самого предмета? Постройте изображение предмета.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для линейного увеличения

Линзы в физике - виды, формулы и определения с примерами

находим:

Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы ( рис. 83) с учетом правила знаков:

Линзы в физике - виды, формулы и определения с примерами

и с учетом выражения для Линзы в физике - виды, формулы и определения с примерами получаем:

Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изучаем линзы

Скорее всего, вы пользовались фотоаппаратом, знакомы с биноклем, подзорной трубой, телескопом, на уроках биологии работали с микроскопом. Некоторые из вас носят очки. Все эти устройства имеют общее — их основной частью является линза. О том, какое значение имеют данные устройства в жизни человека, вы можете рассказать и сами, а вот о том, что такое линза, какие существуют виды линз и каковы их свойства, вы узнаете из этого параграфа.

Линза — прозрачное тело, ограниченное с двух сторон сферическими поверхностями*.

Линзы в физике - виды, формулы и определения с примерамиОдна из поверхностей линзы может быть плоскостью, поскольку плоскость можно рассматривать как сферу бесконечного радиуса. Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

По форме линзы делят на выпуклые (рис. 14.1) и вогнутые (рис. 14.2).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.1. Толщина выпуклой линзы посредине больше, чем у краев: а — вид; б — разные выпуклые линзы в разрезе

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.2. Толщина вогнутой линзы посредине меньше, чем у краев: а — вид; б — разные вогнутые линзы в разрезе

Если толщина Линзы в физике - виды, формулы и определения с примерами линзы во много раз меньше радиусов сферических поверхностей, ограничивающих линзу, такую линзу называют тонкой. Далее мы будем рассматривать только тонкие линзы. Прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью линзы (рис. 14.3).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.3. Тонкая сферическая линза: Линзы в физике - виды, формулы и определения с примерами — главная оптическая ось линзы; Линзы в физике - виды, формулы и определения с примерами — толщина линзы; Линзы в физике - виды, формулы и определения с примерами— радиусы сферических поверхностей, ограничивающих линзу; Линзы в физике - виды, формулы и определения с примерами — оптический центр линзы

Если на линзу направить пучок световых лучей, они преломятся на ее поверхностях и изменят свое направление. В то же время на главной оптической оси линзы есть точка, которую луч света проходит практически не изменяя своего направления. Эту точку называют оптическим центром линзы (см. рис. 14.3).

Направим на линзу пучок лучей, параллельных ее главной оптической оси. Если лучи, пройдя сквозь линзу, идут сходящимся пучком, такая линза — собирающая. Точка F, в которой пересекаются преломленные лучи, — действительный главный фокус линзы (рис. 14.4).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.4. Ход лучей после преломления в собирающей линзе. Точка F — действительный главный фокус линзы

Линза является рассеивающей, если лучи, параллельные ее главной оптической оси, пройдя сквозь линзу, идут расходящимся пучком. Точку F, в которой пересекаются продолжения преломленных лучей, называют мнимым главным фокусом линзы (рис. 14.5).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.5. Ход лучей после преломления в рассеивающей линзе. Точка F — мнимый главный фокус линзы

Обратите внимание: любой пучок параллельных лучей, даже если эти лучи не параллельны главной оптической оси, после преломления в собирающей линзе всегда пересекаются в одной точке (рис. 14.6) (если линза рассеивающая, в одной точке пересекаются продолжения преломленных лучей).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.6. Ход параллельных лучей после преломления в собирающей линзе

Если оптическая плотность материала, из которого изготовлена линза, больше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет собирать лучи (будет собирающей), а вогнутая линза будет рассеивать лучи (будет рассеивающей) (см. рис. 14.4, 14.5).

Если оптическая плотность материала, из которого изготовлена линза, меньше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет рассеивающей (рис. 14.7, а), а вогнутая линза — собирающей (рис. 14.7, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.7. Выпуклая (а) и вогнутая (б) воздушные линзы в воде

Определение оптической силы линзы

Любая линза имеет два главных фокуса*, расположенных на одинаковом расстоянии от оптического центра линзы (см. рис. 14.8).

Линзы в физике - виды, формулы и определения с примерамиДалее главный фокус линзы, как правило, будем называть фокусом линзы.

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.8. Чем меньше радиусы R сферических поверхностей, ограничивающих линзу, тем сильнее эта линза преломляет свет, а значит, тем меньше ее фокусное расстояние F

Расстояние от оптического центра линзы до главного фокуса называют фокусным расстоянием линзы.

Фокусное расстояние, как и фокус, обозначают символом F. Единица фокусного расстояния в СИметр:

Линзы в физике - виды, формулы и определения с примерами

Фокусное расстояние собирающей линзы договорились считать положительным, а рассеивающей — отрицательным. Очевидно, что чем сильнее преломляющие свойства линзы, тем меньше по модулю ее фокусное расстояние (рис. 14.8).

Физическую величину, которая характеризует линзу и является обратной фокусному расстоянию линзы, называют оптической силой линзы.

Оптическую силу линзы обозначают символом D и вычисляют по формуле:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силыдиоптрия: Линзы в физике - виды, формулы и определения с примерами

1 диоптрияэто оптическая сила линзы, фокусное расстояние которой равно 1 м. Оптическая сила собирающей линзы положительна, а рассеивающей линзы — отрицательна.

Подводим итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линза является собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке (эта точка — действительный фокус линзы). Линза является рассеивающей, если параллельные лучи, падающие на нее, после преломления идут расходящимся пучком, а продолжения преломленных лучей пересекаются в одной точке (эта точка — мнимый фокус линзы).

Физическую величину, которая характеризует преломляющие свойства линзы и обратна ее фокусному расстоянию, называют оптической силой линзы: Линзы в физике - виды, формулы и определения с примерами Единица оптической силы линзы — диоптрия Линзы в физике - виды, формулы и определения с примерами

Построение изображений в линзах

Основное свойство линз заключается в том, что линзы дают изображение точки, а соответственно, и предмета (как совокупности точек) (рис. 15.1). В зависимости от расстояния между предметом и линзой изображение предмета может быть больше или меньше, чем сам предмет, мнимым или действительным. Выясним, при каких условиях с помощью линзы образуются те или иные изображения, и рассмотрим приемы их построения.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.1. Получение изображения пламени свечи с помощью собирающей линзы

Любой предмет можно представить как совокупность точек. Каждая точка предмета излучает (или отражает) свет во всех направлениях. В создании изображения участвует множество лучей, однако для построения изображения некоторой точки S достаточно найти точку пересечения любых двух лучей, выходящих из точки S и проходящих через линзу. Обычно для этого выбирают два из трех «удобных лучей» (рис. 15.2).

Точка S1 будет действительным изображением точки S, если в точке пересекаются сами преломленные лучи (рис. 15.2, а). Точка будет мнимым изображением точки S, если в точке пересекаются продолжения преломленных лучей (рис. 15.2, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.2. Три самых простых в построении луча («удобные лучи»):

  1. луч, проходящий через оптический центр О линзы, не преломляется и не изменяет своего направления;
  2. луч, параллельный главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы, после преломления в линзе идет через фокус Линзы в физике - виды, формулы и определения с примерами или через фокус Линзы в физике - виды, формулы и определения с примерами идет его продолжение (б);
  3. луч, проходящий через фокус Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идет параллельно главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы (а, б)

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.3. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен за двойным фокусом линзы; б — ход лучей в фотоаппарате

Строим изображение предмета, которое даёт линза:

Рассмотрим все возможные случаи расположения предмета АВ относительно собирающей линзы и докажем, что размеры и вид изображения зависят от расстояния между предметом и линзой.

1. Предмет расположен за двойным фокусом собирающей линзы (рис. 15.3, а). Сначала построим изображение точки Линзы в физике - виды, формулы и определения с примерами Для этого воспользуемся двумя лучами — 1 и 2. После преломления в линзе они пересекутся в точке Линзы в физике - виды, формулы и определения с примерами Значит, точка Линзы в физике - виды, формулы и определения с примерами является действительным изображением точки Линзы в физике - виды, формулы и определения с примерами Для построения изображения точки Линзы в физике - виды, формулы и определения с примерами опустим из точки Линзы в физике - виды, формулы и определения с примерами перпендикуляр на главную оптическую ось Линзы в физике - виды, формулы и определения с примерами Точка Линзы в физике - виды, формулы и определения с примерами пересечения перпендикуляра и оси I является изображением точки Линзы в физике - виды, формулы и определения с примерами

Итак, Линзы в физике - виды, формулы и определения с примерами — изображение предмета Линзы в физике - виды, формулы и определения с примерами Это изображение действительное, уменьшенное, перевернутое. Такое изображение получается, например, на сетчатке глаза или пленке фотоаппарата (рис. 15.3, б).

2. Предмет расположен между фокусом и двойным фокусом собирающей линзы (рис. 15.4, а). Изображение предмета действительное, увеличенное, перевернутое. Такое изображение позволяет получить на экране проекционная аппаратура (рис. 15.4, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.4. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между фокусом и двойным фокусом линзы; б — ход лучей в проекционном аппарате

3. Предмет расположен между фокусом и собирающей линзой (рис. 15.5, а). Лучи, вышедшие из точки Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идут расходящимся пучком. Однако их продолжения пересекаются в точке Линзы в физике - виды, формулы и определения с примерами

В данном случае изображение предмета является мнимым, увеличенным, прямым. Изображение расположено по ту же сторону от линзы, что и предмет, поэтому мы не можем увидеть изображение предмета на экране, но видим его, когда смотрим на предмет через линзу. Именно такое изображение дает короткофокусная собирающая линза — лупа (рис. 15.5, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.5. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между линзой и ее фокусом; б — с помощью

4. Предмет расположен на фокусном расстоянии от собирающей линзы. После преломления все лучи идут параллельным пучком (рис. 15.6), следовательно, в данном случае ни действительного, ни мнимого изображения мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.6. Если предмет расположен в фокусе собирающей линзы, мы не получим его изображения

Внимательно рассмотрите рис. 15.7, на котором показано построение изображений предмета, полученных с помощью рассеивающей линзы. Видим, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение, расположенное по ту же сторону от линзы, что и сам предмет.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.7. Рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение

Чаще всего предмет больше, чем линза, или часть линзы закрыта непрозрачным экраном (как, например, линза в объективе фотоаппарата). Изменяется ли при этом внешний вид изображения? Конечно же нет. Ведь от каждой точки предмета на линзу падает множество лучей, и все они собираются в соответствующей точке изображения. Если закрыть часть линзы, это приведет лишь к тому, что энергия, попадающая в каждую точку изображения, уменьшится. Изображение будет менее ярким, однако ни его вид, ни месторасположение не изменятся. Именно поэтому, строя изображение, мы можем использовать все «удобные лучи», даже те, которые не проходят через линзу (рис. 15.8).

Формула тонкой линзы:

Построим изображение предмета в собирающей линзе (рис. 15.9).

Рассмотрим прямоугольные треугольники Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами Эти треугольники подобны Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Приравняв правые части равенств (1) и (2), имеем Линзы в физике - виды, формулы и определения с примерами то есть Линзы в физике - виды, формулы и определения с примерамиили Линзы в физике - виды, формулы и определения с примерами Разделив обе части последнего равенства на Линзы в физике - виды, формулы и определения с примерами получим формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

где Линзы в физике - виды, формулы и определения с примерами — оптическая сила линзы.

При решении задач следует иметь в виду:

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.8. Построение изображения предмета в случае, когда предмет значительно больше линзы

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.9. К выведению формулы тонкой линзы: h — высота предмета; Н — высота изображения; d — расстояние от предмета до линзы; f — расстояние от линзы до изображения; F — фокусное расстояние

Пример №10

Рассматривая монету с помощью лупы, оптическая сила которой +10 дптр, мальчик расположил монету на расстоянии 6 см от лупы. Определите: 1) фокусное расстояние линзы; 2) на каком расстоянии от лупы находится изображение монеты; 3) какое изображение дает лупа — действительное или мнимое; 4) какое увеличение дает лупа.

Анализ физической проблемы. Лупу можно считать тонкой линзой, поэтому воспользуемся формулой тонкой линзы. Фокусное расстояние найдем, воспользовавшись определением оптической силы линзы.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Найти:

Линзы в физике - виды, формулы и определения с примерами

Поиск математической модели, решение

По определению Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы: Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами Следовательно, Линзы в физике - виды, формулы и определения с примерами

Зная расстояние Линзы в физике - виды, формулы и определения с примерами определим увеличение Линзы в физике - виды, формулы и определения с примерами

Найдем значения искомых величин:

Линзы в физике - виды, формулы и определения с примерами

Знак «-» перед значением Линзы в физике - виды, формулы и определения с примерами говорит о том, что изображение мнимое.

Ответ: Линзы в физике - виды, формулы и определения с примерами изображение мнимое; Линзы в физике - виды, формулы и определения с примерами

Подводим итоги:

В зависимости от типа линзы (собирающая или рассеивающая) и месторасположения предмета относительно данной линзы получают разные изображения предмета:

Расположение предмета Характеристика изображения в линзе
собирающей рассеивающей
За двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, уменьшенное, перевернутое мнимое, уменьшенное, прямое
В двойном фокусе линзы Линзы в физике - виды, формулы и определения с примерами действительное, равное, перевернутое
Между фокусом и двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, увеличенное, перевернутое
В фокусе линзы Линзы в физике - виды, формулы и определения с примерами изображения нет
Между линзой и фокусом Линзы в физике - виды, формулы и определения с примерами мнимое, увеличенное, прямое

Расстояние Линзы в физике - виды, формулы и определения с примерами от предмета до линзы, расстояние Линзы в физике - виды, формулы и определения с примерами от линзы до изображения и фокусное расстояние Линзы в физике - виды, формулы и определения с примерами связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Звуковые и ультразвуковые колебания
  • Инерция в физике
  • Дифракция света
  • Принцип Гюйгенса — Френеля
  • Прохождение света через плоскопараллельные пластинки и призмы
  • Поляризация света

На прошлом уроке мы с вами говорили о том, что линза — это прозрачное тело, ограниченное криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Она служит для управления световыми пучками, а именно для изменения направления лучей.

До сих пор мы с вами не знаем, как построить изображение предмета в тонкой линзе? Ответу на этот вопрос и будет посвящён наш урок.

Для начала рассмотрим, как получить изображения точечного источника света в собирающей и рассеивающей линзах. Для этого мы с вами будем в основном пользоваться тремя «удобными лучами» — это лучи, ход которых после прохождения через линзу нам заранее известен:

1)    лучи, идущие параллельно главной оптической оси, так как после преломления в линзе, они проходят через её главный фокус (или проходят их продолжения).

2)    из закона обратимости световых лучей следует, что лучи, которые идут к линзе через её фокус, после преломления будут направлены параллельно главной оптической оси — это второй набор лучей.

3)     третий набор лучей выбираем исходя из того, что лучи, проходящие через оптический центр линзы, не меняют своего направления.

Точка пересечения преломлённых лучей в собирающей линзе или их продолжений в рассеивающей, и даёт нам положение изображения точечного источника света.

Усложним задачу. Пусть точечный источник света располагается на главной оптической оси линзы. Найдём, где образуется изображение:

Изображение в собирающей линзе будет являться действительным, так как оно получилось на пересечении самих преломлённых лучей, а в рассеивающей — мнимым, так как оно получено на пересечении продолжений преломлённых лучей.

Теперь рассмотрим, как строятся изображения протяжённых предметов, находящихся на разных расстояниях от собирающей линзы.

Для начала рассмотрим случай, когда предмет находится за двойным фокусом линзы:

Охарактеризуем полученное изображение. Во-первых, оно действительное, так как получилось на пересечении преломлённых лучей. Во-вторых, оно перевёрнутое. И в-третьих, как можно видеть из построения, оно уменьшенное.

Обратите внимание, что если предмет расположен перпендикулярно главной оптической оси, то и его изображение также будет перпендикулярно ей. Зная это, мы сможем построить изображение точки B и опустить перпендикуляр на главную оптическую ось, что мы и будем делать в дальнейшем.

Аналогичным способом, можно построить и охарактеризовать изображение предмета, находящегося на других расстояниях от линзы.

Предмет расположен во втором фокусе линзы.

Предмет находится между первым и вторым фокусом линзы.

Такие изображения получаются, например, на экране кинотеатра. Оно увеличенное — экран намного больше плёнки, на которой записан фильм. На экране реально существует светящаяся картинка. А чтобы фильм не шёл вверх ногами, потому что изображение перевёрнутое, в проекторе стоит система линз, каждая из которых вносит свой вклад в изменение хода лучей.

Построим изображение предмета, находящегося в главном фокусе линзе.

Как видим, преломлённые линзой лучи не пересекаются, как и не пересекаются их продолжения. Следовательно, изображения в этом случае нет.

И нам осталось рассмотреть последний случай, когда предмет находится между главным фокусом и линзой.

Обратите внимание, что в этом случае преломлённые лучи расходятся, а пересекаться будут только их продолжения. Поэтому изображение предмета будет мнимым, увеличенным, прямым и находиться со стороны изображаемого предмета.

Такое изображение мы получаем, например, когда пользуемся увеличительным стеклом для рассмотрения мелких объектов. Получается прямое увеличенное изображение, которое нам видно намного лучше, чем сам предмет. Но, заглянув за увеличительное стекло, увидим, что на самом деле этого увеличенного предмета там нет, то есть изображение мнимое.

При построении изображения действительного предмета в рассеивающей линзе поступают точно так же, как и в случае с собирающей. Единственное отличие состоит в том, что у рассеивающей линзы фокус мнимый.

Изображение, даваемое рассеивающей линзой, всегда мнимое, прямое, уменьшенное и находится между линзой и её фокусом со стороны изображаемого предмета.

Теперь выведем формулу, которая свяжет три величины — расстояние от предмета до линзы, расстояние от линзы до изображения и фокус линзы. Для этого рассмотрим собирающую линзу, предмет АВ и его изображение в этой линзе AB.

В общем виде, формула тонкой линзы записывается следующим образом: сумма величин, обратных расстояниям от предмета до линзы и от линзы до изображения, равна величине, обратной фокусному расстоянию:

Для практического использования формулы тонкой линзы, нам следует запомнить правило знаков:

для собирающей линзы, действительных источника и изображения, фокусное расстояние, расстояние от предмета до линзы и от линзы до изображения считают положительными;

для рассеивающей линзы, мнимых источника и изображения, фокусное расстояние, расстояние от предмета до линзы и от линзы до изображения считают отрицательными.

Стоит сразу отметить, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей, продолжения которых пересекаются в одной точке.

Как вы могли заметить, чаще всего, изображение, получаемое с помощью тонкой линзы, отличается своими размерами от предмета. Так вот, это различие между размерами предмета и размерами его изображения принято характеризовать линейным (или поперечным) увеличением линзы.

Если обозначить размеры предмета h, а размеры изображения — H, то линейное увеличение линзы равно отношению линейного размера изображения к линейному размеру предмета:

Домашняя работа

стр.209 — 212

Упр. 49

Понравилась статья? Поделить с друзьями:
  • Как найти общее количество от процента
  • Как найти нужную ткань в интернете
  • Как найти ндс от суммы 300
  • Как найти высотку треугольника
  • Магнитола sony error 01 как исправить