Как найти изображения светящейся точки

Свойства тонкой линзы определяются главным образом расположением ее главных фокусов. Поэтому, зная расстояние от источника света до линзы, а также ее фокусное расстояние (положение фокусов), мы можем определить расстояние до изображения, опустив описание хода лучей внутри самой линзы. Поэтому в изображении на чертеже точного вида сферических поверхностей линзы необходимость отсутствует.

Схематически тонкие линзы обозначают отрезком со стрелками на конце. Они смотрят от центра в противоположные стороны, если линза собирающая, и они направлены к центру отрезка, если линза рассеивающая.

Внимание!

Напомним, что линзы могут давать действительные и мнительные изображения. Причем, собирающая линза может давать как действительные, так и мнимые изображения. Рассеивающая линза всегда дает только мнимые изображения.

Способ построения изображений, а также вид самих изображений в линзе зависит от того, где расположен изображаемый предмет. Он может располагаться за двойным фокусным расстоянием, в фокальной плоскости второго фокуса, между вторым и первым фокусом, в фокальной плоскости главного фокуса и на расстоянии меньше фокусного расстояния линзы.

Определение

Вторым фокусом называют точку, которая расположена на главной оптической оси от главного фокуса на расстоянии, равном фокусному расстоянию линзы. Относительно линзы он располагается на расстоянии, равном двойному фокусному расстоянию линзы.

Построение изображения в собирающей линзе

Предметы схематично изображаются в виде стрелки. Чтобы построить изображение предмета в собирающей линзе, нужно найти положение верхней и нижней точки этого изображения. Сначала находят положение точки изображения, соответствующей верхней точки предмета (точки А). Для этого из этой точки нужно пустить два луча:

Два вида лучей при построении изображений в линзе

Первый луч проходит из верхней точки предмета (точки А) параллельно главной оптической оси. На линзе (в точке С) луч преломляется и проходит через точку фокуса (точку F).

Второй луч необходимо направить из верхней точки предмета (точки А) через оптический центр линзы (точку О). Он пройдет, не преломившись.

На пересечении двух лучей обозначаем точку А1. Это и будет изображение верхней точки предмета. Таким же образом нужно поступить с нижней точкой предмета. Но на пересечении вышедших из линзы лучей нужно поставить точку В1. Изображение предмета при этом — А1 В1.

В зависимости от того, где расположен предмет, изображение может получиться действительным или мнимым, увеличенным или уменьшенным, перевернутым или прямым. Построим изображения для каждого из таких случаев.

Схема построения изображения Расположение предмета относительно линзы + характеристика изображение
Если предмет располагается за двойным фокусом Предмет располагается за двойным фокусом.

Изображение:

  • уменьшенное;
  • перевернутое;
  • действительное.
Если предмет располагается в точке двойного фокуса Предмет располагается в фокальной плоскости второго фокуса.

Изображение:

  • перевернутое;
  • действительное.
Если предмет располагается в пространстве между фокусом и двойным фокусом Предмет располагается в пространстве между фокусом и двойным фокусом.

Изображение:

  • увеличенное;
  • перевернутое;
  • действительное.
Если предмет находится в фокальной плоскости Предмет находится в фокальной плоскости.

Изображения нет, поскольку лучи идут параллельно друг другу и не пересекаются.

https://static-interneturok.cdnvideo.ru/content/konspekt_image/72857/a744ac20_1bd0_0131_9837_12313b01b931.jpg Предмет располагается между линзой и фокусом.

Изображение:

  • увеличенное;
  • прямое;
  • мнимое.

Пример №1. Построить изображение предмета, изображенного на рисунке. Определить тип изображения.

Чтобы построить изображение предмета, достаточно определить его положение одной точки — верхней. Поскольку предмет расположен параллельно линзе, для построения изображения, достаточно будет соединить найденную точку изображения для верхней точки предмета перпендикуляром, проведенным к главной оптической оси.

Чтобы построить изображение верхней точки, пустим от нее два луча — побочную оптическую ось через оптический центр и перпендикуляр к линзе. Затем найдем пересечение побочной оптической оси с преломленным лучом. Теперь пустим перпендикуляр к главной оптической оси и получим изображение. Оно является действительным, увеличенным и перевернутым.

Частный случай — построение изображения точки

Положение изображения точки можно найти тем же способом, описанным выше. Нужно лишь построить два луча и найти их пересечение после выхода из линзы (см. рисунок ниже). Так, изображению точки S соответствует точка S´.

Тонкие линзы. Построение изображений - материалы для подготовки к ЕГЭ по Физике | ЕГЭ

Особую сложность составляет случай, когда точка расположена на главной оптической оси. Сложность заключается в том, что все лучи, которые можно построить, будут совпадать с главной оптической осью. Поэтому возникает необходимость в определении хода произвольного луча. Направим луч от точки S (луч SB) к собирающей линзе. Затем построим побочную оптическую ось PQ такую, которая будет параллельна лучу SB. После этого построим фокальную плоскость и найдем точку пересечения (точка С) фокальной плоскости с побочной оптической осью. Теперь соединим полученную точку С с точкой В. Это будет преломленный луч. Продолжим его до пересечения с главной оптической осью. Точка пересечения с ней и будет изображением точки S. В данном случае оно является мнимым.

Министерство образования и науки РФ Федеральное государственное авт

Пример №2. Построить изображение точки, расположенной на главной оптической оси.

Чтобы построить изображение, пустим произвольный луч к линзе. Затем построим параллельную ему побочную оптическую ось и фокальную плоскость. Из места пересечения этой оси с фокальной плоскостью пустим луч, также проходящий через точку пересечения линзы с произвольным лучом. Построим продолжение луча до получения точки пересечения с главной оптической осью. Отметим точку пересечения — она является действительным изображением точки.

Построение изображения в рассеивающей линзе

Чтобы построить изображение предмета в рассеивающей линзе, нужно определить положения точек изображения, соответствующих верхней и нижней точкам предмета. Вот как определить положение точки изображения для верхней точки предмета:

  1. Нужно пустить луч, перпендикулярный главной оптической оси. Этот луч после преломления отклонится. Но его продолжение обязательно пересечет главный фокус линзы.
  2. Нужно пустить луч от верхней точки предмета через оптический центр линзы (построить побочную оптическую ось).
  3. Точку пересечения продолжения луча, полученного в шаге 1, с побочной оптической осью, нужно обозначить за изображение верхней точки предмета (на рисунке это точка А´).

Точно такие же действия нужно выполнить для нижней точки предмета. В результате получится точка пересечения, соответствующая изображению нижней точки предмета (на рисунке это точка А´´).

График рассеивающей линзы

Внимание! Независимо от расположения предмета относительно рассеивающей линзы, изображение всегда получается прямым, уменьшенным, мнимым.

Пример №3. Построить изображение предмета в рассеивающей линзе.

Чтобы построить изображение, пустим от верхней точки предмета побочную оптическую ось через оптический центр и проведем перпендикуляр к линзе. Затем из точки главного фокуса проведем луч через точку пересечения линзы с перпендикуляром. Пересечение этого луча с побочной оптической осью есть изображение верхней точки предмета. Теперь проведем от нее перпендикуляр к главной оптической оси. Это и будет являться изображением предмета. Оно является мнимым, уменьшенным и прямым.

Построение изображений в плоском зеркале

Определение

Плоское зеркало — это плоская поверхность, зеркально отражающая свет.

Построение изображения в зеркалах основывается на законах прямолинейного распространения и отражения света. Продемонстрируем это с помощью рисунка ниже.

http://www.physbook.ru/images/thumb/8/8c/Aksen-16.10.jpg/300px-Aksen-16.10.jpg

Построим изображение точечного источника S. От точечного источника света лучи распространяются во все стороны. На зеркало падает пучок света ASB, и изображение создается всем пучком сразу. Но для построения изображения достаточно взять любые два луча из этого пучка. Пусть это будут лучи SO и SC.  Луч SO падает перпендикулярно поверхности зеркала АВ. Поскольку угол между ним и перпендикуляром, восстановленным в точке падения, равен 0, то угол падения принимаем равным за 0. поэтому отраженный пойдет в обратном направлении OS. Луч SC отразится под углом γ=α. Отраженные лучи OS и СК расходятся и не пересекаются, но если они попадают в глаз человека, то человек увидит изображение S1, которое представляет собой точку пересечения продолжения отраженных лучей.

Таким образом, чтобы получить изображение в плоском зеркале, нужно:

  • Пустить от источника света луч, перпендикулярный к плоскости зеркала (падающий луч совпадает с отраженным лучом).
  • Пустить от источника света к плоскости зеркала еще один луч под произвольным углом.
  • Построить отраженный луч от падающего луча, построенного в шаге 2, используя закон отражения света.
  • Найти пересечение продолжений отраженных от зеркала лучей (пущенного под прямым углом и произвольным углом).

Внимание!

Изображение в зеркале всегда является мнимым. Это связано с тем, что изображение строится на пересечении продолжении лучей, а не на самих лучах.

Изображение в плоском зеркале находится от зеркала на таком же расстоянии, как предмет от этого зеркала. Это легко доказать тем, что треугольники SOC и S1OC равны по стороне и двум углам. Следовательно SO = S1O. Отсюда делаем вывод, что для построения изображения точечного источника света достаточно знать расстояние, на котором он находится от зеркала. Останется только провести к зеркалу перпендикулярную прямую и отложить на ней точку на нужном расстоянии.

При построении изображения какого-либо предмета последний представляют как совокупность точечных источников света. Поэтому достаточно найти изображение крайних точек предмета. Так, изображение А1В1 соответствует предмету АВ.

Изображение и сам предмет всегда симметричны относительно зеркала.

Пример №4. Построить изображение треугольника ABC в плоском зеркале.

Чтобы построить изображение, пустим к плоскому зеркалу перпендикулярные прямые. Затем измерим расстояние от каждой точки до зеркала и отложим их по перпендикуляру от зеркала в обратную сторону. Так для точки А мы находим точку А´, для В — В´, для С — С´.

Видно, что треугольник отразился зеркально (изображение и предмет симметричны друг другу). Так и должно быть в случае с зеркалом.

Задание EF17760

Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Сделать рисунок — построить изображение в линзе.

3.Записать формулу для нахождения площади полученной фигуры.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Оптическая сила линзы: D = 2,5 дптр.

 Сторона треугольника AC = 4 см.

4 см = 0,04 м

Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.

Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.

Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:

1d+1f=1F

Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:

12F+1f=1F

1f=1F12F=212F=12F

f=2F

Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:

S=AC·BC2

Из формулы оптической силы линзы найдем фокусное расстояние:

F=1D=12,5=0,4 (м)

Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:

dC=2FAC=2·0,40,04=0,76 (м)

Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:

10,76+1f=1F

1fC=1F10,76=0,76F0,76F=0,760,40,76·0,4

fC=0,76·0,40,760,4=0,844 (м)

Тогда длина катета A´ C´ будет равна:

AC=fCfA=fC2F=0,8440,4·2=0,044 (м)

Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей). Следовательно BC относится к B´ C´ так же, как OC относится к C´O:

BCBC=ACAC

Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:

ACBC=ACAC

Следовательно:

BC=AC

Отсюда площадь треугольника равна:

S=AC·AC2=(0,044)22=0,000968 (м2)=9,68 (см2)

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18181

Предмет S отражается в плоском зеркале ab. На каком рисунке верно показано изображение S1 этого предмета?

Ответ:


Алгоритм решения

  1. Записать, какое изображение дает плоское зеркало.
  2. Выбрать изображение, которое соответствует типу описанного изображения.

Решение

Зеркало дает мнимое изображение предмета без увеличения в зеркальном отражении. Это значит, что предмет и его изображение должны быть симметричны относительно плоскости зеркала. Симметричными являются только предмет и его изображение на последнем рисунке — Г.

Ответ: Г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18876

Какая точка является изображением точки S (см. рисунок), создаваемым тонкой собирающей линзой с фокусным расстоянием F?


Алгоритм решения

1.Построить изображение точки.

Решение

Построим изображение точки с учетом того, что линза собирающая. Для этого пустим из этой точки луч света, параллельный главной оптической оси. После прохождения через линзу луч преломится и пройдет через фокус. Затем пустим луч от этой точки через оптический центр линзы. Точка, в которой оба луча пересекутся, будет искомой. В данном случае это точка 4.

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 32.5k

Тонкие линзы. Построение изображений.

  • Собирающая линза: действительное изображение точки.

  • Собирающая линза: действительное изображение предмета.

  • Собирающая линза: мнимое изображение точки.

  • Собирающая линза: мнимое изображение предмета.

  • Собирающая линза: предмет в фокальной плоскости.

  • Рассеивающая линза: мнимое изображение точки.

  • Рассеивающая линза: мнимое изображение предмета.

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка S, то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке S{}.

Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы.

Точка S{} называется изображением точки S.

Если в точке S{} пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке S{} концентрируется энергия световых лучей.

Если же в точке S{} пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке S{} не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга — достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

к оглавлению ▴

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть a — расстояние от точки S до линзы, f — фокусное расстояние линзы. Имеются два принципиально разных случая: a>f и a<f (а также промежуточный случай a=f). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: a>f. Точечный источник света S расположен дальше от линзы, чем левая фокальная плоскость (рис. 1).

Рис. 1. Случай a>f: действительное изображение точки S

Луч SO, идущий через оптический центр, не преломляется. Мы возьмём произвольный луч SX, построим точку S{}, в которой преломлённый луч пересекается с лучом SO, а затем покажем, что положение точки S{} не зависит от выбора луча SX (иными словами, точка S{} является одной и той же для всевозможных лучей SX ). Тем самым окажется, что все лучи, исходящие из точки S, после преломления в линзе пересекаются в точке S{} и теорема об изображении будет доказана для рассматриваемого случая a>f.

Точку S{} мы найдём, построив дальнейший ход луча SX. Делать это мы умеем: параллельно лучу SX проводим побочную оптическую ось OP до пересечения с фокальной плоскостью в побочном фокусе P, после чего проводим преломлённый луч XP до пересечения с лучом SO в точке S{}.

Теперь будем искать расстояние b от точки S{} до линзы. Мы покажем, что это расстояние выражается только через a и f, т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча SX.

Опустим перпендикуляры SA и S{} на главную оптическую ось. Проведём также SK параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

triangle SAO sim triangle S{}, (1)
triangle SXS{}, (2)
triangle SXK sim triangle OPF. (3)

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

frac{displaystyle AO}{displaystyle OA{} (4)

Но AO=SK=a, OA{}, так что соотношение (4) переписывается в виде:

frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}-1. (5)

Отсюда находим искомое расстояние от точки S{} до линзы:

b=frac{displaystyle af}{displaystyle a-displaystyle f}. (6)

Как видим, оно и в самом деле не зависит от выбора луча SX. Следовательно, любой луч SX после преломления в линзе пройдёт через построенную нами точку S{}, и эта точка будет действительным изображением источника S

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника S пересекаются после линзы в одной точке — его изображении S{} — то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник S не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

— луч, идущий через оптический центр линзы — он не преломляется;
— луч, параллельный главной оптической оси — после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2.

Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то удобный луч остаётся лишь один — идущий вдоль главной оптической оси. В качестве второго луча приходится брать «неудобный» (рис. 3).

Рис. 3. Построение изображения точки S, лежащей на главной оптической оси

Посмотрим ещё раз на выражение ( 5). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

1+frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}.

Теперь разделим обе части этого равенства на a:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (7)

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для a>f. В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6). Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что b не зависит от расстояния SA (рис. 1, 2) между источником S и главной оптической осью!

Это означает, что какую бы точку M отрезка SA мы ни взяли, её изображение будет находиться на одном и том же расстоянии b от линзы. Оно будет лежать на отрезке S{} — а именно, на пересечении отрезка S{} с лучом MO, который пойдёт сквозь линзу без преломления. В частности, изображением точки A будет точка A{}.

Тем самым мы установили важный факт: изображением отрезка SA лужит отрезок S{}. Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить — прямым или перевёрнутым получается изображение.

к оглавлению ▴

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая a>f. Здесь можно выделить три характерных ситуации.

1. f<a<2f. Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4; двойной фокус обозначен 2F). Из формулы линзы следует, что в этом случае будет b>2f (почему?).

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах — эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым — чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г — (это заглавная греческая «гамма»):

Gamma =frac{displaystyle A{}.

Из подобия треугольников triangle ABO и triangle A{} получим:

Gamma =frac{displaystyle A{}. (8)

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. a=2f. В этом случае из формулы (6) находим, что и b=2f. Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5).

Рис. 5.a=2f: размер изображения равен размеру предмета

3. a>2f. В этом случае из формулы линзы следует, что b<2f (почему?). Линейное увеличение линзы будет меньше единицы — изображение действительное, перевёрнутое, уменьшенное (рис. 6).

Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов — словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая a>2f нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

к оглавлению ▴

Собирающая линза: мнимое изображение точки.

Второй случай: a<f. Точечный источник света S расположен между линзой и фокальной плоскостью (рис. 7).

Рис. 7. Случай a < f: мнимое изображение точки

Наряду с лучом SO, идущим без преломления, мы снова рассматриваем произвольный луч SX. Однако теперь на выходе из линзы получаются два расходящихся луча OE и XP. Наш глаз продолжит эти лучи до пересечения в точке S{}.

Теорема об изображении утверждает, что точка S{} будет одной и той же для всех лучей SX, исходящих из точки S. Мы опять докажем это с помощью трёх пар подобных треугольников:

triangle SAOsim triangle S{}

Снова обозначая через b расстояние от S{} до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

frac{displaystyle a}{displaystyle b}=frac{displaystyle AO}{displaystyle A{}. (9)

Отсюда

b=frac{displaystyle fa}{displaystyle f-displaystyle a}. (10)

Величина b не зависит от луча SX, что и доказывает теорему об изображении для нашего случая a<f. Итак, S{} — мнимое изображение источника S. Если точка S не лежит на главной оптической оси, то для построения изображения S{} удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8).

Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси

Ну а если точка S лежит на главной оптической оси, то деваться некуда — придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9).

Рис. 9. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая a<f. Сначала переписываем это соотношение в виде:

1-frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f},

а затем делим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (11)

Сравнивая (7) и (11), мы видим небольшую разницу: перед слагаемым 1/b стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина b, вычисляемая по формуле (10), не зависит также от расстояния SA между точкой S и главной оптической осью. Как и выше (вспомните рассуждение с точкой M), это означает, что изображением отрезка SA на рис. 9 будет отрезок S{}.

к оглавлению ▴

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10). Оно получается мнимым, прямым и увеличенным.

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло — лупу. Случай a<f полностью разобран. Как видите, он качественно отличается от нашего первого случая a>f. Это не удивительно — ведь между ними лежит промежуточный «катастрофический» случай a=f.

к оглавлению ▴

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай:a=f. Источник света S расположен в фокальной плоскости линзы (рис. 11).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости — а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника S, расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.

Рис. 11. a=f: изображение отсутствует

Где же изображение точки S? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае — изображение S{} находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

к оглавлению ▴

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч SO и произвольный луч SX (рис. 12). На выходе из линзы имеем два расходящихся луча OE и XY, которые наш глаз достраивает до пересечения в точке S{}.

Рис. 12. Мнимое изображение точки S в рассеивающей линзе

Нам снова предстоит доказать теорему об изображении — о том, что точка S{} будет одной и той же для всех лучей SX. Действуем с помощью всё тех же трёх пар подобных треугольников:

triangle SAOsim triangle S{}.

Имеем:

frac{displaystyle a}{displaystyle b}= frac{displaystyle AO}{displaystyle A{} (12)

Отсюда

b=frac{displaystyle af}{displaystyle a+displaystyle f}. (13)

Величина b не зависит от луча span
SX, поэтому продолжения всех преломлённых лучей span
XY пересекутся в точке S{} — мнимом изображении точки S. Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10). В случае a=f их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации a>f и a<f.

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника — случай тут, как мы и сказали выше, имеется только один.

Если точка S не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой — параллельно главной оптической оси (рис. 13).

Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14).

Рис. 14. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

1-frac{displaystyle a}{displaystyle b}=-frac{displaystyle a}{displaystyle f},

а потом разделим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=-frac{displaystyle 1}{displaystyle f}. (14)

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7), (11) и (14) можно записать единообразно:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f},

если соблюдать следующую договорённость о знаках:

— для мнимого изображения величина b считается отрицательной;
— для рассеивающей линзы величина f считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

к оглавлению ▴

Величина b , вычисляемая по формуле (13), опять-таки не зависит от расстояния SA между точкой S и главной оптической осью. Это снова даёт нам возможность построить изображение предмета AB, которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15).

Рис. 15. Изображение мнимое, прямое, уменьшенное

Разберем задачи ЕГЭ по теме: Тонкие линзы. Построение изображений.

1. Тонкая собирающая линза с фокусным расстоянием F находится между двумя точечными источниками света на расстоянии d=15 см от одного из них. Источники расположены на главной оптической оси на расстоянии L=22,5 см друг от друга. Найдите фокусное расстояние линзы, если их изображения получились в одной точке. Ответ выразите в сантиметрах.
Дано:
d_1 = 15 см = 0,15 м
L = 22,5 см=0,225 м
Найти:
Фокусное расстояние F — ?

Решение:
Тонкая собирающая линза дает различные виды изображений: увеличенные (уменьшенные), прямые (обратные), действительные (мнимые). Характеристика изображения зависит от расстояния от предмета до линзы, т.е. от соотношения d и F.
Так как в задаче говорится о получении изображений в одной точке, то один из точечных источников должен находиться за фокусом линзы – он дает действительное изображение. Второй точечный источник должен находиться перед фокусом – он дает мнимое изображение.

На рис. 1 представлено получение изображения для точечного источника света S_1, находящегося на расстоянии больше фокусного, S_1 — изображение точечного источника света S_1.

На рис. 2 представлено получение изображения для точечного источника света S_2, находящегося на расстоянии меньше фокусного, S_2— изображение точечного источника света S_2.
После создания модели, поясняющей условие этой задачи, можно переходить к её решению. Для этого надо применить формулу тонкой линзы для двух случаев. С учетом правила знаков f_1>0,f_2<0, так как изображение в первом случае действительное, во втором – мнимое.

frac{1}{d_1}+frac{1}{f_1}=frac{1}{F} (1)

frac{1}{d_2}-frac{1}{f_2}=frac{1}{F} (2)

Сложим эти два уравнения и учтем, что frac{1}{f_1}+left(-frac{1}{f_2}right)=0. Так как изображения в двух случаях получались в одной точке, то f_1=f_2.

frac{1}{d_1}+frac{1}{d_2}=frac{2}{F}

frac{d_1+d_2}{d_1cdot d_2}=frac{2}{F}

F=frac{2d_1cdot d_2}{d_1+d_2}

Определим, что d_2=L-d_1; d_2=0,225-0,15=0,075 (м).

F=frac{2cdot 0,15cdot 0,075}{0,15+0,075}=0,1 (м) =10 (см).

Ответ: 10

2. Какая из точек (1, 2, 3 или 4) является изображением точки S, созданным тонкой собирающей линзой с фокусным расстоянием F (см. рисунок)?

Решение:

Для получения изображения точечного источника S необходимо осуществить построение двух любых лучей, исходящих от этого источника. Самым «удобным» лучом является луч, проходящий через оптический центр линзы. Такие лучи, после прохождения через линзу, не меняют своего направления. На рисунке таким лучом является луч 1-1ʹ.
Второй и третий лучи от точечного источника S попадают на линзу произвольно. Дальнейший ход таких лучей определяется следующим алгоритмом:

  1. необходимо построить побочные оптические оси, параллельные падающим лучам (на рисунке они проведены пунктирной линией);
  2. провести фокальную плоскость и найти точки пересечения этой плоскости с побочными оптическими осями;
  3. продолжить ход световых лучей после прохождения через линзу (на рисунке это лучи 2ʹ и 3ʹ).

Поэтому изображением точечного источника S (точки S) будет являться точка 2.
При решении этой задачи мы рассмотрели ход трех лучей сквозь линзу, для получения ответа достаточно взять любую комбинацию лучей (1-1ʹ и 2 — 2ʹ) или (1-1ʹ и 3 — 3ʹ ).
Ответ: 2

3. Спираль лампочки расположена вблизи главной оптической оси тонкой рассеивающей линзы на расстоянии а от неё перпендикулярно этой оси, причем F < a < 2F, где F – модуль фокусного расстояния линзы. Затем рассеивающую линзу заменили на собирающую с фокусным расстоянием F. Установите соответствие между видом линзы, использованной в опыте, и свойствами даваемого ею изображения.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Виды линз Свойства изображения
А) линза рассеивающая 1) мнимое, прямое, уменьшенное
Б) линза собирающая 2) мнимое, перевёрнутое, увеличенное
3) действительное, перевёрнутое, увеличенное
4) действительное, прямое, увеличенное

Решение
Решение подобных задач опирается на умение строить изображения протяженных (имеющих размеры) предметов при прохождении лучей через линзу.

Рис.1

На рис.1 выполнено построение изображения предмета АВ в тонкой собирающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный за линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
увеличенное (размер изображения превышает размер предмета),
перевернутое (направления стрелок АВ и АʹВʹ противоположны),
действительное (предмет и его изображения находятся по разные стороны от линзы).

Рис.2

На рис.2 выполнено построение изображения предмета АВ в тонкой рассеивающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный перед линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
уменьшенное (размер изображения меньше размера предмета),
прямое (направления стрелок АВ и АʹВʹ совпадают),
мнимое (предмет и его изображения находятся с одной стороны от линзы).
Полученные изображения и их характеристики приводят к следующему ответу:

4. На рисунке показан ход лучей от точечного источника света S через тонкую линзу. Какова оптическая сила этой линзы? (Ответ дать в диоптриях.)

Решение:

На рисунке представлен ход световых лучей от точечного источника света S. Луч, проходящий через оптический центр, не меняет своего направления. Второй луч, идущий параллельно главной оптической оси, после преломления идет через фокус. Это позволяет определить фокусное расстояние линзы. Согласно рисунку, оно равно двум клеткам. С учётом указанного масштаба, длина одной клетки равна 4 см. Таким образом, фокусное расстояние этой линзы F=8 см = 0,08 м.

Так как оптическая сила линзы D=frac{1}{F}=frac{1}{0,08}=12,5 (дптр).

Ответ: 12,5

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
 

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тонкие линзы. Построение изображений.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

С помощью линз можно изменять направление распространения световых лучей. После прохождения через собирающую линзу лучи пересекутся в одной точке — в фокусе линзы.

А после прохождения через рассеивающую линзу в ее фокусе пересекаются не сами лучи, а их воображаемые продолжения. Такой фокус будет находиться на той же стороне от линзы, что и предмет, и называться мнимым.

Но главная особенность линз все же заключается в получении различных изображений предмета. Логично начать их изучение с более простого варианта — изображения точки, даваемого линзой. Изменяются ли такие изображения при изменении каких-либо других параметров? Как правильно построить изображение?

На данном уроке вы начнете узнавать ответы на эти вопросы и научитесь строить изображения светящихся точек, даваемые различными линзами.

Фокус линзы и изображение светящейся точки

Для начала рассмотрим простой опыт. У нас есть большая собирающая линза и маленькая лампочка. Подвесим лампочку так, чтобы она оказалась между линзой и ее фокусом $F$ (рисунок 1).

В данной опыте лампочка будет являться точечным источником света — светящейся точкой $S$.

Рисунок 1. Изображение светящейся точки, даваемое линзой

Теперь включим лампочку и посмотрим на нее через линзу. Мы увидим не саму лампочку, а ее изображение — яркую точку $S_1$ с той же стороны, где она действительно находится.

Но нам будет казаться, что эта точка (горящая лампочка) находится немного дальше своего истинного положения.

Попробуем изменить положение лампочки относительно ее фокуса. Для этого начнём постепенно отодвигать ее дальше от линзы. Мы увидим, что ее изображение тоже изменяется.

Например, когда мы переместим лампочку за фокус линзы, то изображение пропадет. Но оно никуда не исчезло. Изображение появится с другой стороны линзы. Чтобы его увидеть, нам нужно поместить экран (подобный экрану проектора) с той же стороны, где находится динозаврик на рисунке 1. Передвигая экран, мы поймаем момент, когда на нем появится изображение. Оно будет находиться очень далеко от линзы и от нас.

Значит, передвигая светящуюся точку на различные расстояния от ее фокуса, мы можем получить ее различные изображения. Кроме того, мы научимся получать и оценивать такие изображения без практического опыта. Для этого мы займемся построением таких изображений на схемах. 

При построении изображения предмета используются 2 точки и более. Значит, сначала мы должны научиться строить изображения этих точек. После этого мы сможем перейти к более сложным предметам и их изображениям в следующем уроке.

Построение изображения светящейся точки, даваемое собирающей линзой

Итак, рассмотрим построение точки, даваемое собирающей линзой.

Вы знаете из прошлого урока, что любая линза имеет свою оптическую ось. Эта ось проходит через оптический центр линзы. Его главная особенность в том, что лучи, проходящие через него, не изменяют направления распространения — преломленный луч совпадает по направлению с падающим. Также на оптической оси с двух сторон от линзы находятся два ее фокуса, равноудаленные от оптического центра.

Рассмотрим ситуацию, когда светящаяся точка $S$ находится не на оптической оси линзы (рисунок 2).

Рисунок 2. Построение изображения светящейся точки, даваемое собирающей линзой

Для построения точки нам будет достаточно использование всего двух лучей. По возможности мы всегда будем выбирать такие лучи, ход которых нам точно известен:

  1. Луч, параллельный оптической оси. После прохождения сквозь линзу он пересечет оптическую ось в фокусе
  2. Луч, проходящий через оптический центр. На выходе из линзы он не изменит своего направления

На рисунке 2 первому лучу соответствует луч $SC$, а второму — луч $SO$. Продолжим эти лучи до их пересечения друг с другом. Так мы получили точку $S_1$. Это изображение нашей светящейся точки $S$.

Точка пересечения преломленных собирающей линзой лучей дает нам положение изображения точечного источника света.

Как это изображение точки будет выглядеть в реальности? Мы можем провести практический опыт, выполняя те же условия положения светящейся точки, что и при создании чертежа. Взгляните на рисунок 3.

Рисунок 3. Изображение светящейся точки, даваемое собирающей линзой, в действительности

Как вы видите, мы получили изображение светящейся точки именно в том положении, в каком оно находится на нашем чертеже (рисунок 2).

Светящаяся точка (лампочка) находится с одной стороны от линзы, а ее изображение — с другой. Поэтому, чтобы мы смогли увидеть это изображение, используется экран. Если мы передвинем его чуть дальше или чуть ближе, изображения мы не получим. Оно образуется только в определенном месте — точке пересечения преломленных линзой лучей.

Построение изображения светящейся точки, находящейся на оптической оси собирающей линзы

Теперь рассмотрим другой возможный вариант расположения светящейся точки — на оптической оси линзы (рисунок 4).

Рисунок 4. Построение изображения светящейся точки, находящейся на оптической оси, даваемое собирающей линзой

В данном случае луч, параллельный оптической оси, и луч, проходящий через оптический центр, — это один и тот же луч $SO$. Он совпадает с оптической осью. Значит, изображение точки $S$ тоже будет находиться на оптической оси.

Как же выбрать второй луч? Здесь мы будем использовать новое определение.

Фокальная плоскость — это плоскость, проходящая через фокус перпендикулярно оптической оси.

На рисунке 3 фокальная плоскость обозначена прямой $AB$.

Выберем луч, падающий на линзу под произвольным углом (луч $SC$). Теперь нам нужно определить его дальнейший ход.

Здесь мы будем использовать следующий хитрый прием. Проведем через оптический центр $O$ прямую, которая будет параллельна нашему лучу $SC$. Эта прямая называется побочной оптической осью

Она пересекает фокальную плоскость $AB$ в точке $F’$ — побочном фокусе линзы. Все лучи, параллельные лучу $SC$ после прохождения сквозь линзу пройдут и через эту точку.

Продолжим полученный луч $CF’$ до пересечения с лучом $SO$ или главной оптической осью. Точка их пересечения $S_1$ — изображение светящейся точки $S$. Такое изображение называется действительным.

Изображение, даваемое собирающей линзой является действительным, когда оно получается на пересечении самих преломленных лучей.

Заметьте, что если мы выберем другой световой луч (не $SC$), и проделаем те же самые манипуляции, мы получим то же самое положение изображения $S_1$.

Построение изображения светящейся точки, даваемое рассеивающей линзой

Теперь построим изображение светящейся точки, которое дает рассеивающая линза (рисунок 5).

Рисунок 5. Построение изображения светящейся точки, даваемое рассеивающей линзой

Выбираем два световых луча:

  1. Луч $SO$ проходит через оптический центр $O$ и не преломляется
  2. Луч $SC$ параллелен оптической оси. После прохождения сквозь линзу он преломляется таким образом, что его продолжение проходит через фокус $F$

В итоге, продолжения преломленных лучей ($SO$ и $FC$) пересеклись в точке $S_1$. Так мы получили изображение светящейся точки $S$.

Точка пересечения продолжений преломленных рассеянной линзой лучей дает нам положение изображения точечного источника света.

Подтвердим правильность нашего чертежа опытным путем. Возьмем рассеивающую линзу и поместим нашу лампочку за фокусом и не на оптической оси (рисунок 6).

Рисунок 6. Изображение светящейся точки, даваемое рассеивающей линзой, в действительности

Мы получим мнимое изображение светящейся точки именно там, где мы получили его на чертеже (рисунок 5). Для того чтобы увидеть такое изображение, экран нам не нужен. Достаточно просто посмотреть через линзу.

Обратите внимание на тот факт, что саму лампочку мы не увидим, мы увидим только ее мнимое изображение $S_1$. Оно будет казаться нам ближе к линзе, чем лампочка находится в действительности.

Построение изображения светящейся точки, находящейся на оптической оси рассеивающей линзы

Для построения изображение такой точки мы будем действовать так же, как и при использовании собирающей линзы.

Луч $SO$ будет совпадать с оптической осью (рисунок 6). Значит, изображение светящейся точки $S$ тоже будет находиться на оптической оси.

Рисунок 6. Построение изображения светящейся точки, находящейся на оптической оси, даваемое рассеивающей линзой
  • Проведем произвольный луч $SC$
  • Параллельно ему проведем побочную ось (отмечена пунктирной линией)
  • Отметим фокальную плоскость $AB$
  • Фокальная плоскость и побочная ось пересеклись в точке $F’$ — побочном фокусе
  • Соединим $F’$ и точку падения луча $C$ — получим продолжение преломленного луча
  • Это продолжение ($F’C$) пересекается с лучом $SO$  в точке $S_1$, которая является изображением светящейся точки $S$

Мы сказали, что изображение, даваемом рассеивающей линзой, находится на пересечении продолжений преломленных лучей. Падающий луч $SO$ преломляется, но не меняет своего направления. Поэтому мы используем его как продолжение преломленного луча — ведь они совпадают друг с другом.

Вы заметили, что изображения, полученные с помощью рассеивающей линзы, находятся по ту же сторону от нее, что и реальный объект. Такие изображения называются мнимыми.

Изображение, даваемое рассеивающей линзой является мнимым, так как оно получено на пересечении продолжений преломленных лучей.

Памятки для построения изображений

Если светящаяся точка находится не на оптической оси линзы, то для построения и оценки ее изображения необходимо выполнить следующие действия:

  1. Изобразить линзу, ее оптическую ось и оптический центр линзы
  2. По обе стороны от линзы отложить ее фокусные расстояния — отметить фокусы $F$. На чертеже они имеют произвольную длину, одинаковую с двух сторон от линзы
  3. Отметить светящуюся точку там, где это указано в задании
  4. Начертить ход двух световых лучей: первый падает на линзу параллельно оптической оси, второй — проходит через оптический центр
  5. Определить точку пересечения этих лучей или их продолжений — изображение светящейся точки
  6. Оценить положение изображения: определить его действительность или мнимость

Если светящаяся точка находится на оптической оси линзы, то для построения и оценки ее изображения необходимо выполнить следующие действия:

  1. Изобразить линзу, ее оптическую ось и оптический центр линзы
  2. По обе стороны от линзы отложить ее фокусные расстояния — отметить фокусы $F$. На чертеже они имеют произвольную длину, одинаковую с двух сторон от линзы
  3. Провести через необходимый нам фокус фокальную плоскость, перпендикулярную оптической оси
  4. Отметить светящуюся точку
  5. Начертить ход луча, совпадающего с оптической осью
  6. Начертить падающий произвольный луч. Провести побочную оптическую ось, проходящую через оптический центр и параллельную падающему лучу
  7. Отметить побочный фокус — точку пересечения побочной оптической оси и фокальной плоскости
  8. Начертить преломленный луч (или его продолжение), проходящий через точку падения и побочный фокус, до пересечения с оптической осью
  9. Точку пересечения отметить как полученное изображение
  10. Оценить положение изображения: определить его действительность или мнимость

В следующем уроке вы узнаете, как с помощью полученных знаний, можно построить изображения предметов, даваемые линзой. Это даст возможность оценить полученные изображения относительно их расстояния до линзы и ее фокуса.

Урок по физике на тему

 «Линзы.
Построение изображения в линзах»

Цели урока:

1.                 
Образовательная: продолжим
изучение световых лучей и их распространение, ввести понятие линзы, изучить
действие собирающей и рассеивающей линз; научить строить изображения даваемые
линзой.

2.                 
Развивающая: способствовать
развитию логического мышления, умений видеть , слышать, собирать и осмысливать
информацию, самостоятельно делать выводы.

3.                 
Воспитательная: воспитывать
внимательность, усидчивость и аккуратность в работе; учиться пользоваться
приобретенными знаниями для решения практических и познавательных задач.

Тип урока: комбинированный, включающий освоение новых знаний, умений, навыков,
закрепление и систематизацию ранее полученных знаний.

Ход урока

Организационный момент (2 мин):

1.                 
приветствие учащихся;

2.                 
проверка готовности учащихся к уроку;

3.                 
ознакомление с целями урока (образовательная цель
ставится общая,не называя тему урока);

4.                 
создание психологического настроя:

Мирозданье, постигая, 
Все познай, не отбирая, 
Что внутри — во внешнем сыщешь, 
Что вовне – внутри отыщешь 
Так примите ж без оглядки 
Мира внятные загадки…

И. Гете

Повторение ранее изученного материала происходит в несколько этапов (26
мин):

1. Блиц – опрос (ответом на вопрос может быть только да или нет, для лучшего обзора ответов
учащихся можно использовать сигнальные кароточки, «да» — красные, «нет» —
зеленые, необходимо уточнять правильный ответ):

1.                 
В однородной среде свет распространяется
прямолинейно? (да)

2.                 
Угол отражения обозначается латинской буквой бетта? (нет)

3.                 
Отражение бывает зеркальным и диффузным? (да)

4.                 
Угол падения всегда больше угла отражения? (нет)

5.                 
На границе двух прозрачных сред, световой луч
меняет свое направление? (да)

6.                 
Угол преломления всегда больше угла падения? (нет)

7.                 
Скорость света в любой среде одинакова и равна 3*108 м/с? (нет)

8.                 
Скорость света в воде меньше скорости света в
вакууме? (да)

2. Тест (4
минуты):

I вариант:

1. Какие явления наблюдают при попадании света на границу раздела двух
сред?

1.                 
часть проходит в другую среду, а часть отражается

2.                 
свет поглощается

3.                 
свет рассеивается

4.                 
свет проходит в другую среду

2. Какое зеркало называют плоским?

1.                 
с гладкой поверхностью

2.                 
с зеркальной поверхностью

3.                 
с прозрачной поверхностью

4.                 
с плоской поверхностью

3. Какое выражение определяет закон отражения света?

1.                 
α = β

2.                 
α = γ

3.                 
sin α = sin γ

4.                 

4. Выберите правильное направление преломленного луча при переходе
света из стекла в воздух.

1.                 
луч 1

2.                 
луч 2

3.                 
луч 3

4.                 
луч 4

5. На границе сред 1 и 2 световой луч АВ изменил свое направление.
Назовите угол падения и угол преломления?

1.                 
 SAE
– угол падения,  CAB — угол преломления

2.                 
 SAD — угол преломления,  FАВ
— угол падения

3.                 
 SAE — угол падения,  FАВ
— угол преломления

4.                 
 ЕАS — угол падения,  FАD
– угол преломления

6. Угол между падающим лучом и отраженным лучом равен 70о. Чему равен угол
падения?

1.                 
70о

2.                 
140о

3.                 
35о

4.                 
20о

II вариант:

1. Какое выражение определяет закон преломления света?

1.                 
α = β

2.                 
α = γ

3.                 
sin α = sin γ

4.                 

2. На границе двух сред световой луч меняет свое направление. Часть
света (а в ряде случаев и весь свет) возвращается в первую среду. Как
называется данное явление?

1.                 
отражением света

2.                 
поглощением света

3.                 
рассеиванием света

4.                 
преломлением света

3. Выберите правильное направление преломленного луча при переходе
света из воздуха в стекло.

1.                 
луч 1          

2.                 
луч 2

3.                 
луч 3

4.                 
луч 4

4. На границе сред 1 и 2 световой луч АВ изменил свое направление.
Назовите угол падения и угол преломления?

1.                 
 SAE
– угол падения,  CAB — угол преломления

2.                 
 SAD — угол преломления,  ВAC
— угол падения

3.                 
 SAD — угол падения,  ВAF
— угол преломления

4.                 
 SAE — угол падения,  BАF
– угол преломления

5. Угол падения луча света на зеркальную поверхность равен 70о. Каков угол между
падающим лучом и отраженным лучом?

1.                 
70о

2.                 
140о

3.                 
35о

4.                 
20о

6. Какое зеркало называют плоским?

1.                 
с гладкой поверхностью

2.                 
с зеркальной поверхностью

3.                 
с прозрачной поверхностью

4.                 
с плоской поверхностью

После выполнения диктанта учащиеся выполняют взаимопроверку (ответы
представлены на доске), за каждый правильный ответ 1 балл:

«5» — 6 баллов, «4» — 5 баллов, «3» — 4 балла.

3. Оптика в художественной литературе:

Пословица «Солнце сияет, а месяц светит».

Вопрос: Чем отличаются данные источники света?

Ответ: Солнце излучает электромагнитные волны, а Луна лишь отражает солнечный
свет.

Загадки:

Придет
в дом — не выгонишь колом, 
Пора придет – сам уйдет. 
(Солнечный луч)

Попутчица
за мною ходит вслед, 
Мне от нее ни зла, ни пользы нет. 
(Тень)

И
языка нет, а правду скажет. 
(Зеркало)

Когда
небо ниже земли бывает? 
(Когда отражается в воде)

Перед
нами — вверх ногами, 
Пред тобой – вверх головой. 
(Отражение в воде)

Подготовка к изучению нового материала (2
мин):

Учащиеся сами должны определить тему урока. При подготовке к изучению
нового материала зачитывается или рассказывается отрывок из романа Жюль Верна
“Таинственный остров”, в котором инженер Сайрес Смит объясняет получение огня.
А затем ставится вопрос: “что использовал инженер Сайрес Смит для получения
огня”? Обратить внимание на употребление в тексте «зажигательная чечевица».
После правильного ответа учащихся им предлагается история возникновения слова
“Линза”.

“Линза — слово латинское и означает чечевица. Чечевица – растение,
плоды которого похожи на горох, но горошины не круглые,а имеют вид пузатых
лепешек. Поэтому все круглые стекла, имеющие такую форму, стали называть —
линзами.”

Теперь озвучивается тема урока и ставится образовательная цель урока.

4. Изучениет нового материала (34
мин):

1.                 
Работа с использованием компьютера: используя
презентацию (приложение
1, слайды с 1 по 7) преподаватель объясняет новый материал.

2.                 
Работа учащихся с опорным конспектом (приложение 2).

3.                 
Рассмотреть слайд 9: “Построение изображения в
собирающей линзе” (приложение 1),
используя опорный конспект рассмотреть используемые лучи.

4.                 
Выполнить построение изображения в собирающей линзе
на доске, дать его характеристику (выполняет преподаватель или учащийся).

5.                 
Рассмотреть слайд 10: “Построение изображения в
рассеивающей линзе” (приложение 1).

6.                 
Выполнить построение изображения в рассеивающей
линзе на доске, дать его характеристику (выполняет преподаватель или учащийся).

5. Проверка понимания нового материла, его закрепление (19
мин):

Работа учащихся у доски:

Построить изображение предмета в собирающей линзе:

1.                 
Если предмет находится за фокусом линзы.

2.                 
Если предмет находится между фокусом и линзой.

Опережающее задание:

Самостоятельная работа с выбором заданий.

6. Подведение итогов урока (5 мин):

1.                 
С чем познакомились на уроке, на что обратить
внимание?

2.                 
Почему в жаркий летний день растения не советуют
поливать водой сверху?

3.                 
Оценки за работу на уроке.

7. Домашнее задание (2 мин):

Построить изображение предмета в рассеивающей линзе:

1.                 
Если предмет находится за фокусом линзы.

2.                 
Если предмет находится между фокусом и линзой.

К уроку прилагается презентация,
самостоятельная работа, опорный конспект и тест.

Понравилась статья? Поделить с друзьями:
  • Как найти расстояние между двумя сечениями шара
  • Как исправить экологическую ситуацию на урале
  • Как найти недавно скачанные файлы на компьютер
  • Неизвестный тег html файла sitemap как исправить
  • Как найти угол абс в огэ