Как найти изохорную теплоемкость идеального газа

to continue to Google Sites

Not your computer? Use Guest mode to sign in privately. Learn more

Теплоемкость идеального газа — это отношение тепла, сообщенного газу, к изменению температуры δТ, которое при этом произошло.

{displaystyle C={frac {delta Q}{delta T}}}

Молярная теплоемкость

Молярная теплоемкость — теплоемкость 1 моля идеального газа.

{displaystyle delta Q=nu CDelta T}

{displaystyle C_{M}={frac {1}{nu }}{frac {delta Q}{Delta T}}}

Теплоемкость идеального газа в процессах

Адиабатический

В адиабатическом процессе теплообмена с окружающей средой не происходит, т.е. δQ=0. Следовательно, теплоемкость идеального газа в адиабатическом процессе также равна нулю: Садиаб=0.

Изотермический

В изотермическом процессе постоянна температура, т.е. {displaystyle dT=0}. Следовательно, теплоемкость идеального газа стремится к бесконечности: {displaystyle Cto infty }

Изохорический

В изохорическом процессе постоянен объем, т.е. {displaystyle delta V=0}. Элементарная работа газа равна произведению изменения объема на давление, при котором происходит изменение ({displaystyle delta A=delta VP}). Первое Начало Термодинамики для изохорического процесса имеет вид:

{displaystyle dU=delta Q=C_{V}Delta T}

А для идеального газа

{displaystyle dU={frac {i}{2}}nu RDelta T}

Таким образом,

{displaystyle C_{V}={frac {i}{2}}nu R,}

где {displaystyle i} — число степеней свободы частиц газа.

Изобарический

В изобарическом процессе ({displaystyle P=const}):

{displaystyle delta Q=dU+PdV=nu C_{V}Delta T+nu RDelta T=nu (C_{V}+R)Delta T=nu C_{P}Delta T}

CP=δQ/νΔT=CV+R=(5/2)*R

Вывод формулы для теплоемкости в данном процессе

Согласно 1 началу термодинамики существует 2 способа изменить внутреннюю энергию тела (в нашем случае идеального газа): передать ему тепло или совершить над ним работу.

dU=δQ+δA, где δA — работа окр. среды над газом.

δAокр.среды=-δAгаза

δQ=dU+δAгаза

В расчете на 1 моль:

С=δQ/ΔT=(ΔU+pΔV)/ΔT

ΔU=CV*ΔT

C=CV+(pΔV/ΔT)в данном процессе

См. также

  • Идеальный газ
  • Первое начало термодинамики
  • Теплоемкость

Ссылки

1. Открытый Колледж
2. CГГА
3. Статья в «Кванте», формат djvu

В термодинамике при изучении переходов из начального в конечное состояние некоторой системы важно знать тепловой эффект процесса. С этим эффектом тесно связано понятие теплоемкости. В данной статье рассмотрим вопрос, что понимают под изохорной теплоемкостью газа.

Идеальный газ

Двухатомный газ

Идеальным называется такой газ, частицы которого считаются материальными точками, то есть не имеют размеров, но обладают массой, и у которого вся внутренняя энергия состоит исключительно из кинетической энергии движения молекул и атомов.

Любой реальный газ в идеале никогда не будет удовлетворять описанной модели, поскольку его частицы все же имеют некоторые линейные размеры и взаимодействуют между собой с помощью слабых ван-дер-ваальсовых связей или химических связей другого типа. Однако при низких давлениях и высоких температурах расстояния между молекулами велики, а их кинетическая энергия превышает потенциальную в десятки раз. Все это позволяет применять с высокой степенью точности идеальную модель для реальных газов.

Внутренняя энергия газа

Изменение внутренней энергии газа

Внутренняя энергия любой системы — это физическая характеристика, которая равна сумме потенциальной и кинетической энергии. Поскольку в идеальных газах можно пренебречь потенциальной энергией, то для них можно записать равенство:

U = Ek.

Где Ek — энергия кинетическая системы. Используя молекулярно-кинетическую теорию и применяя универсальное уравнение состояния Клапейрона-Менделеева, несложно получить выражение для U. Оно записано ниже:

U = z/2*n*R*T.

Здесь T, R и n — абсолютная температура, газовая постоянная и количество вещества соответственно. Величина z — это целое число, показывающее количество степеней свободы, которыми обладает молекула газа.

Изобарная и изохорная теплоемкость

В физике теплоемкостью называется количество теплоты, которое необходимо предоставить изучаемой системе, чтобы нагреть ее на один кельвин. Справедливо также и обратное определение, то есть теплоемкость — это количество теплоты, которое система выделяет при охлаждении на один кельвин.

Изохорный нагрев

Проще всего для системы определить изохорную теплоемкость. Под ней понимают теплоемкость при постоянном объеме. Поскольку система в таких условиях работу не совершает, то вся энергия расходуется на повышение внутренних энергетических запасов. Обозначим изохорную теплоемкость символом CV, тогда можно записать:

dU = CV*dT.

То есть изменение внутренней энергии системы прямо пропорционально изменению ее температуры. Если сравнить это выражение, с записанным в предыдущем пункте равенством, то приходим к формуле для CV в идеальном газе:

СV = z/2*n*R.

Данной величиной на практике неудобно пользоваться, поскольку она зависит от количества вещества в системе. Поэтому было введено понятие удельной изохорной теплоемкости, то есть величины, которую рассчитывают либо на 1 моль газа, либо на 1 кг. Обозначим первую величину символом CVn, вторую — символом CVm. Для них можно записать такие формулы:

CVn = z/2*R;

CVm = z/2*R/M.

Здесь M — молярная масса.

Изобарной называется теплоемкость при поддержании постоянного давления в системе. Примером такого процесса является расширение газа в цилиндре под поршнем при его нагревании. В отличие от изохорного, во время изобарного процесса подводимое к системе тепло расходуется на повышение внутренней энергии и на выполнение механической работы, то есть:

H = dU + P*dV.

Энтальпия изобарного процесса представляет собой произведение изобарной теплоемкости на изменение температуры в системе, то есть:

H = CP*dT.

Если рассмотреть расширение при постоянном давлении 1 моль газа, то первое начало термодинамики запишется в виде:

CPn*dT = CVn*dT + R*dT.

Последнее слагаемое получено из уравнения Клапейрона-Менделеева. Из этого равенства следует связь между изобарной и изохорной теплоемкостями:

CPn = CVn + R.

Для идеального газа удельная молярная теплоемкость при постоянном давлении всегда больше соответствующей изохорной характеристики на величину R=8,314 Дж/(моль*К).

Степени свободы молекул и теплоемкость

Одноатомный и многоатомные газы

Выпишем еще раз формулу для удельной молярной изохорной теплоемкости:

CVn = z/2*R.

В случае газа одноатомного величина z = 3, поскольку атомы в пространстве могут перемещаться лишь в трех независимых направлениях.

Если же речь идет о газе, состоящем из двухатомных молекул, например, кислород O2 или водород H2, то, помимо поступательного движения, эти молекулы могут еще вращаться вокруг двух взаимно перпендикулярных осей, то есть z будет равно 5.

В случае более сложных молекул для определения CVn следует использовать z=6.

Теплоемкость идеального газа

Определение теплоемкости

Теплоемкость – это количество тепла, которое затрачивается для того, чтобы повысить температуру тела на один кельвин. Теплоемкость зависит от массы вещества, условий при которых системе сообщают теплоту. Уравнение (1) – это определение теплоемкости через интегральные параметры. Иногда удобнее использовать следующее определение теплоемкости:

    [C=frac{delta Q}{dT} qquad (2) ]

где delta Q – бесконечно мало количество плоты, которое получает тело; dT – приращение температуры тела.

При единичной массе тела теплоемкость называют удельной. Обозначают ее обычно маленькой буквой c. Еще используют молярную теплоемкость (c_{mu}) – это теплоемкость одного моля вещества.

Теплоемкость и первое начало термодинамики

Используя первое начало термодинамики в интегральной записи, теплоёмкость можно найти как:

    [C=frac{Delta U+A}{Delta T} qquad (3) ]

где Delta U – изменение внутренней энергии термодинамической системы; A – работа системы над внешними силами. Для идеального газа имеем:

    [C=frac{frac{i}{2}frac{m}{mu}RDelta T+A}{Delta T} qquad (4) ]

где m – масса газа; mu – молярная масса газа; R – универсальная газовая постоянная.

В дифференциальном виде:

    [C=frac{dU+pdV}{dT} qquad (5) ]

Для идеального газа теплоемкость равна:

    [C=frac{frac{i}{2}frac{m}{mu}RdT+pdV}{dT}=frac{i}{2}frac{m}{mu}R+pfrac{dV}{dT} qquad (6) ]

Теплоемкость для процессов, проводимых в идеальном газе

Теплоемкость связана с характером процесса. Она может изменяться от бесконечных отрицательных величин до бесконечных положительных.

Рассмотрим изохорный процесс (m=const; V=const). При проведении изохорного процесса газ работы не совершает, поэтому теплоемкость газа в изохорном процессе (C_V) равна:

    [C_V=frac{Delta U}{Delta T}qquad (7);  C_V=frac{dU}{dT} qquad (8) ]

Или:

    [C_V=frac{i}{2}frac{m}{mu}R=frac{i}{2}R nu qquad (9) ]

При изобарном процессе (m=const; p=const) теплоемкость обозначают как C_p. Она равна:

    [C_p=frac{Delta U+pDelta V}{Delta T}qquad left(10right);  C_p=frac{dU+pdV}{dT} qquad (11)]

Или:

    [C_p=frac{i+2}{2}R nu qquad (12)]

Теплоемкости, при постоянных давлении и объеме, являются функциями состояний. Надо отметить, что независимость теплоемкости от температуры не подтвердили эксперименты.

В изотермическом процессе теплоемкость идеального газа считают бесконечной:

    [C=pm infty ]

В адиабатном процессе теплоемкость равна нулю.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Перевод термодинамической системы (например, порции идеального газа) из состояния `1` в состояние `2` можно осуществить разными способами. На рис. 12 показаны графики двух возможных процессов (`1-«а»-2` и `1-«в»-2`), позволяющих осуществить такой перевод. Изменение внутренней энергии системы в том и в другом случае одинаково (оно определяется положениями точек `1` и `2` на -диаграмме), а работа, совершённая системой над окружающими телами, различна (площадь фигур под графиками процессов `1-«а»-2` и `1-«в»-2` разная, площадь под графиком процесса `1-«в»-2` больше).

Следовательно, и количество теплоты, затраченное на перевод системы из состояния `1` в `2` ( $$ Q=Delta U+{A}^{text{‘}}$$ ), будет разным.

Теплоёмкостью $$ C$$ термодинамической системы (тела) называют отношение бесконечно малого количества теплоты $$ Delta Q$$, переданного системе, к изменению $$ Delta T$$ его температуры, вызванного этим количеством теплоты.

$$ C={displaystyle frac{Delta Q}{Delta T}}$$ — теплоёмкость тела (системы).

Единицей измерения этой величины будет $$ left[Cright]={displaystyle frac{1mathrm{Дж}}{mathrm{К}}}$$.

Численное значение теплоёмкости тела показывает, какое количество теплоты потребуется для изменения температуры всего тела на `1` градус по шкале Цельсия (Кельвина).

При расчётах чаще пользуются удельной теплоёмкостью (теплоёмкостью `1` кг вещества).

называют отношение теплоёмкости тела (системы) к массе этого тела (системы):

$$ {c}_{mathrm{уд}}={displaystyle frac{C}{m}}={displaystyle frac{Delta Q}{m· Delta T}}$$ — удельная теплоёмкость тела (системы).  (1)

Единицей измерения этой величины будет $$ left[cright]={displaystyle frac{1mathrm{Дж}}{mathrm{кг}·mathrm{К}}}$$.

 называют отношение теплоёмкости тела (системы) к количеству вещества в этом теле (системе):

$$ {c}_{mathrm{мол}}={displaystyle frac{C}{nu }}={displaystyle frac{Delta Q}{ Delta T·nu }}$$ — молярная теплоёмкость тела (системы).  (2)

Единицей измерения этой величины будет $$ left[{c}_{mathrm{мол}}right]={displaystyle frac{1mathrm{Дж}}{mathrm{моль}·mathrm{К}}}$$.

Получим соотношение между удельной и молярной теплоёмкостями:

$$ {c}_{mathrm{мол}}={displaystyle frac{Q}{ Delta T·frac{m}{M}}}={displaystyle frac{Q·M}{ Delta T·m}}={c}_{mathrm{уд}}·M$$  — соотношение между молярной и удельной теплоёмкостями (3)

Теперь найдём молярную теплоёмкость идеального газа при изобарном и при изохорном процессах.

При изобарном процессе присутствуют и $$ Delta U$$, и $$ {A}^{text{‘}}$$, следовательно:

$$ {c}_{p}={displaystyle frac{Q}{nu · Delta T}}={displaystyle frac{Delta U+Atext{‘}}{nu · Delta T}}={displaystyle frac{Delta U}{nu  Delta T}}+{displaystyle frac{Atext{‘}}{nu  Delta T}}={displaystyle frac{frac{i}{2}nu R Delta T}{nu  Delta T}}+{displaystyle frac{nu R Delta T}{nu  Delta T}}={displaystyle frac{iR}{2}}+R=R{displaystyle frac{i+2}{2}}$$,

$${c}_{p}=R{displaystyle frac{i+2}{2}}$$ — молярная теплоёмкость газа при изобарном процессе.

При изохорном процессе работа не совершается, $$ {A}^{text{‘}}=0$$, следовательно:

$$ {c}_{V}={displaystyle frac{Q}{nu  Delta T}}={displaystyle frac{Delta U+{A}^{text{‘}}}{nu  Delta T}}={displaystyle frac{Delta U}{nu  Delta T}}={displaystyle frac{frac{i}{2}nu R Delta T}{nu  Delta T}}={displaystyle frac{iR}{2}}$$

$$ {c}_{V}=R{displaystyle frac{i}{2}}$$ — молярная теплоёмкость газа при изохорном процессе.

Соотношение между $$ {c}_{V}$$ и $$ {c}_{р}$$ можно записать в двух формах:

1) $$ {c}_{p}={c}_{V}+R$$ — закон Майера, и

2) $$ gamma ={displaystyle frac{{c}_{p}}{{c}_{V}}}$$ — коэффициент Пуассона. 

Т. к. мы уже знаем, чему равно число степеней свободы у разных молекул, то можем вычислить и значения $$ {с}_{р}$$ и $$ gamma $$:

формула

Одноатомные `(i = 3)`

Двухатомные  `(i = 5)`

`c_p`

 `R((i+2)/2)`

 `5/2 R`

`20,775  «Дж»/(«моль»*»К»)` `7/2 R` `29,085  «Дж»/(«моль»*»К»)`

`gamma`

`(i+2)/i`

`5/3` 

`1,66667`

`7/5` 

`1,4`

Воздух представляет собой смесь газов, преимущественно двухатомных азота и кислорода, потому для него эксперименты дают значение $$ gamma  approx  mathrm{1,4}$$.

Для твёрдых тел теплоёмкости $$ {с}_{р}$$ и $$ {c}_{V}$$ будут почти одинаковыми. Это можно показать следующим образом. По определению $$ C={displaystyle frac{Delta Q}{ Delta T}}$$, но $$  Delta Q= Delta U+pDelta V$$, тогда

$$ {C}_{p}={displaystyle frac{Delta U+pDelta V}{ Delta T}}={displaystyle frac{Delta U}{ Delta T}}+{displaystyle frac{pDelta V}{ Delta T}}={C}_{V}+{displaystyle frac{pDelta V}{ Delta T}}$$.

При нагревании твёрдых или жидких тел изменение объёма составляет около $$ {10}^{-6}$$ первоначального объёма, поэтому вторым слагаемым можно пренебречь по сравнению с первым, что и позволяет говорить о равенстве $$ {c}_{p}={c}_{V}$$. 

Для газов $$ frac{ Delta V}{V}$$ на два порядка больше, чем для твёрдых или жидких тел, потому пренебрегать вторым слагаемым нельзя, более того, оно будет составлять заметную долю теплоёмкости $$ {c}_{p}$$.

Понравилась статья? Поделить с друзьями:
  • Как найти со спутника свой дом онлайн
  • Как найти дату установки виндовс
  • Как найти школьнику работу на дому
  • Как составить декларацию 3 ндфл в личном кабинете налогоплательщика при продаже авто
  • Телеграм как найти человека без номера телефона