Как найти изометрию на чертеже

Разделы

Уроки по теме

Рекомендуем

Доноры - детям

Как начертить изометрию?

Автор: Moroz

Дата: 2010-08-02

Инженерная графика. Научить чертить можно и зайца. Если конечно, он этого захочет.

Практически все, кому довелось изучать черчение и инженерную графику сталкивались с необходимостью произвести построение изометрической проекции детали. В этом уроке мы попробуем разобрать основные моменты, которые нужно знать, чтоб начертить изометрию. Уверен, что повторив указанные в этом уроке шаги, вы сможете самостоятельно выполнить и более сложное задание. В вашей детали может быть большее количество построений, но основные принципы останутся неизменными. Но при этом оговорюсь, что построение изометрии скорее всего будет вам не под силу, если вы еще не освоили построение третьего вида и построение простого разреза. Вы должны уже уметь хорошо ориентироваться в трех видах на чертеже.

Начнем с того, что определимся с направлением осей в изометрии.

На следующей схеме показано соответствие направлений, по которым откладываются размеры в изометрии по отношению к размерам на чертеже. Интересный момент: как показал опыт, этот рисунок кому-то помогает понять принцип построения, а кого-то — наоборот — ставит в тупик. Поэтому, если вас эта схема скорее смущает, нежели просветляет, не зацикливайтесь на нем и читайте дальше — вполне вероятно, что там все будет понятно.

На этом закончим вступительную часть и начнем непосредственно построение изометрической проекции детали.

Возьмем для примера не очень сложную деталь. Это параллелепипед 50х60х80мм, имеющий сквозное вертикальное отверстие диаметром 20 мм и сквозное прямоугольное отверстие 50х30мм.

Начнем построение изометрии с вычерчивания верхней грани фигуры.
Расчертим на требуемой нам высоте тонкими линиями оси Х и У.
Из получившегося центра отложим вдоль оси Х 25 мм (половина от 50) и через эту точку проведем отрезок параллельный оси У длиной 60 мм. Отложим по оси У 30 мм (половина от 60) и через полученную точку проведем отрезок параллельный оси Х длиной 50 мм. Достроим фигуру.

Мы получили верхнюю грань фигуры. Не хватает только отверстия диаметром 20 мм.
Построим это отверстие. В изометрии окружность изображается особым образом — в виде эллипса. Это связано с тем, что мы смотрим на нее под углом. Изображение окружностей на всех трех плоскостях я описал в отдельном уроке, а пока лишь скажу, что в изометрии окружности проецируются в эллипсы с размерами осей a=1,22D и b=0,71D. Эллипсы, обозначающие окружности на горизонтальных плоскостях в изометрии изображаются с осью а расположенной горизонтально, а ось b — вертикально. При этом расстояние между точками расположенными на оси Х или У равно диаметру окружности (смотри размер 20 мм).

Теперь, из трех углов нашей верхней грани начертим вниз вертикальные ребра — по 80 мм и соединим их в нижних точках. Фигура почти полностью начерчена — не хватает только прямоугольного сквозного отверстия.

Чтобы начертить его опустим вспомогательный отрезок 15 мм из центра ребра верхней грани (указан голубым цветом). Через полученную точку проводим отрезок 30 мм параллельный верхней грани (и оси Х). Из крайних точек чертим вертикальные ребра отверстия — по 50 мм. Замыкаем снизу и проводим внутреннее ребро отверстия, оно параллельно оси У.

На этом простая изометрическая проекция может считаться завершенной. Но как правило, в курсе инженерной графики выполняется изометрия с вырезом одной четверти. Чаще всего, это четверть нижняя левая на виде сверху — в этом случае получается наиболее интересный с точки зрения наблюдателя разрез (конечно же все зависит от изначальной правильности компоновки чертежа, но чаще всего это так). На нашем примере эта четверть обозначена красными линиями. Удалим ее.

Как видим из получившегося чертежа, сечения полностью повторяют контур разрезов на видах (смотри соответствие плоскостей обозначенных цифрой 1), но при этом они вычерчены параллельно изометрическим осям. Сечение же второй плоскостью повторяет разрез выполненный на виде слева (в данном примере этот вид мы не чертили).

Надеюсь, этот урок оказался полезным, и построение изометрии вам уже не кажется чем-то совершенно неведомым. Возможно, некоторые шаги придется прочитать по два, а то и по три раза, но в конечном итоге понимание должно будет прийти. Удачи вам в учебе!

Рекомендую посмотреть урок окружность в изометрии.

Следующий шаг в черчении: Уникальный урок на тему «Как начертить диметрию детали?»

Просмотров: 709034

Вы можете сказать «спасибо!» автору статьи:

пройдите по любой из рекламных ссылок в левой колонке, этим вы поддержите проект «White Bird. Чертежи Студентам»

или

или запишите наш телефон и расскажите о нас своим друзьям — кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки — и кто-то еще сможет освоить черчение.

А вот это — не реклама. Это напоминание, что каждый из нас может сделать. Если хотите — это просьба. Мы действительно им нужны:

Доноры - детям

Комментарии:

пипец…я ни чего не понимаю…а завтра экзамен…((((

Мы стараемся. Правда. Но в то же время мы понимаем, что написать понятно для всех не сможем. Что поделаешь. Однако, мы стремимся оформлять статьи по начертательной геометрии, а так же статьи по инженерной графике в максимально информативном и доступном виде.

хорошо что у меня завтра не экзамен. а лишь занятие по черчению. Со второго прочтения разобрался и смог начертить изометрию своей детали, надеюсь что правильно :))) Спасибо

В музыкальном колледже требуют изометрический чертёж.Я бы лучше концерт сыграл.Черчение для меня-полная тьма.

Да уж. Неисповедимы пути. Я бы тоже концерт сыграл. Но вот к сожалению черчу лучше, чем музицирую. Не отчаивайтесь! Звоните, если не разберетесь. Удачи! Антон.

замечательно.всё так понятно и просто

Огромное вам спасибо, вспомнил азы=)

помогите начертить изометрию

Антон спасибо большое за внимание…я уже все поняла….а вы физику хорошо знаете??

здравствуйте ! нужен чертеж спичечьного коробка в изометрической и диметрической проекции !

Эх, жаль ваш вопрос пришел в момент когда я был в отпуске. Изометрия спичечного коробка еще не встречалась мне в заданиях, хоть это и несложно, но все же какое-никакое разнообразие.

Блин завтра экзамен !!! Эту то деталь я понял как начертить, а вот смогу ли я начертить деталь из билета ?!!!
Андрей, надеюсь у вас все получилось. Но пожалуй, действительно, пришла пора сделать второй урок объясняющий построение изометрии детали приближенной к заданиям среднего уровня сложности. Жаль, что вам это уже не пригодится, но благодаря вам многим станет легче.

Спасибо, что напомнил. Я сто лет уже изометрию не чертил, хотя и работаю инженером

надо ли чертить все отверстия если они одинаковые? например 5 отверстий под винты. Или достаточно обозначить их оси?

На учебные чертежи нет ГОСТов. Есть разрешенные допущения. И их количество в каждом ВУЗе свое. В вашем случае правильным будет согласовать с преподавателем, либо выполнить все отверстия.

Статья отличная,большое спасибо, всё прояснилось) Скажите, вы писали выше в коментариях, что нужно сделать изометрию детали средней сложности, не появилась ещё?


Светлана, все произошло немного по-другому. Я взял среднюю деталь, имеющую несколько окружностей в своих формах и создал по ней урок… «Как начертить диметрию?» :))) Ссылка на него находится в самом конце статьи, до комментариев. Я считаю, что он может серьезно углубить ваши знания в части понимания, как чертить аксонометрические проекции разных деталей.

Офигенно. Спасибо, с первого раза всё понял.

Вы маги чтоль? как вы смогли обьяснить столь бестолковому человеку такую не простую вещь?))


Семен, хотел ответить, что «нет, я только учусь!» Но это больно уж избито :) Маги? Нет… Просто мне хочется сделать жизнь вокруг меня хоть немного лучше. И если у меня есть возможность хоть немного повлиять на количество покупаемых студенческих работ, заменив уставших и разлюбивших свою работу преподавателей — я пытаюсь это сделать. Ну а вам — всего наилучшего!

Ребят спасибо! Объяснено очень доходчиво, более лучшего объяснения не встречал!

Хорошо, коль так! Учитесь на здоровье!

СпасиБо! Можно двигаться дальше благодаря Вам! Появился свет в конце тоннеля!;)))

Спасибо, все отлично написано, понятно. Особый респект автору.
Еще хотелось бы узнать как показать резбу на валу в изометрической проекции.

Спасибо большое!!! Все очень ясно изложено)

Спасибо огромное!!!!!!!!!!
Теперь все стало понятно, и я начертила деталь по контрольной.

Скажите пожалуйста это в каком учебном заведении ещё есть черчение Я учусь в техническом Вузе и черчения нету

Петр, напишу в ответ следующее: МГТУ им. Н.Э Баумана, МИФИ, МАМИ, МАДИ, РХТУ, МИРЭА, МЭИ, МГУГиК, МГСУ, МАТИ, РУДН, РГУ Нефти и Газа им. Губкина, МГУПИ, МГОУ, МИСИ — вот неполный список московских ВУЗов, в которых не забыли, что такое подготовка полноценного инженера. Удачи!

Спасибо вам большое,очень помогли,без вашего урока бы не справилась,все объяснено доходчиво и по существу,очень благодарна)))


Татьяна, спасибо за отклик! Самому кажется, что все сделано хорошо, но вдруг только кажется? Ведь нет-нет, да приходят сообщения о непонятном изложении материала. Но я себя уговариваю, что это исключения, подтверждающие правило :)

очень хорошая статья, не могли бы вы добавить изометрию шестиугольной призмы?очень надо!

Большое спасибо. Знаю автокад для геологии, а черчение для меня вообще Луна, в вузе не было. Но благодаря объяснениям смогла сделать. Побольше бы таких толковых авторов. Еще раз огромное спасибо, спасли мне оценки ребенка

Туфта! Размеры граней откладываются с коэффициентом 0,82 сторона не 50 мм а уже будет 0,82*50=41 хаваете инфу за должное!!!


ОК, расшифрую замечание внимательного читателя. В прямоугольной изометрической проекции действительные искажения по осям (по всем трем) и в самом деле равны 0,82. Но поскольку мы не оторваны от земли, и разбираемся с тем, как начертить домашнее задание, а не пишем реферат по черчению (!), то мы используем приведенные коэффициенты, равные единице. Я за 18 лет практики не встречал ни одного ВУЗа в нашей стране, где бы требовались коэффициенты 0,82. Поэтому рисуем с коэффициентом искажения по осям 1, но для энциклопедических знаний запоминаем 0,82. Не исключено, что этот вопрос когда-то будет задан в какой-нибудь телевикторине.

Начертите изометрию куба со стороной 80 мм и в каждой видимой гране впишите овал


Замечательное задание из замечательного ИКСИ? Так там же ничего сложного — просто аккуратно выполняете построения — только циркуль и только линейка…

Огромное спасибо. Чудесное объяснение. Даже я понял. :)

Большое спасибо, очень помогли! Сыну нужно было начертить изометрию, на уроке ничего не понял, я уже все забыла. Вместе с ним разобрались благодаря вашим объяснениям, очень доступно.

Нужно ли заштриховывать ребро жесткости при сечении?


Денис, в изометрии всегда штрихую разрез вне зависимости от того, идет ли он через ребро жесткости. Так учили меня в свое время на кафедре черчения. Я готов предположить, что кто-то из преподавателей в каком-либо ВУЗе может считать иначе. В любом случае, стереть тонкие линии штриховки не составит труда. Но скорее всего стирать их не придется.

Очень бы хотелось видеть данный урок в pdf или doc формате. А в общем спасибо за урок!

спасибо)

Пользуйтесь на здоровье!

Я учусь в 9 классе. У нас есть урок черчения. Я №1 в классе по ЧЕРЧЕНИЯ! Я хочу стать архитектором. По этому я хочу узнать все подробности.


Вы один из очень небольшого количества современных школьников, кому довелось встретить черчение до ВУЗа. Поверьте, вам будут завидовать все ваши одногруппники на первом курсе :) А в целом — наличие цели и желание ее добиться — это здорово. Я поделился чем смог — пользуйтесь и добрым словом поминайте :)

Это не изометрия, а аксонометрия.Есть ещё и диметрия.

Анатолий, на всякий случай попробую систематизировать ваши знания. Смотрите. Есть такая штука, называется аксонометрические проекции. Оно же аксонометрия. К ним относятся такие виды проекций как изометрия и диметрия. И еще несколько их подвидов. Но в целом — это же хорошо, что вы ищете. Главное — не перепутать ничего и правильно запомнить.

Ваш сайт первый по запросу в гугле. Что ж, совсем не зря! И разобрали как раз мой вариант. Спасибо за вашу работу!

Вот это я понимаю, вот это повезло :) А ведь деталь из головы брал! Но, как я понимаю, вы еще и суть теперь знаете, а это очень хорошо! Да, не зря я работал над оптимизацией, не зря!

Здравствуйте! А моему мнению,в чертеже с вырезанной четвертью, допущена неточность!

Сергей, приветствую! На картинке с вырезанной четвертью наверняка есть «неточности». Например нет штриховки, какие-то разноцветные линии, торчащие не по ГОСТу осевые… Но урок-то был о другом. Пусть пока остается как есть.

Хочу сказать спасибо за работу.Вы мне очень помогли .Ещё раз спасибо.

Спасибо, всё поняла (хотя черчение проходила в школе лет 40 назад))). Сейчас помогаю сыну. Предлагаю и Вам помощь: редактировать тексты перед публикацией на предмет знаков препинания (для лучшего понимания такой полезной информации!). С уважением! Успехов!!!

Давно уже не чертила изометрию, все забыла. Благодарю за отличный урок!

Спасибо за это объяснение, лично мне аксанометрия нравится, но в отверстиях на плоскости малек туплю,блин архитектору это нужно. Спасибо вам)

Спасибо за объяснение,все четко показано

Спасибо огромное. Учителя объясняют тему не понятно, а здесь всё ясно и понятно

Спасибо большое! Хоть вспомнил правила изометрии. А то работаю авиационным инженером, завтра самолет строить, а я позабыл изометрические коэффициенты)))

такая себе хорактеристика азаметрий

Я, конечно, изучал изометрию почти 15 лет назад, но у Вас в финальном чертеже с разрезом есть ошибка. По условиям вертикальное отверстие сквозное, а на чертеже сделано не правильно. У вас это отверстие «уходит» дальше размеров самой детали. Как-то так.

Поправочка: всё правильно. Совпадают вертикальные линии задней стенки с разрезом. Изометрия такая изометрия. Пока не измерил в живую, не увидел. Конечно перспектива в этом плане более информативна.

ого, я уже забыл все что мы проходили на уроках черчения в школе, оказывается.

Очень круто, мне понравилось!

Сам учился в строительном, со временем что-то забывается, 30 лет прошло. Для детей и внуков приходится заглядывать. БлагоДарствую за толковое разъяснение, даже для школьников

Бро, это было 11 лет назад…

Читаю комментарии и в просто в шоке, 2010 год, почти 13 лет назад,трееш

Брат, спасибо большое тебе. Без тебя бы не разобрался, ты меня прям выручил.

Артем, добро — оно такое… Делать его — всегда приятно. Даже если часто бъет бумерангом :)

И у меня был урок черчения. В каком же это было году? А, в 1955! Теперь я профессор, доктор мед. наук. Пишу книгу по анатомии человека, понадобилось изобразить объект в изомерии. Не мог вспомнить коэффициент. Тот самый 0,82. Спасибо автору статьи и автору комментария. И вот еще. Оказывается где-то инженеров еще учат черчению, а вот врачей анатомии практически не учат, то есть как бы учат, но без трупов. А анатомия для врача, что черчение для инженера. Правда чертить можно и на песке… Еще раз спасибо.

Александр Григорьевич, благодарю вас за оставленный комментарий. Мне всегда приятно узнавать, что мои труды приносят пользу. Но не менее приятно узнавать как именно, кому именно. Скажете: «Да это же простое любопытство!» Может и так. А по мне — человеческое общение. Я частичку знаний и тепла вам — вы немного добрых слов мне. Можно много рассуждать о ценности этих невидимых связей. Для меня они важны. Ими и заряжаюсь! Удачи вам в благородном деле! С уважением, Антон.

Добавьте свой комментарий:

Последние уроки

Как построить диметрию детали?

Построение наклонного сечения, заданного на виде слева

Определение линии пересечения двух плоскостей. Метод вспомогательных секущих плоскостей.

Наша почта:

zakaz@trivida.ru

Наша страница в ВК:

Инженерная графика и начертательная геометрия в Вконтакте

Случайный комментарий

Дмитрий :

Здравствуйте!

Это Дмитрий (Инстаграм: kupratsevich_dima), писал вам раньше про покупку сайта trivida.ru, но не получил ответа.

Возможно, что не устроила цена. Готов рассмотреть по рыночной оценке.

Мои контакты:
kupratsevich (Telegram)
kuprdimasites@gmail.com (Почта)
+79959176538 (Телефон/whatsapp)

Проекционное черчение – это учебная дисциплина, которая устанавливает правила выполнения и чтения чертежей.

Проекционное черчение является основным разделом курса черчения, в котором изучаются правила, условности и практические приемы построения изображений в ортогональных и аксонометрических проекциях, установленные стандартами (ЕСКД, ГОСТ). На данной странице собран курс лекций по всем темам проекционного черчения с примерами по предмету «Проекционное черчение«.

Для построения изображений (проекций) объектов или предметов на плоскости применяют метод проецирования. Чертежи которые сделаны таким методом, называются проекционными. При выполнении чертежей технических форм используются метод ортогонального проецирования.

Содержание:

Любое техническое изделие (прибор, машина, отдельная деталь и пр.) изготавливают на предприятии по чертежам. Чертеж должен содержать полную информацию, необходимую для изготовления изделия, и в первую очередь его изображение. Главным требованием, предъявляемым к изображениям, является то, что они должны точно воспроизводить форму внешних и внутренних поверхностей изделий. Для обеспечения этого требования необходимо, чтобы изображения на чертежах были построены определенным способом по определенным правилам, которые изложены в ГОСТ 2.305 -2008 [1].

Часть курса «Начертательная геометрия и инженерная графика», в которой изучают правила построения изображений, называют проекционным черчением.

В проекционном черчении в качестве объекта для построения изображений выступает предмет — обезличенная деталь, а сами изображения должны быть построены по методу ортогонального (прямоугольного) проецирования.

Чертежи должны быть оформлены по единым и обязательным для всех правилам, изложенным в стандартах ЕСКД.

Метод ортогонального проецирования

Проецирование — это процесс получения изображения предмета на плоскости, например бумаге, экране и т. д. (рис. 1). При этом:

  • предмет располагается между наблюдателем и этой плоскостью (она называется плоскостью проекций);
  • через опорные и другие точки предмета проводятся проецирующие лучи до пересечения их с плоскостью проекций;
  • множество точек пересечения будет образовывать на плоскости проекций изображение предмета или, как его еще называют, проекцию предмета.

Таким образом, можно назвать проецированием фотографирование предмета или получение его тени в солнечный день на любом экране.

Ортогональное проецирование характеризуется тем, что проецирующие лучи параллельны между собой и перпендикулярны к плоскости проекций. Метод ортогональных проекций является основным при построении машиностроительных чертежей, так как позволяет точно передавать форму и размеры предметов на их проекциях.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Принципы построения изображений предметов на чертежах

По изображению предмета, полученному на одной плоскости проекций, даже если оно построено по методу ортогонального проецирования, нельзя полностью представить формы всех его поверхностей. Так, по фронтальной проекции предмета, показанного на рис. 1, можно судить только о двух его измерениях — высоте и длине. Остаются невыявленными ширина предмета, форма отверстия и паза. Очевидным является вывод: чтобы получить полную информацию о форме всех частей предмета, необходимо построить его изображения со всех сторон. Поэтому при составлении технических чертежей предмет проецируют не на одну, а на несколько взаимно перпендикулярных плоскостей проекций.

По ГОСТ 2.305 — 2008 [1] основные изображения предмета получают на гранях пустотелого куба, внутри которого помещен предмет (рис. 2). Грани выступают в качестве основных плоскостей проекций. Построение ортогональной проекции на каждой грани производится так, как показано на рис. 1, т. е. наблюдатель располагается таким образом, чтобы предмет находился между ним и соответствующей гранью куба. На рис. 3 указаны направления взгляда наблюдателя при таком проецировании. Проецирование в направление 2 на рис. 3 приведет к построению изображения па грани 2 и т. д. Разрезая куб по ребрам, развертывают все его грани до совмещения с фронтальной плоскостью проекций. Получают чертеж предмета, включающий шесть изображений (см. под разд. 3.1).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

При ортогональном проецировании необходимо соблюдать следующие правила:

  • предмет ориентируют внутри куба так, чтобы большинство его граней и ребер были расположены параллельно граням куба (в этом случае грани и ребра предмета проецируются без искажений их формы и размеров);
  • изображение на фронтальной плоскости проекций (см. рис. 2, грань 1) принимают за главное. Предмет размещают так, чтобы изображение на этой плоскости давало наиболее полное представление о его форме. Длинные предметы принято располагать горизонтально.

Изображения в зависимости от содержания делят на виды, разрезы и сечения.

Виды

Вид — это изображение обращенной к наблюдателю видимой части поверхности предмета. Виды разделяют на основные, дополнительные и местные.

Основные виды

Проекции предмета, полученные на гранях куба (см. рис. 2), развернутых в одну плоскость, называются основными видами. На рис. 4 приведена схема расположения основных видов на чертеже и их наименование. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Наименование каждого вида определяется направлением взгляда наблюдателя при проецировании. За основу построения чертежа принимают вид спередиглавный вид предмета. Все шесть видов располагаются в проекционной связи относительно главного вида. Такое расположение видов утверждено ГОСТ 2.305 — 2008 [1] и является обязательным при выполнении чертежей. Нарушение проекционной связи в расположении видов допускается при действительной необходимости в этом. Видимые контуры предмета на чертеже принято изображать основной линией (сплошной толстой линией толщиной от 0,5 до 1,4 мм включительно), контуры невидимых поверхностей — штриховой линией. Оси симметрии изображений и центровые линии окружностей показывают штрихпунктирной линией. Штриховые и штрихпунктирные линии выполняют линией в 2 … 3 раза тоньше основной линии. Начертание линий дано в ГОСТ 2.303 — 68 [4].

Контуры граней куба и линии проекционной связи на чертежах не изображают.

При выполнении чертежа любого технического изделия необходимо руководствоваться очень важным стандартным правилом: количество изображений па чертеже должно быть минимальным, но достаточным для полного представления о конструкции всех элементов предмета. Анализ основных видов на рис. 4 показывает, что вид справа несет такую же информацию о форме предмета, что и вид слева. То же можно сказать о видах снизу и сверху, сзади и спереди. Таким образом, для рассматриваемого предмета можно ограничиться тремя основными видами: спереди, сверху и слева (рис. 5).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 5. Оптимальное количество видов предмета, показанного на рис. 2

Рассмотрим обозначение основных видов. Если основные виды находятся в проекционной связи с главным видом (т. е. так, как показано на рис. 4 и рис. 5), то они не обозначаются.

На практике иногда приходится отдельные основные виды располагать на чертежах с нарушением их проекционной связи с главным видом. Как правило, это выполняют с целью уменьшения формата чертежа, что достигается рациональной компоновкой изображений. Рациональной считается такая компоновка, при которой изображения располагаются на поле чертежа равномерно, т. е. приблизительно с одинаковым расстоянием между ними и от изображений до внутренней рамки чертежа. Рассмотрим этот случай. Пусть предмет имеет форму, для пояснения которой на чертеже необходимо построить четыре основных вида. При стандартном расположении видов они заполнят поле чертежа нерационально (рис. 6). Если же вид справа разместить под видом слева, то изображения займут меньший формат и будут расположены на нем рационально (рис. 7).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 6. Нерациональная компоновка основных видов при их стандартном расположении.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 7. Рациональная компоновка основных видов (вид справа находится не в проекционной связи с главным и должен быть обозначен)

Если какой-либо основной вид не находится в проекционной связи с главным, то он должен быть обозначен (см. вид справа на рис. 7):

  • должно быть указано стрелкой около соответствующего вида (как правило главного) направление проецирования;
  • над стрелкой и построенным по указанному стрелкой направлению видом должна быть нанесена одна и та же прописная буква русского алфавита.

Для обозначения основных, местных и дополнительных видов, а также разрезов и сечений, применяют прописные буквы русского алфавита, кроме букв Ё, 3, Й, О, Ч, X, Ь, Ы, Ъ, начиная с буквы А в порядке их расположения без пропусков и повторений.

Стрелки, применяемые для указания направления взгляда, должны иметь форму и размеры, приведенные на рис. 8, а. На рис. 8, б, в даны другие варианты начертания стрелок.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 8. Размеры и допустимые варианты формы стрелок, указывающих направление взгляда

Местные виды

Если руководствоваться правилом о том, что на чертеже должно быть минимальное количество изображений (см. подразд. 3.1), то при анализе изображений, представленных на рис. 7, видно, что вид справа (вид Л) нужен исключительно для того, чтобы показать форму выступа, а остальная часть вида А -габаритный контур предмета — повторяет такой же контур на виде слева. Для того чтобы в подобных случаях исключить повторяющуюся информацию, применяют местные виды (рис. 9, а, б; вид Л).

Местным видом называется изображение отдельного ограниченного места поверхности предмета, параллельной плоскости проекций (грани куба). Местный вид может быть частью основного вида, а может быть видом на участок внутренней поверхности предмета.

Местный вид может быть ограничен линией обрыва (см. рис. 9, а), по возможности в наименьшем размере, или не ограничен (см. рис. 9, б). Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 9. Пример местного вида А:

а — ограниченного линией обрыва; б — не ограниченного линией обрыва

Обозначение местных видов

Если местный вид не находится в проекционной связи с соответствующим изображением предмета, то он должен быть обозначен. Пример обозначения см. на рис. 9, а. Здесь местный вид А — это часть основного вида справа, который не находится в проекционной связи с главным.

Если местный вид находится в непосредственной проекционной связи с соответствующим изображением, то он не обозначается (рис. 10).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 10. Пример местного вида, который находится в проекционной связи с основным изображением и не обозначается

Дополнительные виды

В разд. 2 было указано, что при ортогональном проецировании предмет ориентируют внутри куба так, чтобы большинство его плоских поверхностей были параллельны граням куба. Только при таком расположении на гранях куба будут получены проекции, которые передадут действительную без искажений форму и размеры указанных плоских поверхностей предмета.

Если какую-либо часть предмета невозможно показать на основных видах без искажения формы и размеров, то применяют дополнительные виды, получаемые на плоскостях, непараллельных основным плоскостям проекций (рис. 11).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 11. Пример дополнительного вида А, который не находится в проекционной связи с основным изображением и обозначается:

а — дополнительный вид не повернут; б — дополнительный вид повернут

Обозначение дополнительных видов

При обозначении всех видов, в том числе и дополнительных, действует одно правило: если вид не находится в проекционной связи с соответствующим изображением предмета, то он должен быть обозначен (см. рис. 11, а), если же вид находится в непосредственной проекционной связи с соответствующим изображением, то он не обозначается (рис. 12).

Дополнительный вид допускается поворачивать, но с сохранением, как правило, положения, принятого для данного предмета на главном изображении (см. рис. 11, б); при этом обозначение вида должно быть дополнено условным графическим обозначением Проекционное черчение - примеры с решением заданий и выполнением чертежей Рекомендуется изображать знак такой же высоты, что и высота буквенного обозначения этого вида, но не менее 5 мм.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 12. Пример дополнительного вида, который находится в проекционной связи с основным изображением и не обозначается

Разрезы

Основным назначением видов является определение формы внешних поверхностей предмета. Выявление на видах формы внутренних поверхностей при помощи штриховых линий не принято, так как это может привести к неправильному пониманию конструкции предмета. Поэтому для определения внутреннего строения применяют разрезы и сечения.

Разрез — это изображение предмета, мысленно рассеченного одной и более секущими плоскостями. Отсеченную часть предмета, расположенную между наблюдателем и секущей плоскостью, мысленно удаляют, в результате чего становятся видимыми контуры внутренних, ранее закрытых поверхностей. В разрезе показывают то, что лежит в секущей плоскости, и то, что расположено за ней. Невидимые контуры, которые в разрезе стали видимыми, изображают сплошной толстой линией, а фигуру, полученную в результате пересечения предмета плоскостью, заштриховывают. Штриховку выполняют по ГОСТ 2.306 — 68 [6]. Мысленное рассечение предмета относится только к данному разрезу и не влечет за собой изменения других изображений. На чертеже может быть представлено несколько разрезов предмета.

Секущие плоскости должны проходить по плоскостям симметрии предмета, по осям отверстий и пересекать полости, как правило, по их центру.

Разрезы могут быть расположены:

  • на месте основных видов;
  • на свободном поле чертежа.

Построение разреза показано на рис. 13. Предмет рассечен секущей плоскостью, параллельной фронтальной плоскости проекций (см. рис. 13, б). На ортогональных проекциях (см. рис. 13, а) отсеченная часть предмета мысленно удалена, а оставшаяся часть изображена на месте вида спереди.

Допускается показывать невидимые поверхности на видах штриховыми линиями только тогда, когда контуры этих поверхностей являются простыми фигурами и не затемняют виды.

Допускается изображать нс все, что расположено за секущей плоскостью, если этого не требуется для понимания конструкции предмета. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 13. Образование фронтального разреза: а — ортогональные проекции; б — аксонометрическая проекция предмета

Простые разрезы

В зависимости от количества секущих плоскостей разрезы разделяются на простые и сложные. Простые разрезы получают при применении одной секущей плоскости, они легко читаются, поэтому им следует отдавать предпочтение.

В зависимости от положения секущей плоскости простой разрез может быть:

  • горизонтальным — секущая плоскость параллельна горизонтальной плоскости проекций (см. рис. 14, разрез А-А).
  • вертикальным — секущая плоскость перпендикулярна к горизонтальной плоскости проекций (например разрезы на рис. 13, 15);
  • наклони ы м — секущая плоскость составляет с горизонтальной плоскостью проекций угол, отличный от прямого (рис. 16, разрез А-А)- Допускается наклонный разрез поворачивать до ближайшего горизонтального или вертикального положения (рис. 17).

Вертикальный разрез называется фронтальным, если секущая плоскость параллельна фронтальной плоскости проекций (см. рис. 13), и профильным, если секущая плоскость параллельна профильной плоскости проекций (см. рис. 15).

Если секущая плоскость направлена вдоль длины или высоты предмета, то разрез называется продольным (рис. 18, разрез А-А). Если секущая плоскость перпендикулярна длине или высоте предмета, то разрез называют поперечным (см. рис. 18, разрез Б-Б).

Разрезы, образованные одной секущей плоскостью, но со встречным направлением взгляда наблюдателя, выполняются так, как показано на рис. 19.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 14. Образование горизонтального разреза

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 15. Образование профильного разреза

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 16. Образование наклонного разреза

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 17. Повернутый наклонный разрез Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 18. Продольный (А-А) и поперечный (Б-Б) разрезы Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 19. Пример разрезов со встречным направлением взгляда

Местные разрезы

Местные разрезы представляет собой часть простого разреза (рис. 20), который располагается на виде и ограничивается сплошной волнистой линией. Местный разрез применяется для выявления внутренней формы предмета в отдельном ограниченном месте. С помощью местных разрезов показывают форму невидимых отверстий, пазов, канавок и других элементов в том случае, если они занимают по отношению к виду его малую часть и делать полный разрез нерационально. Волнистая линия, ограничивающая местный разрез, не должна совпадать с другими линиями изображения.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 20. Образование местного разреза 4.3. Обозначение простых разрезов

Обозначить разрез — это значит:

  • показать положение секущей плоскости;
  • сопроводить надписью сам разрез.

Положение секущей плоскости указывается на чертеже разомкнутой линией, причем начальный и конечный штрихи не должны пересекать контур соответствующего изображения. К начальному и конечному штрихам проводятся стрелки, указывающие направление взгляда наблюдателя. Стрелки должны располагаться на расстоянии 2 … 3 мм от наружных по отношению к «разрезаемому» изображению концов штрихов. Со стороны внешнего угла около стрелок ставится одна и та же прописная буква русского алфавита. Построенный при сечении указанной плоскостью предмета разрез должен быть отмечен надписью с применением той же буквы по типу А-А (всегда двумя буквами через тире). Пример обозначения разреза приведен на рис. 13.

Однако, как видно из рис. 13 … 20, одни разрезы на чертежах обозначены, другие не обозначены. Необходимо четко уяснить, когда разрезы обозначаются, а когда нет.

Простой разрез не обозначается, если секущая плоскость совпадает с плоскостью симметрии предмета в целом, а соответствующие изображения располагаются в непосредственной проекционной связи и не разделены какими-либо другими изображениями. Примеры таких разрезов приведены на рис. 13, 15.

Во всех остальных случаях простые горизонтальные, фронтальные и профильные разрезы должны быть обозначены.

Наклонные разрезы обозначаются всегда.

Местные разрезы не обозначаются.

Примечание. Не допускается при обозначении разреза применять ту же букву, которая была употреблена для обозначения других изображений на чертеже. По ГОСТ 2.305 — 2008 [1] для ограничения местных разрезов и в качестве линий обрыва изображений может применяться сплошная тонкая линия с изломами, начертание которой см. в ГОСТ 2.303 — 68 [4].

Структура обозначения положения секущей плоскости на чертеже показана на рис. 21. Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 21. Структура обозначения положения секущей плоскости

Стрелки, применяемые для указания направления взгляда, должны иметь такую же форму и размеры, как и стрелки для обозначения видов (см. рис. 8). Обратите внимание, что направление стрелок при обозначении положения секущей плоскости, должно соответствовать направлению взгляда при построении того вида, в границах которого полностью или частично будет располагаться разрез.

Совмещение разрезов с видами

Изображений на чертеже должно быть минимальное количество. Для уменьшения количества изображений применяется совмещение разрезов с видами. В большинстве случаев разрез совмещается с тем видом, который располагается по направлению взгляда наблюдателя на плоскости проекций, параллельно которой ориентирована секущая плоскость. Фронтальный разрез размещают на месте вида спереди или сзади (см. рис. 13), горизонтальный — на месте вида сверху или снизу (см. рис. 14), профильный — на месте вида слева или справа (см. рис. 15).

Возможны три варианта совмещения:

  • в границах вида располагают полный разрез, т. е. выполняют полное совмещение разреза с соответствующим видом, как на рис. 13, 15, 18. Такое совмещение делают тогда, когда разрез представляет собой несимметричную фигуру, а на виде нет видимых контуров конструктивных элементов, форму которых нужно раскрыть;
  • в границах вида располагают часть вида и часть соответствующего разреза, разделяя их сплошной волнистой линией (рис. 22). Такое совмещение выполняют тогда, когда разрез или вид представляют собой несимметричные фигуры и на виде имеются видимые контуры конструктивных элементов, форму которых нужно раскрыть (на рис. 22, для того, чтобы форма паза на передней стенке предмета была понятна, необходимо оставить видимой часть вида спереди с этим пазом). Как правило, при подобном совмещении простые разрезы не обозначают;
  • в границах вида располагают половину вида и половину соответствующего разреза, разделяя их штрихпунктирной линией, являющейся осью симметрии вида и разреза (рис. 23). Таким образом, этот вариант совмещения можно применить, только если полный вид и полный разрез в отдельности представляют собой симметричные фигуры. Тогда по половине симметричного изображения легко понять полную форму. Вид принято располагать слева от оси симметрии, а разрез справа или вид располагать сверху, а разрез снизу. Обозначение разрезов в этом случае производится по правилу, изложенному в подразд. 4.3.

Примечания:

  1. Если совмещаются часть вида и часть соответствующего разреза или половина вида и половина разреза, то на части вида штриховые линии не проводят.
  2. Если при совмещении на одном изображении симметричных частей вида и разреза, какая-либо линия (например ребро) совпадает с осью симметрии, то эта линия (ребро) должна быть показана, и тогда вид от разреза отделяется сплошной волнистой линией, которая проводится левее (рис. 24, а) или правее (рис. 24, б) оси симметрии.

На рис. 13 … 16, 20 были приведены примеры с одним разрезом предметов. Для предметов сложной формы приходится выполнять несколько разрезов (рис. 18, 25 … 27), причем отдельные разрезы приходится иногда располагать вне видов на свободном поле чертежа. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 22. Совмещение несимметричных вида и разрезаПроекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 23. Совмещение симметричных вида и разреза (половины вида и половины разреза): а — разрез не обозначается; б — разрез обозначается

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 24. Совмещение симметричных вида и разреза, когда ребро совпадает с осыо симметрии: а — ребро показано на разрезе; б — ребро показано на виде Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 25. Выполнение разрезов на видах спереди, сверху и слева (совмещены половины видов и половины разрезов) Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 26. Возможный вариант совмещения половины вида и половины разреза на изображении сверху на рис. 25

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 27. Выполнение разрезов на видах спереди, сверху и слева (на видах размещены полные разрезы)

Сложные разрезы

Выявление формы внутренних полостей предметов, имеющих сложное внутреннее устройство, при помощи простых разрезов приводит к необходимости выполнять их большое количество, что затрудняет чтение чертежа. В таких случаях применяют сложные разрезы. Сложные разрезы всегда обозначают.

Сложным разрезом называют разрез, который получают при помощи двух и более секущих плоскостей. Сложные разрезы разделяются на ступенчатые и ломаные.

Ступенчатый разрез — это разрез, образованный несколькими параллельными секущими плоскостями (рис. 28).

При построении разреза секущие плоскости совмещают в одну, и ступенчатый разрез приобретает форму простого. Ступенчатые разрезы, так же как и простые, могут быть горизонтальными, фронтальными, профильными и наклонными (рис. 28 … 31).

Положение каждой секущей плоскости обозначают штрихами разомкнутой линии, места перехода от одной плоскости к другой (ступеньку) выполняют такими же штрихами. У начального и конечного штрихов указывают стрелкой направление взгляда наблюдателя и ставят одну и ту же букву. То есть, несмотря па то, что секущих плоскостей несколько, буквенные обозначения их одинаковы.

На ступенчатом разрезе линия перехода от одной плоскости к другой (ступенька) не изображается. На чертеже может быть несколько ступенчатых разрезов.

Примечание. Правая плоскость (см. рис. 28) может пересекать как нижнее, так и верхнее квадратное отверстие.Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 28. Образование фронтального ступенчатого разреза.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 29. Горизонтальный ступенчатый разрез Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 30. Профильный ступенчатый разрез

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 31. Наклонный ступенчатый разрез

Для симметричных предметов рекомендуется рассекать их плоскостями так, чтобы полный ступенчатый разрез стал симметричной фигурой, что позволит соединить половину вида и половину разреза (рис. 32).

Не следует стремиться выявлять все внутреннее строение предмета одним сложным разрезом. Для образования ступенчатого разреза рекомендуется применять не более трех секущих плоскостей.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 32. Совмещение половины ступенчатого разреза с половиной вида спереди

Ломаный разрез — это разрез, образованный двумя пересекающимися секущими плоскостями (рис. 33). Первая секущая плоскость выбирается параллельной, а вторая наклонной по отношению к основной плоскости проекций. При выполнении ломаного разреза наклонную секущую плоскость условно поворачивают до совмещения с первой секущей плоскостью, и из этого положения осуществляется проецирование получившейся фигуры сечения на параллельную ей плоскость проекций. При повороте наклонной секущей плоскости элементы предмета, видимые за ней, поворачивать не нужно, а следует строить их изображение в прямой проекционной связи с той плоскостью проекций, на которую производится проецирование. Подобным образом построен на верху цилиндрического выступа предмета (см. рис. 33) прямоугольный паз, который не связан с наклонной секущей плоскостью. Исключением из этого правила является вариант, когда видимые элементы конструктивно связаны с рассекаемым элементом. В подобном случае эти видимые за секущей плоскостью элементы поворачиваются вместе с рассекаемым элементом (рис. 34).

Ломаные разрезы в зависимости от того, на какой плоскости проекций (на каком виде) они будут располагаться, делятся на фронтальные, горизонтальные и профильные.

Положение каждой секущей плоскости обозначают штрихами разомкнутой линии. В месте пересечения секущих плоскостей также ставятся такие штрихи. У начального и конечного штрихов указывают стрелкой направление взгляда наблюдателя и ставят одну и ту же букву. Обратите внимание, что буква у наклонного штриха независимо от наклона плоскости изображается прямо.

Примечание. На рис. 33 наклонная секущая плоскость может пересекать как нижнее, так и верхнее отверстия. Построение ломаного разреза и в том, и в другом случае будет одинаковым.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 33. Образование фронтального ломаного разреза Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 34. Проецирование элементов, конструктивно связанных с наклонной секущей плоскостью

Сечения

Сечением называется изображение, которое получается при мысленном рассечении предмета плоскостью. В отличие от разреза на сечении показывают только то, что расположено непосредственно в секущей плоскости. На рис. 35 показано отличие сечения от разреза.

Сечения применяются для выявления формы отдельных элементов предмета в тех случаях, когда на разрезе определяемые контуры нужного элемента затемняются изображениями других элементов второго плана. Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 35. Пример сечения и разреза

При выполнении сечений следует руководствоваться следующим правилом: фигура сечения должна представлять собой замкнутый контур. Не допускается сечение в виде разомкнутых частей. Так, если для пояснения формы паза на рис. 35 целесообразнее выполнить сечение, то для пояснения сквозного овального отверстия на рис. 36 следует выполнять разрез. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 36. Иллюстрация правильного и неправильного выявления формы отверстия на изображениях А-А

Однако существует исключение из приведенного выше правила: если секущая плоскость проходит по оси вращения круглого отверстия, то в сечении показывают полный контур этого отверстия, т. е. показывают и линии заднего плана, относящиеся к данному отверстию (рис. 37).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 37. Форма сечения, проходящего по оси круглого отверстия

Сечения разделяют на входящие в состав разреза и не входящие в состав разреза (см. рис. 35, где видно, что сечение полностью входит в состав разреза).

Классификация сечений дана на рис. 38, 39. Сечения, не входящие в состав разреза, по месту своего расположения разделяются на вынесенные и наложенные. Контур вынесенного сечения обводится сплошной толстой линией, контур наложенного — сплошной тонкой. И вынесенные, и наложенные сечения могут быть симметричными и несимметричными.

Вынесенным называется сечение, которое размещено вне основных изображений предмета. Вынесенное сечение может располагаться:

  • на свободном поле чертежа в любом удобном месте. Такое сечение должно быть обозначено (см. рис. 38, а, б);
  • в разрыве вида. При этом, если сечение симметрично, то оно не обозначается (см. рис. 38, в); если несимметрично, то оно должно быть обозначено указанием положения секущей плоскости и направления взгляда наблюдателя без буквенных обозначений (см. рис. 38, г);
  • на продолжении следа секущей плоскости. Так могут быть выполнены только симметричные сечения, и они не обозначаются (см. рис. 38, д).

Наложенным называется сечение, которое располагается па виде предмета. Если наложенное сечение имеет симметричную форму, то в качестве линии секущей плоскости выступает ось симметрии сечения (см. рис. 39, а). Если наложенное сечение несимметрично, то оно должно быть обозначено указанием положения секущей плоскости и направления взгляда наблюдателя без буквенных обозначений (см. рис. 39, б).Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 38. Вынесенные сечения

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 39. Наложенные сечения

Сечение наклонного участка предмета по построению и расположению должно соответствовать направлению, указанному стрелками; допускается такое сечение поворачивать с добавлением условного графического обозначения Проекционное черчение - примеры с решением заданий и выполнением чертежей заменяющего слово «повернуто» (рис. 40, а). Однако если выполняются два одинаковых сечения на прямом и наклонном участках, то строят одно изображение сечения без знака «повернуто» (рис. 40, б; сечение А-А). Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 40. Варианты выполнения вынесенных сечений: а — на наклонном участке предмета; б — двух одинаковых сечений А-А на прямом и наклонном участках

Выносные элементы

Выносной элемент — это дополнительное отдельное изображение какой-либо части предмета (рис. 41), которое выполняется с целью уточнения ее формы и размеров. Как правило, выносной элемент вычерчивается в более крупном масштабе (см. рис. 41, а, б). Выносной элемент может отличаться от соответствующего исходного изображения и по содержанию, т. е. исходное изображение может быть видом, а выносной элемент разрезом (см. рис. 41, б). Рекомендуется выносной элемент вычерчивать на свободном поле чертежа как можно ближе к исходному изображению.

При выполнении выносного элемента необходимо тонкой сплошной линией обвести на исходном изображении геометрической фигурой (чаще окружностью или овалом) часть предмета, требующую пояснений. От этой фигуры проводят линию-выноску, на полке которой указывают буквенное обозначение выносного элемента. Эту же букву с указанием в скобках масштаба увеличения наносят над выносным элементом. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 41. Выносные элементы

Условности и упрощения на чертежах

Для уменьшения трудоемкости выполнения чертежей ГОСТ 2.305 — 2008 [1] предусматривает следующие условности и упрощения, которые могут быть применены при выполнении заданий проекционного черчения:

1. Если вид, разрез или сечение представляет симметричную фигуру, то допускается вычерчивать половину симметричного изображения (рис. 42, вид слева) или немного более половины с проведением в последнем случае линии обрыва (рис. 42, вид сверху).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 42. Выполнение части симметричного изображения

2. Допускается упрощенно изображать линии пересечения поверхностей вращения, если не требуется их точного построения. Например, вместо геометрически точно построенных кривых можно проводить дуги окружностей или прямые (рис. 43, а, б). Однако если пересекаются поверхности вращения, описанные около условной сферы, линиями пересечения которых являются прямые, то эти прямые необходимо показывать (рис. 44). Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 43. Упрощенное изображение линий пересечения поверхностей вращенияПроекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 44. Изображение линий пересечения поверхностей вращения с одинаковым диаметром

3. Плавный переход одной поверхности в другую показывают условно тонкой линией (рис. 45, а) или вообще не показывают (рис. 45, б).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 45. Упрощения при изображении плавного перехода поверхностей

4. Плоские участки поверхности допускается выделять диагоналями, проводимыми тонкими линиями (рис. 46). Как правило, такое выделение выполняют, если плоские поверхности находятся на цилиндрических поверхностях или соседствуют с ними.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 46. Пример выделения плоских участков поверхностей диагональными линиями

5. Если секущая плоскость рассекает тонкую стенку параллельно большей грани, то ее условно показывают нерассеченной, отделяя от остальной части предмета основной линией (рис. 47, фронтальный разрез), и не штрихуют. В поперечных разрезах тонкие стенки изображают рассеченными и заштриховывают по общим правилам (рис. 47, разрез А-А). Если в тонкой стенке имеются отверстия, то их следует показывать местными разрезами (см. рис. 47, местный разрез на левом ребре жесткости).

Примечание. Тонкими стенками в техническом черчении называют конструктивные элементы (как правило ребра жесткости), у которых одна грань явно больше других. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 47. Изображение тонких стенок на разрезах

6. Если предмет имеет несколько одинаковых равномерно расположенных элементов, то на изображении этого предмета полностью показывают один такой элемент, а положение остальных задают условно, например центровыми линиями. На рис. 48 продублирован вид сверху предмета, изображенного на рис. 47, но уже с условным обозначением отверстий. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 48. Условное изображение одинаковых отверстий

7. Допускается на разрезах не показывать элементы, видимые за секущей плоскостью, если форма этих элементов уже выявлена. Особенно это касается элементов, которые видны на заднем плане под углом и проецируются с искажением формы. Так, на рис. 49 три одинаковых ребра жесткости. Однозначно определена форма правого ребра, поэтому в левой части разреза ребро на заднем плане не показано. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 49. Пример разреза, на котором левое ребро не изображается

Нанесение размеров

Предметы обладают формой и величиной. Форму предмета на чертеже передают изображения. Величину предмета определяют размеры. ГОСТ 2.307 — 68 [8] устанавливает правила нанесения размеров. Ниже приведены правила, знание которых необходимо при выполнении заданий проекционного черчения.

Размеры на чертеже наносятся один раз без повторения.

Различают размеры линейные (рис. 50, а) и угловые (рис. 50, б). Линейные размеры указывают в миллиметрах, а угловые — в градусах.

Размеры наносят при помощи размерных чисел, размерных и выносных линий (см. рис. 50, а). Размерные числа должны отражать действительные размеры изображаемого предмета независимо от того, в каком масштабе выполнены изображения.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 50. Форма нанесения размеров: а — линейных, б — угловых

Рекомендуемое начертание размеров на чертежах показано на рис. 51.

Размерная линия — это линия, которая с двух сторон ограничена размерными стрелками. Опа в два — три раза тоньше основной линии на чертеже. Первая размерная линия должна отстоять от линии видимого контура изображения минимум па 10 мм, расстояние между параллельными размерными линиями минимум 7 мм. Не допускается использовать в качестве размерных линий линии контура, выносные, осевые и центровые. Необходимо избегать пересечения размерных линий между собой и с другими линиями чертежа.

Размерное число (рекомендуемый размер шрифта 5 мм) проставляют над размерной линией с зазором 1 … 1,5 мм. Размерное число наносят приблизительно на середине размерной линии. На параллельных размерных линиях размерные числа проставляют в шахматном порядке со сдвигом на 1 … 3 цифры относительно друг друга. Размерные числа не допускается пересекать или разделять любыми линиями чертежа.

Выносные линии (они выполняются в два — три раза тоньше основной линии), начинаются в опорных точках изображений и должны выходить за концы стрелок размерных линий на 1 … 5 мм.

Размерные стрелки должны иметь форму и размеры, показанные на рис. 52. Рекомендуемая длина стрелок — 5 или 7 мм. При компьютерном исполнении чертежа допускается в стрелках применять угол 30°.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 51. Начертание размеров

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 52. Начертание размерных стрелок

При нанесении размера окружности перед размерным числом размещают знак диаметра, перед размером дуги — знак радиуса (рис. 53).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 53. Нанесение размеров окружности и дуги

При нехватке места размерные стрелки и размерные числа наносят на продолжении размерных линий (рис. 54).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 54. Варианты нанесения размерных чисел и стрелок размерных линий Размеры узких последовательно расположенных участков наносят так, как показано на рис. 55.Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 55. Варианты нанесения размеров в узких местах

При выполнении чертежа всегда приходится задаваться вопросом, на каком изображении предпочтительнее нанести тот или иной размер. ГОСТ 2.307 — 68 [8] дает следующие рекомендации:

1. Размеры, определяющие форму элемента предмета, наносят на том изображении, на котором эта форма видна и понятна (рис. 56, а). В данном случае только на виде сверху видно, что отверстие имеет прямоугольную форму и именно здесь, а не на разрезе необходимо нанести размеры формы отверстия (размеры 15 и 9). Исключением из общего правила являются круглые отверстия, размеры диаметров которых наносят предпочтительно на их разрезах и сечениях (рис. 56, б; размер Проекционное черчение - примеры с решением заданий и выполнением чертежей).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 56. Нанесение размеров отверстий разной формы

2. Размеры положения элемента относительно других поверхностей предмета наносят на виде, т. е. на том изображении, где можно произвести два измерения (см. рис. 56, а; размеры 10 и 11 и рис. 56, б; размеры 12, 17). Помните, что положение круглого отверстия или выступа задаются координатами только его центра.

3. Размеры наружных и внутренних элементов по возможности следует располагать по разные стороны изображения (рис. 57). Не следует наносить размер расстояния между наружной и внутренней поверхностями (см., например, зачеркнутый размер 7 на рис. 57).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 57. Пример раздельного нанесения размеров внешних и внутренних поверхностей

4. Размеры одинаковых круглых отверстий как простой, так и сложной формы наносят один раз с указанием их количества (рис. 58, а). Для отверстий допускается только следующая структура записи: Проекционное черчение - примеры с решением заданий и выполнением чертежей. Количество одинаковых радиусов не указывают. Количество одинаковых отверстий сложной формы, например ступенчатых, указывают только на меньшем диаметре (рис. 58, б). Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 58. Пример нанесения размеров одинаковых круглых отверстий: а — простой формы; б — сложной формы

5. Размеры симметрично расположенных элементов наносят так, как нанесен размер 24 на рис. 59, а. Если же имеется только половина симметричного изображения, то все равно должен быть указан его полный размер. В этом случае размерную линию проводят с обрывом, и обрыв размерной линии делают несколько дальше оси симметрии (см. рис. 59, б; размеры 24 и 34). Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 59. Пример нанесения размеров симметрично расположенных элементов

Аксонометрические проекции предметов

На технических чертежах изделие изображается в виде ортогональных проекций (видов, разрезов, сечений). Недостатком ортогональных проекций является то, что они не дают непосредственного представления о форме изображенного предмета. Так, каждый основной вид представляет собой точное отображение только одной грани. Чтобы представить по этим видам полную форму предмета, необходимо иметь соответствующие навыки.

Для наглядного объемного представления о предмете применяют аксонометрические проекции по ГОСТ 2.317 — 69 [9], которые позволяют одним изображением передать общую форму предмета.

Аксонометрическая проекция — это проекция предмета на одну плоскость, относительно которой ни одна грань предмета в форме параллелепипеда не расположена параллельно или перпендикулярно. При таком проецировании видны три грани предмета (искаженные), и изображение получается наглядным. В общем случае для предметов любой формы, в том числе и круглых, для построения аксонометрического изображения предмет проецируют на некоторую плоскость вместе с осями прямоугольных координат X, Y и Z, к которым предмет отнесен в пространстве. Направление взгляда при этом не должно совпадать с направлениями координатных осей.

Аксонометрическое изображение дает общее наглядное представление о форме предмета, но не передает точно действительную форму и размеры поверхностей.

Если направление проецирования перпендикулярно к плоскости проекций, то на этой плоскости получают прямоугольную аксонометрическую проекцию (рис. 60, а), если не перпендикулярно -то косоугольную (рис. 60, б).

Для использования в учебной практике рекомендуются два вида аксонометрических проекций — прямоугольная изометрическая и косоугольная фронтальная диметрическая.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 60. Построение проекций: а — ортогональной, б — аксонометрической

Прямоугольная изометрическая проекция

Прямоугольной изометрической проекцией (прямоугольной изометрией) называется аксонометрическая проекция, у которой углы между аксонометрическими осями равны 120°, а коэффициенты искажения по всем трем осям равны единице (рис. 61).

Прямоугольные грани, проецируются в виде параллелограммов, а окружности, лежащие на этих гранях проецируются в виде эллипсов. На рис. 62 показано изображение куба и окружностей на его гранях в прямоугольной изометрии. Построение эллипсов заменяется в учебном курсе более простым построением овалов, которое приведено на рис. 63. Эллипсы в каждой грани строятся одинаково.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 61. Расположение аксонометрических осей в прямоугольной изометрии

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 62. Изображение куба и окружностей на его гранях в прямоугольной изометрии

Построение эллипсов. Построим эллипс на верхней грани куба.

  • Этап 1 (рис. 63, а). Наметим на грани центр эллипса — точку Проекционное черчение - примеры с решением заданий и выполнением чертежей Проведем через нее изометрические оси X и Y (они параллельны сторонам верхней грани). Отложим в обе стороны от точки Проекционное черчение - примеры с решением заданий и выполнением чертежей на каждой оси отрезки, равные радиусу окружности. Через полученные точки проведем прямые, параллельные осям. Получим ромб, представляющий изометрическую проекцию квадрата, в который вписана окружность.
  • Этап 2 (рис. 63, б). Из вершины ромба в точке А проведем отрезок АВ и, взяв его в качестве радиуса Rt, построим верхнюю дугу. Аналогично построим нижнюю дугу (на рисунке она не показана).
  • Этап 3 (рис. 63, в). На пересечении отрезка АВ с горизонтальной осью ромба определим точку С, из которой проведем правую дугу радиусом R2, равным отрезку СВ. Так же построим левую дугу, которая на рисунке не показана.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 63. Построение эллипсов в прямоугольной изометрии

Косоугольная фронтальная диметрическая проекция

Косоугольной фронтальной диметрической проекцией (фронтальной диметрией) называется аксонометрическая проекция, у которой углы между аксонометрическими осями располагаются так, как показано па рис. 64. Коэффициенты искажения по осям Хи Z равны единице, а по оси Y- 0,5.

Особенностью этого вида аксонометрии является то, что грань, параллельная координатной плоскости X0Z, и находящаяся на ней окружность проецируются без искажений (рис. 65). Две другие видимые грани и окружности на них проецируются с искажениями: грани в виде равновеликих параллелограммов, а окружности в виде равновеликих эллипсов, причем большие оси этих эллипсов равны l,06d, а малые — 0,35d (d — диаметр исходной окружности). Построение упрощенных эллипсов как овалов показано на рис. 66. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 64. Расположение аксонометрических осей в косоугольной фронтальной диметрии

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 65. Изображение куба и окружностей на его гранях Построение эллипсов. Построим эллипс, например, на верхней грани куба в плоскости X0Y (см. рис. 66).

Подобным образом на грани Z0Y построим эллипс с центром в точке Проекционное черчение - примеры с решением заданий и выполнением чертежей Разница будет только в наклоне большой Проекционное черчение - примеры с решением заданий и выполнением чертежей и малой осей Проекционное черчение - примеры с решением заданий и выполнением чертежей

В плоскости X0Z построим окружность без искажения ее формы и размера с центром в точке Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 66. Построение эллипсов во фронтальной диметрии

Разрезы в аксонометрических проекциях

В аксонометрических проекциях предметов для показа внутренней конфигурации, как правило, выполняют разрезы двумя и более взаимно перпендикулярными секущими плоскостями, параллельными координатным плоскостям X0Z, Y0Z или X0Y. Эти разрезы образуют вырез, на котором видно внутреннее строение предмета. Если предмет имеет две плоскости симметрии (вид сверху симметричен относительно двух осей), то обычно выполняют так называемый «четвертной вырез», при котором секущие плоскости совпадают с плоскостями симметрии (рис. 67). В предметах с одной плоскостью симметрии или несимметричных секущие плоскости должны проходить по осям отверстий и центрам полостей любой формы (рис. 68). Разрезы на ортогональных изображениях чертежа могут не совпадать с разрезами в аксонометрических проекциях. Линии штриховки сечений наносят параллельно одной из диагоналей проекций квадратов, построенных в соответствующих координатных плоскостях (см. рис. 61, 64). Штриховка пересекающихся сечений должна быть встречной. Ниже приведены примеры аксонометрических изображений предметов с «вырезами» (рис. 67, 68). Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. 67. Прямоугольная изометрическая проекция с «четвертным вырезом» Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 68. Косоугольная фронтальная диметрическая проекция с «вырезом»

Выбор вида аксонометрии

Для изображения одного и того же предмета могут быть выбраны различные виды аксонометрии из разрешенных к применению ГОСТ 2.317 — 69 [9].

Как показала учебная практика, наиболее наглядной и понятной для студентов является прямоугольная изометрическая проекция, в которой предмет изображается в таком же положении, в каком он расположен на чертеже на виде спереди (см. рис. 67).

С точки зрения уменьшения трудоемкости чертежа рекомендуется:

  • прямоугольную изометрию применять тогда, когда круглые отверстия и выступы располагаются на соседних гранях предмета, как на рис. 67;
  • фронтальную диметрию применять тогда, когда подобные элементы находятся только на одной или на двух противоположных параллельных гранях предмета, как на рис. 68. Предмет в аксонометрии располагать так, чтобы грань с наибольшим количеством окружностей и дуг была параллельна плоскости проекций X0Z, при этом окружности и кривые изображаются без искажений.

Построение действительной формы сечения

В учебной практике широко распространены задачи на построение действительной величины сечения, образованного наклонной секущей плоскостью. Такие задачи хорошо развивают пространственное воображение.

Как правило, заданная секущая плоскость является проецирующей. Наиболее удобным способом построения действительной формы сечения является способ замены плоскостей проекций, который подробно изучается в курсе начертательной геометрии.

На рис. 69 показано построение действительной формы сечения предмета наклонной плоскостью А-А.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. 69. Построение действительной формы сечения

Показанный на рис. 69 предмет состоит из двух простых тел: параллелепипеда в основании и расположенного на нем цилиндра. Секущая плоскость А-А расположена под углом к оси вращения цилиндра и пересекает его боковую поверхность по эллипсу, а верхнее и нижнее основание — по прямым. Призматическое основание данная секущая плоскость пересекает по прямоугольнику. Горизонтальная проекция фигуры сечения, расположенная на виде сверху, представляет собой совмещение части эллипса с прямоугольником. Это искаженная проекция, так как при взгляде сверху фигура сечения видна под углом. Для построения действительной формы сечения по направлению взгляда, указанному стрелками секущей плоскости А-А, рекомендуется:

Примечание. Построенное таким образом сечение можно при необходимости переместить в другое место и даже повернуть. Пример повернутого сечения см. на рис. 38, а, б.

Задачи проекционного черчения с решением

Задача 1.

По заданным двум основным видам (рис. П.1.1) построить третий вид предмета, выполнить необходимые разрезы и построить аксонометрическую проекцию (на формате АЗ).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П.1.1. Форма задания к задаче 1

Рекомендуемая последовательность решения:

  1. Подготовить формат АЗ с упрощенной основной надписью.
  2. Перечертить заданные изображения предмета.
  3. Построить третье изображение — вид слева (рис. П.1.2). Для чего можно применить вспомогательную ось р или дуги окружностей с центром в точке 0.
  4. Построить необходимые разрезы. Для того чтобы невидимые поверхности, показанные штриховыми линиями, стали видимыми, применим три разреза (см. разд. 4):
  • простой фронтальный разрез по плоскости симметрии предмета, который полностью совместим с видом спереди, так как и вид, и разрез представляют собой несимметричные фигуры. Этот разрез не обозначается (см. подразд. 4.3);
  • сложный ступенчатый горизонтальный разрез А-А, который расположим на месте вида сверху, причем в силу их симметрии совместим половину вида с половиной разреза;
  • простой профильный разрез Б-Б. Его расположим на месте вида слева и опять же в силу симметричности вида и разреза совместим их половины.

Построенные разрезы (рис. П.1.3) полностью выявят и сделают понятным внутреннее строение данного предмета. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. П.1.2. Пример построения вида слева

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П.1.3. Пример построения разрезов

5. Построить аксонометрическую проекцию. Согласно рекомендациям по выбору вида аксонометрической проекции (см. подразд. 10.4) для данного предмета, у которого отверстия располагаются на всех гранях, целесообразнее построить прямоугольную изометрическую проекцию.

Этапы выполнения отражены на рис. П.1.4:

  • построить аксонометрические оси X, У, Z. Воспользовавшись размерами, приведенными в задании (см. рис. П.1.1), выполнить изображение пластины, лежащей в основании предмета (рис. П. 1.4, а);
  • построить изометрическую проекцию параллелепипеда, который расположен на пластине, и прямоугольное отверстие в нем (рис. П.1.4, б);
  • по заданным размерам наметить центры круглых отверстий и выполнить их изометрические изображения — эллипсы (рис. П.1.4, в);
  • определить секущие плоскости, которые позволят показать на аксонометрическом изображении внутреннюю структуру предмета. Плоскости, образующие «вырез», изображены на рис. П. 1.4, г толстой линией;
  • построить «вырез» в предмете указанными секущими плоскостями (рис. П.1.4, д). Достроить отверстия, которые частично станут видны в «вырезе»;
  • произвести обводку нужных линий, выполнить штриховку и удалить лишние линии. Построенная изометрическая проекция предмета показана на рис. П.1.4, е.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. П.1.4. Этапы построения изометрической проекции

6. Нанести размеры, заполнить основную надпись. Полностью оформленный чертеж предмета представлен на рис. П.1.5. В обозначении чертежа ГУИР. 111814.009 первая цифра 1 обозначает номер темы, вторая цифра 1 — номер факультета, число 18 — номер кафедры, число 14 — номер рабочего места студента и число 009 — номер задания. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. П.1.5. Пример выполнения проекционной задачи 1

Задача 2.

По заданным двум основным видам построить третий вид предмета, выполнить необходимые разрезы и построить действительную форму вынесенного сечения (рис. П.1.6).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П.1.6. Форма задания к задаче 2

Рекомендуемая последовательность решения:

  1. Подготовить формат АЗ с упрощенной основной надписью.
  2. Перечертить заданные изображения предмета.
  3. Построить третье изображение — вид слева (рис. П. 1.7).
  4. Построить необходимые разрезы. Анализ конструкции предмета показывает, что для определения формы внутренних отверстий и паза достаточно выполнить простой фронтальный разрез по плоскости симметрии предмета. Разрез полностью совместим с видом спереди. Обратите внимание на то, как изображается в продольном разрезе ребро жесткости (см. разд. 8 рис. 46).
  5. Построить действительную форму сечения предмета плоскостью А-А. Методика построения рассмотрена в подразд. 10.5.
  6. Если это необходимо, то произвести корректировку компоновки изображений. При нехватке места следует иметь в виду, что допускается поворачивать сечение А-А до вертикального или горизонтального положения, а также выполнять половину любого, кроме главного, симметричного изображения (см. разд. 8, рис. 41).
  7. Произвести обводку нужных линий и удалить лишние.
  8. Выполнить штриховку сечения.
  9. Нанести размеры, заполнить основную надпись.

Полностью оформленный чертеж предмета представлен на рис. П.1.7. Обозначение чертежа производится по той же схеме, что и в задаче 1. Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. П.1.7. Пример выполнения проекционной задачи 2

Выдержки из стандартов по оформлению чертежей

ГОСТ 2.301 — 68. Форматы

Чертежи выполняют на листах бумаги определенного размера (формата).

Подготовленный для работы формат листа имеет вид, показанный на рис. П.2.1, и включает:

  • внешнюю рамку, выполненную сплошной тонкой линией;
  • внутреннюю рамку, которая проводится сплошной толстой линией на расстоянии 5 мм от правой, нижней и верхней стороны внешней рамки и на расстоянии 20 мм слева (это поле для подшивки чертежа);
  • основную надпись (угловой штамп).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П.2.1. Формат листа чертежа

Формат листа определяется размерами сторон внешней рамки (см. на рис. П.2.1 размеры 420 и 297).

Форматы подразделяются на основные и дополнительные. Размеры и обозначения основных форматов приведены в табл. П.2.1.

Таблица П.2.1

Размеры основных форматовПроекционное черчение - примеры с решением заданий и выполнением чертежей

Основную надпись чертежа выполняют по ГОСТ 2.104 — 2006 [7] и помещают в правом нижнем углу формата. На формате А4 ее располагают только вдоль короткой стороны листа, а на других форматах основная надпись может располагаться как вдоль короткой, так и вдоль длинной стороны листа.

ГОСТ 2.302 — 68. Масштабы

Масштабом называется отношение линейных размеров изображения предмета на чертеже к его действительным размерам.

Предметы следует изображать на чертеже предпочтительно в натуральную величину, так как такое изображение дает представление о действительных размерах и соотношениях сторон. Однако это не всегда возможно, и большие предметы изображают уменьшенными, а маленькие — увеличенными, что позволяет выполнять на стандартных форматах чертежи предметов практически любой величины.

Масштабы изображений на чертежах должны выбираться из следующих рядов: натуральная величина -1:1;

  • масштабы уменьшения -1:2 1:2,5 1:4 1:5 1:10 1:15 и др;
  • масштабы увеличения -2:1 2,5:1 4:1 5:1 10:1 20:1 и др.

Масштаб чертежа указывается в основной надписи в специально предназначенной для этого графе по типу 1:1 (рис. П.2.2). Если отдельное изображение на чертеже выполнено в масштабе, отличающемся от указанного в основной надписи, то этот масштаб записывают в скобках вслед за буквенным обозначением данного изображения. Подобным образом обозначен масштаб выносного элемента А на рис. П.2.2 (см. обозначение А(4:1)).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П.2.2. Пример указания масштаба на чертеже

ГОСТ 2.303 — 68. Линии

Изображения на чертежах для большей их выразительности и наглядности выполняются линиями разного начертания и толщины. Установлены девять типов линий, которые представлены в табл. П.2.2. За исходную принята сплошная толстая основная линия. Ее толщина s должна быть в пределах от 0,5 до 1,4 мм в зависимости от величины и сложности изображения. Толщины остальных линий указываются отношением их к толщине основной.

Таблица П.2.2

Типы линий Проекционное черчение - примеры с решением заданий и выполнением чертежей

При выполнении изображений на чертеже указанными линиями необходимо выполнять следующие требования:

  • толщина линий каждого типа должна быть одинаковой для всех изображений на данном чертеже;
  • штриховые и штрихпунктирные линии должны начинаться и заканчиваться штрихами;
  • в центре окружностей должны пересекаться штрихи центровых штрихпунктирных линий (рис. П.2.3, а);
  • если диаметр окружности в изображении (т. е. при вычерчивании ее на чертеже независимо от действительного размера) получился меньше 12 мм, то центровые штрихпунктирные линии следует заменять сплошными тонкими (рис. П.2.3, б).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П.2.3. Начертание центровых линий в зависимости от диаметра окружности

ГОСТ 2.304 — 81. Шрифты чертежные

Текстовую часть чертежей составляют надписи, числа и специальные знаки. Надписи должны быть выполнены стандартными чертежными шрифтами русского, латинского греческого алфавитов, а числа — арабскими и римскими цифрами. Шрифт каждого алфавита включает прописные (заглавные) и строчные (последующие) буквы.

Размер шрифта определяется высотой (h) прописных букв в миллиметрах. Установлены следующие его размеры: 2,5; 3,5; 5; 7; 10; 14; 20; 28; 40.

В зависимости от толщины линий обводки букв (d) различают два типа шрифта:

  • тип А с толщиной линии d = l/14h;
  • тип Б с толщиной линий d = l/10h.

Оба типа шрифта выполняют с наклоном 75° или без наклона (прямой шрифт).

Для построения букв, цифр и знаков применяется вспомогательная сетка, шаг линий которой равен толщине линий шрифта (d). На рис. П.2.4 показано вписывание в такую сетку букв шрифта типа А с наклоном. Следует иметь в виду, что надписи на чертежах необходимо выполнять с применением первой прописной буквы и последующих строчных, т. е. так, как написано слово «Корпус» на рис. П.2.4. Высота строчных букв (с) берется на размер меньше, чем прописных, например, если в слове прописная буква выполняется высотой 7 мм, то строчные буквы должны быть высотой 5 мм. На чертежах, выполняемых карандашом, размер шрифта должен быть не менее 3,5 мм.

Кроме указанных выше параметров h, с, d, шрифты характеризуются еще шириной букв (g) и расстоянием между буквами (а).

В заданиях по курсу «Начертательная геометрия и инженерная графика» рекомендуется применять шрифт типа А с наклоном, который представлен на рис. П.2.5.

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П.2.4. Обозначение параметров шрифта Проекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. П.2.5. Начертание букв и цифр русского алфавита шрифта типа А с наклоном

ГОСТ 2.104 — 2006. Основные надписи

ГОСТ 2.104 — 2006 устанавливает формы, размеры и порядок заполнения основных надписей, установленных для применения в технических чертежах.

Для учебных чертежей, выполняемых по проекционному черчению, можно использовать два вида основных надписей:

  1. стандартную по указанному выше ГОСТу (рис. П.2.6). Ее применение предпочтительно;
  2. упрощенную учебную (рис. П.2.7). Ее рекомендуется применять по разрешению преподавателя на насыщенном изображениями чертеже по теме «Проекционное» черчение», когда стандартная основная надпись не помещается, (см. рис. П.1.5 и рис. П.1.7).

Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П.2.6. Форма и размеры стандартной основной надписиПроекционное черчение - примеры с решением заданий и выполнением чертежей

Рис. П.2.7. Форма и размеры упрощенной основной надписи

ГОСТ 2.306 — 68. Обозначения графические материалов и правила их нанесения на чертежах

Стандарт устанавливает правила штриховки материалов в сечениях. В курсе проекционного черчения, как правило, рассматриваются предметы (детали), которые сделаны из металлов и пластмасс.

Металлы заштриховываются параллельными прямыми тонкими сплошными линиями, проводимыми под углом 45° к горизонту (рис. П.2.8, а). Шаг штриховки (расстояние между линиями штриховки) принимается в пределах от I до 10 мм. В учебных чертежах рекомендуется шаг штриховки 2 … 5 мм в зависимости от площади штриховки. Наклон штриховки может быть влево или вправо.

Пластмассы штрихуются «в клеточку», т. е. перекрестными параллельными прямыми линиями с наклоном 45° (рис. П.2.8, б).

При выполнении любого чертежа необходимо придерживаться следующего правила: на всех изображениях чертежа, выполненных в одном масштабе, один и тот же предмет в сечениях должен быть заштрихован одинаково, т. е. с одинаковым шагом и одним наклоном линий штриховки. Имеются в виду все сечения, как входящие в состав разрезов, так и сечения выносные и наложенные.

Если линии штриховки совпадают по направлению с линиями контура или осевыми линиями, то вместо угла 45° следует брать угол 30° или 60° (см. рис. П.2.8, в). Проекционное черчение - примеры с решением заданий и выполнением чертежей Рис. П 2.8. Штриховка материалов в сечениях: а — металлов, б — пластмасс, в — если линии контура сечения или его ось расположены под углом 45°

Изображения на технических чертежах

В основе правил построения изображений лежит метод проецирования, подробно рассмотренный в курсе начертательной геометрии. В машиностроении, как правило, применяются параллельные проекции, которые
можно разделить на прямоугольные (ортогональные) и аксонометрические.

Прямоугольные проекции наиболее распространены в машиностроении. В прямоугольных проекциях выполняются все производственные чертежи. Такие чертежи достаточно просты в исполнении, и по ним можно представить себе форму предмета и найти размеры всех его элементов. Однако прямоугольные проекции имеют существенный недостаток – отсутствие наглядности. Для того чтобы по этим проекциям представить истинную форму предмета, необходимо обладать достаточно развитым пространственным мышлением. Этот недостаток ортогональных проекций восполняют аксонометрические проекции, которые более сложны в исполнении, однако обладают наглядностью и выразительностью. Поэтому такие проекции широко применяются для наглядного изображения деталей, узлов, агрегатов машин и конструкций приборов на чертеже, особенно на начальных этапах конструирования. Аксонометрические проекции применяются как самостоятельно, так и в комплексе с ортогональными проекциями.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

При выполнении проекционных чертежей полезно помнить, что какую бы сложную форму ни имели реальные изделия (рис. 1), их всегда можно представить как совокупность плоскостей и поверхностей вращения (цилиндрической, конической, сферической, торовой и винтовой). Таким образом, мысленно разбивая деталь на простейшие геометрические объекты и выполняя их проекционные изображения, можно получить прямоугольную или аксонометрическую проекцию изделия целиком.

Прямоугольное проецирование на несколько плоскостей проекций

В общем случае чертеж любого предмета должен содержать графические изображения видимых и невидимых его поверхностей. Согласно ГОСТ 2.305 – 68 ** изображения предметов необходимо выполнять по методу прямоугольного проецирования. При этом предмет предполагается расположенным между наблюдателем и соответствующей плоскостью проекций. Такой метод прямоугольного проецирования называется методом первого угла (или методом Е). За основные плоскости проекций принимают шесть граней куба (рис. 2, а), которые совмещают с плоскостью чертежа, как показано на рис. 2, б.
Изображение на фронтальной плоскости проекций принимают на чертеже в качестве главного. Предмет относительно фронтальной плоскости проекций следует располагать так, чтобы изображение на ней (главное изображение) давало наиболее полное представление о форме и размерах предмета. Изображения на чертеже в зависимости от их содержания согласно стандарту разделяются на виды, разрезы, сечения и выносные элементы.

Виды

Видом называется изображение обращенной к наблюдателю видимой части поверхности предмета. Все видимые элементы предмета выполняются сплошными толстыми (основными) линиями. Допускается на видах показывать невидимые части поверхности предмета штриховыми линиями для уменьшения количества изображений в тех случаях, когда невидимые очертания предмета являются несложными. Различают основные, дополнительные и местные виды.

Основными называются виды, получаемые проецированием на основные плоскости проекций. К основным видам (рис. 2, б) относятся:
1 – вид спереди (или главный вид); 2 – вид сверху; 3 – вид слева; 4 – вид справа; 5 – вид снизу; 6 – вид сзади.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Показанное на рис. 2, б расположение видов называется расположением в проекционной связи. Если какой-либо вид расположен с нарушением проекционной связи (смещен относительно главного изображения; отделен от главного изображения другими изображениями; вид расположен не на одном листе с главным изображением), то для него указывают стрелкой направление проецирования, обозначаемое прописной буквой кириллицы, той же буквой обозначают построенный вид (рис. 3).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Дополнительными называют виды, получаемые на плоскостях, не параллельных основным плоскостям проекции. Дополнительные виды применяются в тех случаях, когда какая-либо часть предмета не может быть показана ни на одном из основных видов без искажения формы и размеров и также отмечают стрелкой и надписью (вид А на рис. 4). Допускается поворачивать дополнительный вид, при этом к надписи добавляют знак «повернуто» (вид Б на рис. 4). При необходимости указывают угол поворота после знака «повернуто». Если дополнительный вид расположен в непосредственной проекционной связи с изображением, стрелку и надпись над видом не наносят (рис. 5, 6).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Местным видом называется изображение ограниченной части поверхности предмета. Если местный вид вычерчивают вместе с частью поверхности предмета, на которой находится изображаемый участок, то он ограничивается сплошной волнистой линией (рис. 7).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Если изображаемый элемент вычерчивают только по его контуру, без дополнительного указания части поверхности предмета, лежащей за этим контуром, то волнистую линию не проводят (вид Б на рис. 7).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Местный вид указывают на чертеже так же, как и дополнительный вид. В случаях, когда местные виды располагаются в непосредственной проекционной связи с изображением, допускается их не обозначать. Для удобства чтения чертежа рекомендуется располагать местные виды вблизи исходного изображения.

Кроме рассмотренных выше видов, для изображения искривленных (рис. 8, а) или гнутых предметов (рис. 8, б), которые можно развернуть в одну плоскость без искажения, применяют развертки (или, как их еще называют, развернутые виды). При таком изображении гнутых предметов контуры выполняют сплошной линией, а места изгиба обозначают тонкой штрихпунктирной линией с двумя точками (рис. 8, б). Над изображением развертки помещают знак «развернуто».
Проекционное черчение - примеры с решением заданий и выполнением чертежей

На рис. 9 приведены размеры стрелок, указывающих направление взгляда и знаков «повернуто» и «развернуто».

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Разрезы

Разрезом называется изображение, полученное мысленным рассечением предмета одной или несколькими плоскостями. На разрезе показывают то, что расположено непосредственно в секущей плоскости и за ней (рис. 10). Допускается изображать не все, что расположено за секущей плоскостью, если этого не требуется для понимания конструкции предмета (рис. 11). Разрез может быть расположен на месте одного из основных видов или на свободном поле чертежа.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

При выполнении разреза в определенном месте предмета мысленно проводят секущую плоскость, отбрасывают часть предмета, расположенную между наблюдателем и секущей плоскостью, а затем оставшуюся часть проецируют на соответствующую плоскость проекций. После чего наносятся необходимые обозначения.

Разрез является условным изображением, поскольку проведение секущей плоскости и удаление части предмета, лежащей между наблюдателем и секущей плоскостью, производится мысленно.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Выполняя разрезы, следует помнить, что разрез – это искусственный прием, при котором мысленное рассечение предмета относится только к данному разрезу и не изменяет другие изображения того же предмета. Каждому разрезу соответствует своя собственная секущая плоскость (или плоскости), причем эти плоскости между собой не связаны и один разрез от другого не зависит.
В зависимости от расположения секущих плоскостей относительно плоскостей проекций различают горизонтальные, вертикальные и наклонные разрезы. Горизонтальный разрез (рис. 12) получается при рассечении предмета горизонтальной плоскостью, вертикальный – при рассечении плоскостью,
перпендикулярной горизонтальной плоскости проекций. При этом вертикальный разрез называют фронтальным (рис. 13), если секущая плоскость параллельна фронтальной плоскости проекции, и профильным (рис. 14), если
секущая плоскость параллельна профильной плоскости проекций.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

На практике встречаются случаи, когда вертикальный разрез выполняется секущей плоскостью, непараллельной ни фронтальной, ни профильной плоскостям проекций (рис. 15).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Такой разрез строится и располагается в соответствии с направлением взгляда, указанным стрелками на линии, обозначающей след секущей плоскости. Допускается изображать такой вертикальный разрез с поворотом. В этом случае к его обозначению добавляют знак «повернуто». Наклонный разрез (рис. 16) получается при рассечении предмета плоскостью, наклоненной к горизонтальной плоскости проекций. Наклонный разрез допускается изображать с поворотом. В этом случае к его обозначению добавляют знак «повернуто».

Проекционное черчение - примеры с решением заданий и выполнением чертежей

В зависимости от направления секущих плоскостей разрезы разделяют на продольные и поперечные. Разрез называется продольным (рис. 17), если секущая плоскость направлена вдоль длины или высоты предмета. Разрез называется поперечным (рис. 18), если секущая плоскость направлена перпендикулярно длине или высоте предмета.

В зависимости от числа секущих плоскостей различают простые и сложные разрезы. Простыми называются разрезы, полученные при мысленном рассечении предмета одной плоскостью. Сложными называются разрезы, полученные при мысленном рассечении предмета двумя или несколькими плоскостями.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Сложный разрез называют ступенчатым, если секущие плоскости параллельны между собой (рис. 19, 20), и ломаным, если секущие плоскости пересекаются под углом, большим 90° (рис. 21, 22).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

При повороте секущей плоскости элементы предмета, расположенные за ней, вычерчивают так, как они проецируются на соответствующую плоскость, до которой производится совмещение (рис. 23).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Допускается применение сложных комбинированных разрезов, представляющих собой сочетание ступенчатого и ломаного (рис. 24). При необходимости допускается применять развернутые разрезы (рис. 25). В этом случае в качестве секущей применяют цилиндрическую поверхность, развертываемую затем в плоскость. При выполнении такого разреза над изображениями помещают знак «развернуто».

Проекционное черчение - примеры с решением заданий и выполнением чертежей

В зависимости от полноты произведенного разреза они подразделяются на полные и местные. Местные разрезы применяют для выяснения устройства детали лишь в отдельном ограниченном месте (рис. 26). Его ограничивают на виде или волнистой линией (рис. 26, а, б), или линией с изломами (рис. 26, б), и эти линии не должны совпадать с какими-либо другими линиями изображения. Концы ломаной линии должны выступать за контур изображения на 2…4 мм.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Допускается соединять часть вида и часть соответствующего разреза, разделяя их линией с изломами (рис. 27) или волнистой линией (рис. 29). При этом, как правило, разрезы располагают справа от вертикальной или внизу от горизонтальной оси симметрии. На изображениях симметричных изделий (рис. 28) границей вида и разреза служит ось симметрии (штрихпунктирная линия). В случае если на оси симметрии имеется линия видимого или невидимого контура, то ее видимость нужно сохранить, перенеся линию обрыва левее или правее оси симметрии (рис. 29).

Отметим, что если разрез выполнен на месте главного вида, то его называют главным изображением, а не главным видом.
Обозначение разреза (рис. 30) содержит указание положения секущей плоскости линией сечения (штрихами разомкнутой линии), указание направления проецирования (стрелками на начальном и конечном штрихах) и обозначение секущей плоскости и разреза одной и той же прописной буквой кириллицы, начиная с А, без пропусков и повторений. При сложном разрезе штрихи разомкнутой линии, обозначающие положение секущих плоскостей, проводят также у мест пересечения секущих плоскостей между собой. Начальный и конечный штрихи разомкнутой линии не должны пересекать контур изображения. Буквы наносят около стрелок (при необходимости и в местах перегиба) с внешней стороны угла. Высота буквенных обозначений должна быть на один-два размера шрифта больше размерных чисел чертежа.

Расстояние между изображением детали и штрихом принимается по обстановке, желательно не менее 3 мм. При необходимости начальный и конечный штрихи могут быть расположены внутри контура.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

В случаях, подобных показанному на рис. 31, стрелки, указывающие направление взгляда, наносят на одной линии. Не указывают положение секущей плоскости, направление проецирования и не наносят буквенные обозначения, если секущая плоскость совпадает с плоскостью симметрии предмета и параллельна одной из основных плоскостей проекций, а соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены какими-либо другими изображениями (см. рис. 13, 14).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Допускается указывать положение секущей плоскости и направление проецирования без буквенных обозначений для разреза, находящегося в
непосредственной проекционной связи, обеспечивающей однозначное понимание чертежа, как показано на рис. 32. Правила штриховки разрезов рассмотрены в п. 1.6.

Сечения

Сечением называется изображение фигуры, получающейся при мысленном рассечении предмета одной или несколькими плоскостями. При необходимости можно применять в качестве секущей цилиндрическую поверхность, развертываемую затем в плоскость. В отличие от разреза, в сечении показывают только то, что получается непосредственно в секущей плоскости. На рис. 33 для сравнения показаны разрез А – А и сечение Б – Б.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Сечения, не входящие в состав разреза, по месту своего расположения разделяют на вынесенные и наложенные. Вынесенным называется сечение, расположенное вне контура основного изображения (рис. 34, а). Наложенным называется сечение, расположенное на проекции предмета (рис. 34, б). Применение вынесенных сечений предпочтительно.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Наложенные сечения вычерчивают сплошными тонкими линиями непосредственно на самом виде, причем контур изображения в месте расположения наложенного сечения не прерывают (рис. 35). Вынесенные сечения располагают на свободном поле чертежа и ограничивают сплошными основными линиями (рис. 36). Допускается изображать вынесенное сечение в разрыве изображения (рис. 37).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

В зависимости от расположения секущей плоскости относительно оси детали сечения подразделяются на нормальные и наклонные. Нормальным называется сечение в том случае, если секущая плоскость перпендикулярна оси предмета (рис. 38), наклонным – если секущая плоскость наклонена к оси предмета (рис. 39).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

В зависимости от количества секущих плоскостей различают простые и сложные сечения. Простые сечения получаются при рассечении предмета одной секущей плоскостью, сложные – при рассечении предмета двумя или несколькими плоскостями. Наиболее часто применяют простые сечения. Сложные сечения допускается применять тогда, когда рассекаемые элементы предмета не параллельны друг другу. В общем случае положение секущей плоскости и надпись над сечением на чертежах указывают так же, как и для разрезов (рис. 38, 39).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Если вынесенное сечение имеет симметричную форму и расположено вблизи изображения на продолжении следа секущей плоскости, то след секущей плоскости обозначается тонкой штрихпунктирной линией, буквами не обозначается, направление взгляда не указывается и сечение не подписывается. Для симметричных наложенных сечений и сечений, расположенных в разрыве изображения, след секущей плоскости не указывается и сечение не подписывается (рис. 40).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

При этом секущую плоскость следует располагать таким образом, чтобы на изображении получалось нормальное поперечное сечение.
Для несимметричных сечений, расположенных в разрыве или наложенных, линию сечения проводят со стрелками, но буквами не обозначают (рис. 41).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Сечения по построению и расположению должны соответствовать направлению, указанному стрелками. Допускается располагать сечение повернутым. В этом случае его изображение сопровождают знаком «повернуто» (рис. 42, а). Знак «повернуто» не ставят, если секущие плоскости расположены под разными углами (рис. 42, б).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Если на чертеже имеется несколько одинаковых сечений, относящихся к одному и тому же изделию, то линию сечения обозначают одной буквой и вычерчивают одно сечение (рис. 43). Если расположение одинаковых сечений точно определено размерами или изображением, то допускается наносить одну линию сечения и вычерчивать одно сечение (рис. 44). Допускается указывать количество сечений в надписи сечения (рис. 45).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Если секущая плоскость проходит через ось поверхности вращения, ограничивающей отверстие или углубление, то контур отверстия или углубления в сечении показывают полностью (рис. 46).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Если сечение получается состоящим из отдельных частей, то необходимо применить разрез (рис. 47). Правила штриховки сечений рассмотрены в п. 1.6.

Выносные элементы

При изображении детали на чертеже в мелком масштабе конструкция отдельных ее частей может быть неясна. Поэтому возникает необходимость в применении выносных элементов, которые позволяют исключить необходимость увеличения масштаба всего изображения для конкретизации отдельных конструктивных особенностей изделия.

Выносным элементом называется дополнительное отдельное изображение (обычно увеличенное) какой-либо части предмета, требующей графического или иного пояснения в отношении формы, размеров и других данных ввиду мелкого ее изображения.

Выносной элемент может содержать подробности, не указанные на соответствующем изображении, и может отличаться от него по содержанию (например, изображение может быть видом, а выносной элемент – разрезом).
При применении выносного элемента соответствующее место отмечают на виде, разрезе или сечении замкнутой сплошной тонкой линией (окружностью или овалом) с обозначением прописной буквой кириллицы на полке линии-выноски. Над выносным элементом указывается та же буква и масштаб, в котором выполнен выносной элемент (рис. 48).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Выносной элемент следует располагать как можно ближе к соответствующему месту на изображении предмета.

Графическое обозначение материалов в разрезах и сечениях

Для изготовления изделий в технике применяется большое число различных материалов. Материал, из которого должно быть изготовлено изделие, указывают соответствующим обозначением в основной надписи чертежа. Однако для удобства пользования чертежом в сечениях (в том числе и входящих в состав разрезов) наносят установленные ГОСТ 2.306 – 68* графические обозначения материалов, которые характеризуют их лишь в общих чертах. Некоторые из этих обозначений приведены в таблице, на с. 31.

Штриховка выполняется тонкими сплошными линиями. Параллельные линии штриховок проводят под углом 45° к линии рамки чертежа (рис. 49, а) или к оси вынесенного или наложенного сечения (рис. 49, б).

Расстояние между линиями выбирается в зависимости от площади сечения (чем больше площадь сечения, тем относительно реже штриховка) и необходимости разнообразить штриховку смежных сечений. Для учебных чертежей рекомендуется принимать расстояние между линиями штриховки, равным 2…3 мм. Расстояние между параллельными линиями штриховки должно быть одинаковым для всех выполненных в одном масштабе изображений данной детали на чертеже. Линии штриховки могут наноситься с наклоном влево или вправо, но в одну и ту же сторону на всех сечениях, относящихся к одной и той же детали, независимо от количества листов, на которых расположены чертежи этих сечений. При совпадении направления линий штриховки с контурными или осевыми линиями вместо угла наклона 45° применяют угол 30 или 60° (рис. 50).

Штриховку смежных сечений наносят для одного сечения вправо, для другого – влево или изменяют расстояние между линиями (рис. 51, а), кроме того, применяют сдвиги линий штриховки (рис. 51, б). При штриховке «в клетку» расстояние между линиями штриховки в каждом сечении должно быть разным (рис. 52).

Большие площади, а также при указании профиля грунта рекомендуется штриховать только у контурных линий узкой полоской равномерной толщины (рис. 53).

Узкие площади сечений, шириной на чертеже менее 2 мм, допускается зачернять (рис. 54), оставляя просвет между смежными сечениями 0,8…1,0 мм. Узкие и длинные площади сечений рекомендуется штриховать участками (рис. 55).

Таблица
 

Графические обозначения материалов:
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Примечания:

  1. Композиционные материалы, содержащие металлы и неметаллические материалы, обозначают как металлы.
  2. Графическое обозначение древесины применяется в тех случаях, когда нет
  3. необходимости указывать направление волокон.
  4. Графическое обозначение керамики и силикатных материалов следует применять для обозначения кирпичных изделий (обожженных и необожженных), огнеупоров, строительной керамики, электротехнического фарфора, шлакобетонных блоков и т.п.
  5. Допускается применять дополнительные обозначения материалов, не предусмотренных в стандарте, поясняя их на чертеже.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Соприкасающиеся сечения одной и той же детали штрихуют в одну сторону без изменения шага штриховки (рис. 56). Графические обозначения, отличные от прямых линий штриховки, выполняют от руки.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Условности и упрощения, применяемые при выполнении изображений

В целях уменьшения трудоемкости и ускорения процесса разработки чертежей, уменьшения расхода бумаги на их оформление, повышения выразительности чертежей ГОСТ 2.305 – 68 ** устанавливает следующие условности и упрощения.
Если вид, разрез или сечение представляют собой симметричную фигуру, допускается вычерчивать половину изображения или немного более половины изображения с проведением в последнем случае волнистой линии (рис. 57).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Если предмет имеет несколько одинаковых, равномерно расположенных элементов (отверстий, зубьев, пазов, спиц и т. д.), то на его изображении полностью показывают один – два таких элемента, а остальные упрощенно или условно (рис. 58, а и рис. 59), с указанием их количества. Допускается также изображать лишь часть такого предмета (рис. 58, б) с надлежащими указаниями о количестве элементов, их расположении и т.д.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Плавный переход одной поверхности в другую показывают условно тонкой линией или совсем не показывают (рис. 60). Допускается упрощенно изображать линии пересечения поверхностей, если по условиям производства не требуется их точного построения. Например, вместо лекальных кривых можно проводить дуги окружности и прямые (рис. 61).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Такие элементы деталей, как спицы маховиков, шкивов, зубчатых колес, тонкие стенки типа ребер жесткости и т. п., показывают рассеченными, но для большей наглядности не заштрихованными, если секущая плоскость направлена вдоль их оси или длинной стороны элемента (рис. 58, 63). Если в подобных элементах детали имеется отверстие или углубление, то применяют местный разрез (рис. 24, 64).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

При изображении деталей, имеющих постоянные или закономерно изменяющиеся поперечные сечения (стержни, валы, трубопроводы, цепи, фасонный прокат, шатуны, опоры и т.п.), для экономии места допускается
изображать их с разрывами (рис. 65). Место обрыва ограничивается сплошной волнистой линией, которая проводится от руки, или, для участков большой протяженности, сплошной линией с изломами. Плоские участки поверхности детали рекомендуется выделять диагоналями, проводимыми сплошными тонкими линиями (рис. 66).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

На чертежах изделий с накаткой, сплошной сеткой, орнаментом, рифлением и т.д. эти элементы допускается изображать частично с возможным упрощением (рис. 67).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Для показа конструкции отверстий в ступицах шкивов, зубчатых и червячных колес и т.п. деталей, а также шпоночных пазов на валах допускается вместо второго изображения детали давать лишь контур отверстия (рис. 68, а) или паза (рис. 68, б).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Пластины, а также элементы деталей (отверстия, фаски, пазы, углубления и т.п.) размером на чертеже 2 мм и менее рекомендуется изображать с отступлением от масштаба, принятого для всего изображения, в сторону увеличения. Незначительный уклон допускается показывать с увеличением.

Незначительную конусность также допускается изображать с увеличением или проводить только одну линию, соответствующую меньшему диаметру конуса (рис. 69). При выполнении разрезов допускается показывать элементы детали,
расположенные перед секущей плоскостью (рис. 70). Такое изображение называется наложенной проекцией. Наложенная проекция выполняется
штрихпунктирной утолщенной линией.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Допускается изображать в разрезе отверстия, расположенные на круглом фланце, не попадающие в секущую плоскость (рис. 71).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Применение условностей и упрощений при построении изображений сокращает время, затрачиваемое на разработку графической документации, и ведет к сокращению сроков проектирования, повышению его качества. Однако следует иметь ввиду, что применение упрощений не должно приводить к снижению ясности чертежа.

Наглядные аксонометрические изображения

Сущность метода параллельного аксонометрического проецирования состоит в том, что предмет относят к некоторой прямоугольной системе координат и затем проецируют его параллельными лучами на произвольно выбранную плоскость аксонометрических проекций вместе с этой системой.

Сущность метода аксонометрического проецирования

Плоскость аксонометрических проекций называют также картинной плоскостью. На рис. 72 показана точка А, отнесенная к системе прямоугольных координат Oxyz. Проведем через нее проецирующий луч, параллельный вектору Проекционное черчение - примеры с решением заданий и выполнением чертежей, до пересечения его с аксонометрической (картинной) плоскостью P. Точка пересечения проецирующего луча с картинной плоскостью Проекционное черчение - примеры с решением заданий и выполнением чертежей называется аксонометрической проекцией точки А. При проведении таких лучей через точки координатных осей, получаем их проекции Проекционное черчение - примеры с решением заданий и выполнением чертежей, Проекционное черчение - примеры с решением заданий и выполнением чертежей на аксонометрическую плоскость. Вектор Проекционное черчение - примеры с решением заданий и выполнением чертежей определяет направление проецирования. Приведенное построение показывает, что при заданном направлении проецирования каждой точке пространства соответствует единственная аксонометрическая проекция.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Аксонометрические проекции различаются по углу φ, который составляет вектор направления проецирования Проекционное черчение - примеры с решением заданий и выполнением чертежей (или проецирующий луч) с аксонометрической плоскостью. Если направление проецирования перпендикулярно к картинной плоскости (φ = 90º), то такую проекцию называют прямоугольной, в противном случае – косоугольной.
Известно, что положение любой точки в пространстве определяют три ее координаты – x, y и z. На рис. 73 показано построение аксонометрической проекции точки А, положение которой определяют координаты Проекционное черчение - примеры с решением заданий и выполнением чертежей,Проекционное черчение - примеры с решением заданий и выполнением чертежей На аксонометрической проекции звенья координатной ломаной Проекционное черчение - примеры с решением заданий и выполнением чертежей в общем случае не равны натуральным длинам соответствующих звеньев. В зависимости от направления проецирующих лучей и положения картинной плоскости, аксонометрическое изображение предмета искажается вдоль каждой из трех осей координат. Искажение отрезков осей координат при их проецировании на картинную плоскость характеризуется коэффициентами искажения.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Коэффициентом (или показателем) искажения называется отношение длины проекции отрезка оси на картинной плоскости к его истинной длине.
Коэффициенты искажения по направлениям каждой из координатных осей или по направлениям, им параллельным, определяются по формулам:
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Можно показать, что между коэффициентами искажения и углом φ существует следующая зависимость:
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Для прямоугольной аксонометрии, когда φ = 90º, это соотношение принимает вид
Проекционное черчение - примеры с решением заданий и выполнением чертежей

В зависимости от соотношения коэффициентов искажения, различают изометрические, диметрические и триметрические аксонометрические проекции. Изометрической проекцией (или изометрией) называется такая
аксонометрическая проекция, у которой все коэффициенты искажения равны между собой (k = m = n). Если равны между собой лишь два коэффициента искажения (k = m ≠ n), то аксонометрическая проекция называется диметрической (или диметрией). Если же все три коэффициента искажения не равны между собой (k ≠ m ≠ n ≠ k), то аксонометрия называется триметрической (или триметрией). Понятно, что изометрические, диметрические и триметрические проекции могут быть как прямоугольными, так и косоугольными.

Обратимость аксонометрической проекции, т.е. возможность определения натуральных размеров изображенного объекта, обеспечивается путем указания на нем показателей искажения (или наличием условий для их определения) и возможности построения аксонометрической координатной ломаной любой точки поверхности, принадлежащей изображенному объекту. Построение аксонометрии при помощи координатных ломаных производят достаточно редко. Ими пользуются в тех случаях, когда нельзя применить какой-либо частный прием, например, для построения линий перехода и других кривых линий.

На практике аксонометрическую проекцию предмета строят, проводя отрезки
прямых соответствующей длинны (с учетом показателей искажения) параллельно аксонометрическим осям. На аксонометрической проекции могут быть нанесены размеры, обеспечивающие его обратимость. В этом случае нет необходимости в указании показателей искажения по осям.
Разрезы на аксонометрических проекциях выполняют, как правило, путем сечения объекта плоскостями, параллельными координатным. При этом линия, ограничивающая разрез, вычерчивается как линия видимого контура. Применяемые в отечественной конструкторской документации аксонометрические проекции стандартизованы по ГОСТ 2.317 – 69. К стандартным аксонометрическим проекциям относятся: прямоугольная изометрия, прямоугольная диметрия, косоугольные фронтальная и горизонтальная изометрии и косоугольная фронтальная диметрия.

Прямоугольная изометрия

В прямоугольной изометрии аксонометрические оси расположены под углами 120º друг к другу. При этом ось Оz располагают вертикально, а оси Оx и Оy под углами 30º к горизонтальному направлению (рис. 74, а).

Рассмотрим различные способы построения изометрических осей. Выполняя построение осей первым способом (рис. 74, б), на горизонтальной прямой, проходящей через центр аксонометрической системы координат, откладываем в обе стороны от точки О семь равных отрезков произвольной длины. Из крайних точек этих отрезков вниз по вертикали откладываем слева и справа по четыре таких же отрезка. Построенные точки соединяем с точкой О и получаем направления аксонометрических осей Ох и Оу.

Построение осей вторым способом (рис. 74, в) выполняется в следующей последовательности. Строим окружность произвольного радиуса R с центром в точке О. Затем из точки пересечения полученной окружности с вертикальной осью, проходящей через точку О, как из центра, проводим дуги окружностей такого же радиуса до пересечения с исходной окружностью. Построенные точки соединяем с точкой О и получаем направления аксонометрических осей Ох и Оу.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Третий способ (рис. 74, г) предполагает использование угольника с углами 30º, 60º и 90º. Порядок построения понятен из рисунка. Для построения изображения предмета в изометрии необходимо все его линейные размеры, параллельные осям, умножить на коэффициент искажения 0,82, а затем уже откладывать их на аксонометрическом чертеже. Полученное изображение называют нормальным или точным (рис. 75, а). Стандарт предусматривает построение и упрощенной изометрической проекции без сокращения размеров по осям координат. При этом получается увеличенное в 1,22 раза по отношению к оригиналу изображение
предмета без нарушения пропорций между отдельными элементами. Такое
изометрическое изображение называется увеличенным (рис. 75, б), а коэффициенты искажения становятся приведенными. На практике, как правило, применяется изометрическая проекция, дающая увеличенное изображение.

Изометрическими проекциями окружностей, расположенных в плоскостях проекций или плоскостях, параллельных им, являются эллипсы (рис. 76). Соотношения больших и малых осей эллипсов во всех плоскостях проекций одинаковы и равны: большие оси – 1,22d, малые – 0,71d, где d – диаметр изображаемой окружности.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Расположение осей эллипсов зависит от положения проецируемой окружности. В общем случае для всех видов прямоугольных аксонометрических проекций справедливо правило: большая ось эллипса всегда перпендикулярна к отсутствующей в плоскости данной окружности оси, а малая ось эллипса – направлена вдоль этой оси. Например, большая ось эллипса, в который проецируется окружность, лежащая во фронтальной плоскости проекций, расположена перпендикулярно оси Оy, а малая – направлена по этой оси, поскольку именно ось Оy отсутствует во фронтальной плоскости проекций (рис. 76).

Величина осей эллипса может быть вычислена по указанным соотношениям или определена графически. Графическое определение величин большой и малой осей эллипса в изометрии, в зависимости от диаметра проецируемой окружности, показано на рис. 77. Как правило, на практике для упрощения построений эллипсы в изометрии заменяют четырехцентровыми овалами. Рассмотрим два способа построения таких овалов.

Для построения овала первым способом (рис. 78) проводим изометрические оси Ох и Оу и откладываем на них в обе стороны от точки О отрезки, равные радиусу заданной окружности (рис. 78, б). Через полученные точки 1, 2, 3, 4 проводим прямые, параллельные аксонометрическим осям, и получаем  ромб ABCD, который представляет собой изометрию квадрата, описанного вокруг окружности (рис. 78, а). Вершины А и С полученного ромба, лежащие на короткой диагонали, являются центрами больших дуг овала.

Соединяем лучами точку А с точками 2 и 3 и на пересечении этих лучей с большой диагональю BD ромба получаем центры малых дуг овала – Проекционное черчение - примеры с решением заданий и выполнением чертежей. Из точек А и С проводим дуги радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей, а из центров Проекционное черчение - примеры с решением заданий и выполнением чертежей – дуги радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей (рис. 78, в). Аналогично строятся изометрические проекции окружностей, лежащих во фронтальной (рис. 78, г) и профильной (рис. 78, д) плоскостях проекций. Для построения овала вторым способом (рис. 79) определяем размеры большой и малой осей эллипса по указанным выше формулам. Затем через точку О проводим две взаимно перпендикулярные прямые (рис. 79, а). Из точки О, как из центра, проводим окружности, диаметры которых соответственно равны большой и малой осям эллипса. На вертикальной оси отмечаем точки Проекционное черчение - примеры с решением заданий и выполнением чертежей пересечения ее с большой окружностью, а на горизонтальной оси – точки Проекционное черчение - примеры с решением заданий и выполнением чертежейпересечения ее с малой окружностью. Эти точки являются центрами сопряжения дуг овала. Далее проводим прямые Проекционное черчение - примеры с решением заданий и выполнением чертежей, на которых расположены точки сопряжения дуг овала. Затем из центров Проекционное черчение - примеры с решением заданий и выполнением чертежей описываем две дуги радиуса Проекционное черчение - примеры с решением заданий и выполнением чертежей, а из центров Проекционное черчение - примеры с решением заданий и выполнением чертежей – две другие дуги радиуса RПроекционное черчение - примеры с решением заданий и выполнением чертежей (рис. 79, б).

На рис. 80 показан пример построения наглядного изображения детали в прямоугольной изометрической проекции.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Прямоугольная диметрия

Стандарт регламентирует применение прямоугольной диметрической проекции, у которой ось Оz расположена вертикально, ось Ох наклонена под углом 7°10′, а ось Оу – под углом 41°25′ к линии горизонта (рис. 81). При построении прямоугольной диметрии сокращение длин по оси Оу принимают вдвое больше, чем по двум другим, т.е. полагают, что Проекционное черчение - примеры с решением заданий и выполнением чертежей. На практике от таких дробных коэффициентов искажения, как правило, отказываются, применяя увеличенную в 1,06 раза диметрию. При этом применяют приведенные коэффициенты искажения, которые по осям Оx и Оz равны единице, а по оси Оу вдвое меньше.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Построение аксонометрических осей диметрии можно проводить двумя способами (рис. 82). Выполняя построение осей первым способом (рис. 82, а), на горизонтальной прямой, проходящей через точку О, откладываем в обе стороны от точки О восемь равных отрезков произвольной длины. Из крайних точек этих отрезков вниз по вертикали откладываем слева один такой же отрезок, а справа – семь. Построенные точки соединяем с точкой О и получаем направления аксонометрических осей Ох и Оу. Построение осей вторым способом (рис. 82, б) выполняется в следующей последовательности. На вертикальной прямой вниз от точки О откладываем отрезок OD произвольной длины, а вверх – отрезок OA = 2ОD.

Затем из точки О, как из центра, проводим дугу окружности радиусомПроекционное черчение - примеры с решением заданий и выполнением чертежей до пересечения в точке В с дугой, проведенной из центра A радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей. Прямая ОВ указывает направление аксонометрической оси Ох. Далее проводим дугу радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей с центром в точке В до пересечения с дугой радиуса Проекционное черчение - примеры с решением заданий и выполнением чертежей в точке С. Прямая ОС дает направление оси Оу.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Диметрическими проекциями окружностей, расположенных в плоскостях проекций или плоскостях, параллельных им, так же как и в изометрии являются эллипсы, большие и малые оси которых расположены согласно правилу, сформулированному в п. 2.2 (рис. 83, а). Длина большой оси для всех эллипсов одинакова и равна 1,06d (где d – диаметр изображаемой окружности), длина малой оси различна: для фронтальной плоскости проекций и плоскостей, параллельных ей, она составляет 0,95d, для горизонтальной и профильной плоскостей проекций и плоскостей, параллельных им, – 0,35d.

При построении прямоугольной диметрической проекции эллипсы заменяют четырехцентровыми овалами. Построение четырехцентровых овалов для горизонтальной и профильной плоскостей проекций и плоскостей, параллельных им, производится в следующей последовательности (рис. 83, б). Через центр системы координат О проводят две взаимно перпендикулярные прямые и откладывают на горизонтальной оси от точки О влево и вправо половину большой оси эллипса (АО = ОВ =1,06d/2), а на вертикальной оси – вверх и вниз половину малой оси (СО = ОD =0,35d/2). Затем на вертикальной прямой от
точки О вверх и вниз откладывают отрезки Проекционное черчение - примеры с решением заданий и выполнением чертежей, равные по величине
большой оси эллипса (Проекционное черчение - примеры с решением заданий и выполнением чертежей). Полученные точки Проекционное черчение - примеры с решением заданий и выполнением чертежей являются центрами больших дуг овала. Для определения центров малых дуг Проекционное черчение - примеры с решением заданий и выполнением чертежей и Проекционное черчение - примеры с решением заданий и выполнением чертежей, на горизонтальной прямой от точек А и В откладывают отрезки Проекционное черчение - примеры с решением заданий и выполнением чертежей, равные 1/4 величины малой оси. Из точки Проекционное черчение - примеры с решением заданий и выполнением чертежей, как из центра, радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей, равным отрезку Проекционное черчение - примеры с решением заданий и выполнением чертежей, проводят дугу овала до пересечения в точках 1 и 2 с линиями центров Проекционное черчение - примеры с решением заданий и выполнением чертежей. Точки 1 и 2 являются точками сопряжения дуг овала. Аналогично строится дуга из центра Проекционное черчение - примеры с решением заданий и выполнением чертежей. Из центров Проекционное черчение - примеры с решением заданий и выполнением чертежей и Проекционное черчение - примеры с решением заданий и выполнением чертежей проводят замыкающие дуги овала радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Построение овала, заменяющего эллипс во фронтальной плоскости проекций, показано на рис. 83, в. Проводят оси диметрии Ox, Оy, Оz и из точки О восставляют перпендикуляр к оси Оу (малая ось эллипса совпадает с направлением оси Оу, а большая – перпендикулярна к ней). На осях Ох и Оz откладывают величину радиуса заданной окружности, т. е. OМ = ON= OК = OL= d/2, и получают точки М, N, K, L, которые являются точками сопряжения дуг овала. Из точек М и N проводят горизонтальные прямые, которые в пересечении с осью Оу и перпендикуляром к ней дают точки Проекционное черчение - примеры с решением заданий и выполнением чертежей Проекционное черчение - примеры с решением заданий и выполнением чертежей– центры дуг овала. Из центров Проекционное черчение - примеры с решением заданий и выполнением чертежей описывают дуги радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей =Проекционное черчение - примеры с решением заданий и выполнением чертежей, а из центров Проекционное черчение - примеры с решением заданий и выполнением чертежей – дуги радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей (рис. 83, г).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

На рис. 84 показан пример построения наглядного изображения детали в прямоугольной диметрической проекции.

Косоугольные изометрии

Стандарт предусматривает применение двух видов косоугольной изометрической проекции: фронтальной и горизонтальной. Направление аксонометрических осей фронтальной косоугольной изометрической проекции показано на рис. 85, а. Угол наклона оси Оy к горизонтальной линии должен составлять 45º. Допускается применять фронтальную изометрию с углами наклона оси Оy в 30º или 60º. Все три показателя искажения по осям Оx, Оy и Оz равны единице.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Окружности, находящиеся в плоскостях, параллельных фронтальной плоскости проекций, изображаются в косоугольной фронтальной изометрии в натуральную величину, а окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям, проецируются в эллипсы (рис. 85, б). Большая ось эллипса в горизонтальной плоскости составляет угол 22º30′ с осью Ox, а в профильной плоскости – такой же угол с осью Oz. Большие оси этих эллипсов равны 1,3d, а малые – 0,54d, где d – диаметр изображаемой окружности. Эллипсы заменяются овалами, которые вычерчиваются по двум известным осям следующим образом (рис. 86). На прямой, соединяющей точки А и С,откладывают от точки С отрезок СМ, равный разности полуосей овала, т. е. СМ = ОK – ОС. Из середины отрезка AM восставляют перпендикуляр и продолжают его до пересечения с осями овала в точках Проекционное черчение - примеры с решением заданий и выполнением чертежей.

Затем определяют симметричные им точки Проекционное черчение - примеры с решением заданий и выполнением чертежей и проводят линии центров Проекционное черчение - примеры с решением заданий и выполнением чертежей Из центра Проекционное черчение - примеры с решением заданий и выполнением чертежей проводят дугу радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей до пересечения с линиями центров Проекционное черчение - примеры с решением заданий и выполнением чертежей в точках 1 и 2. Аналогично находят точки сопряжения 3 и 4. Замыкающие дуги овала проводят из центров Проекционное черчение - примеры с решением заданий и выполнением чертежей радиусом Проекционное черчение - примеры с решением заданий и выполнением чертежей На рис. 87 показан пример построения наглядного изображения детали во фронтальной косоугольной изометрической проекции.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Направление аксонометрических осей горизонтальной косоугольной изометрической проекции показано на рис. 88, а. Угол наклона оси Оy к горизонтальной линии должен составлять 30º.Допускается применять горизонтальную аксонометрию с углами наклона оси Оy к горизонтальному
направлению в 45º и 60º, сохраняя угол 90º между осями Оx и Оy. Коэффициенты искажения по всем трем осям одинаковы и равны единице.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Окружности, находящиеся в плоскостях, параллельных горизонтальной плоскости проекций, изображаются в аксонометрии без искажения, а окружности, лежащие в плоскостях, параллельных фронтальной и профильной плоскости, проецируются эллипсами (рис. 88, б). Большая ось эллипса, который является проекцией окружности, расположенной во фронтальной плоскости, наклонена к оси Oz под углом 15º, величина большой оси этого эллипса равна 1,37d, а малой – 0,37d. Эллипс строится как овал по двум заданным осям (см. рис. 86). Большая ось эллипса, который является проекцией окружности, расположенной в профильной плоскости, наклонена к оси Oz под углом 30º, величина большой оси равна 1,22d, а малой – 0,71d. Сопряженные диаметры эллипсов, то есть диаметры, параллельные аксонометрическим осям, во всех случаях равны d. Построение эллипса выполняют по правилам построения проекций окружностей в прямоугольной изометрии.
На рис. 89 показан пример построения наглядного изображения детали в горизонтальной косоугольной изометрической проекции.

Косоугольная фронтальная диметрия

В косоугольной фронтальной диметрии ось Oz расположена вертикально, ось Ox – горизонтально, а ось Oy наклонена к горизонтальной оси под углом 45° (рис. 90, а). Допускается применение косоугольной фронтальной диметрии с углами наклона оси Oy, равными 30° или 60°. Коэффициенты искажения по осям Ox и Oz равны k = n = 1, а по оси Oy коэффициент m = 0,5. Следовательно, все плоские фигуры, размещенные параллельно фронтальной плоскости проекций, изображаются во фронтальной диметрии без искажения размеров и углов.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

В косоугольной диметрии окружность, лежащая во фронтальной плоскости, изображается без искажения (рис. 90, б). Это обстоятельство представляет существенное преимущество при вычерчивании фронтальной диметрии деталей цилиндрической формы или с большим числом цилиндрических отверстий. Окружности, принадлежащие горизонтальной и профильной плоскостям, изображаются в виде эллипсов такой же формы и размеров, как и в
прямоугольной диметрии, то есть большая ось этих эллипсов равна 1,06d, а малая – 0,35d. В отличие от прямоугольной диметрии, большая ось эллипса в горизонтальной плоскости наклонена к оси Ox под углом 7º14′, а в профильной плоскости – под тем же углом к оси Oz (рис. 90, б). Упрощенное построение эллипсов в виде овалов выполняют по тем же правилам, что и в прямоугольной диметрии.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

На рис. 91 показан пример построения наглядного изображения детали во фронтальной косоугольной диметрической проекции.

Условности и нанесение размеров в аксонометрии

При нанесении размеров на чертежах, выполненных в аксонометрических проекциях, выносные линии проводятся параллельно аксонометрическим осям, а размерные линии – параллельно измеряемому отрезку (рис. 92). В отличие от проекционных чертежей, в аксонометрии при рассечении поверхности предмета заштриховывают ребра жесткости, спицы маховиков, колес и другие подобные элементы (рис. 93), попавшие в секущую плоскость. Места плавных переходов изображают тонкими линиями.

Линии штриховки рассеченных поверхностей в аксонометрических проекциях выполняют параллельно одной из диагоналей квадратов, стороны которых расположены в соответствующих координатных плоскостях параллельно аксонометрическим осям. Направление штриховки рекомендуется выбирать в соответствии со схемами, показанными на рис. 94. Резьбу в аксонометрических проекциях изображают условно по ГОСТ 2.311 – 68. В случае необходимости, допускается частично изображать профиль резьбы (рис. 93).
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение

Проекционное черчение рассматривает построение изображений пространственных предметов на плоскости и имеет важное значение при изучении курса инженерной графики.

Изображение предметов на чертеже

На чертежах изображения предметов выполняются по способу прямоугольного проецирования, изложенном в курсе начертательной геометрии, с применением условностей, установленных правилами ГОСТ 2.305-2008 и других Государственных стандартов ЕСКД.

Прямоугольные проекции, построенные с применением указанных условностей, в ГОСТе называют изображениями. Для аксонометрических проекций, помимо прямоугольного, может применяться косоугольное проецирование.

В отличие от начертательной геометрии, где изображаются оси проекций, при выполнении чертежей применяется безосная система (без указания осей проекций и линий проекционной связи).

На чертежах в качестве баз для построения и определения формы и размеров изображения используются контуры, оси и центры симметрии проецируемого предмета. Вычерчивание изображения следует начать с проведения осей, нахождения центров симметрии и проведения линий видимого контура, от которых откладывают размеры и ведут построения.

При разработке технических чертежей деталей машин и других геометрических объектов (рис. 3,1) изображения должны выполняться по методу прямоугольного проецирования. При этом предполагается, что предмет расположен между наблюдателем и соответствующей плоскостью (рис. 3.2).

За основные плоскости проекций принимают шесть граней куба, которые разворачивают и совмещают с плоскостью так, как показано на рис. 3.2, причем грань 6 допускается размещать рядом с гранью 4. Изображения на фронтальной плоскости проекций называется главным. Относительно этой плоскости проекций предмет следует располагать так, чтобы изображение на ней давало наиболее полное представление о форме и размерах предмета.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Вес изображения на чертеже в зависимости от их содержания разделяются на виды, разрезы и сечения.

Видом называется изображение обращенной к наблюдателю видимой части поверхности предмета. Расположение видов на чертеже показано на рис. 3.3.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями, при этом мысленное рассечение предмета относится только к данному разрезу и не влечет за собой изменения других изображений того же предмета. Па разрез показывается то, что получается на секущей плоскости и что расположено за ней. Допускается изображать не все, что расположено за секущей плоскостью, если этого нс требуется для понимания конструкции предмета. На чертеже предмет в разрезе заштриховывают.

Сечением называется изображение, получающееся при мысленном рассечении предмета одной или несколькими плоскостями. Па сечении показывается только то, что находится непосредственно в секущей плоскости.

Разрезы и сечения выявляют внутренние очертания изображаемого предмета.

Количество изображений (видов, разрезов, сечений) на чертеже должно быть наименьшим, но достаточным для полного понимания формы и размеров предмета. Это значит, что в каждом отдельном случае от исполнителя чертежа требуется, грамотно используя условные обозначения, знаки и надписи, согласно требованиям государственных стандартов, выбирать и располагать виды, разрезы и сечения так, чтобы свести к минимуму графические построения.

Виды

Виды, получаемые при проецировании предмета на шесть основных плоскостей проекций (граней куба), называются основными видами.

Наименование основных видов следующее:

  • 1    — вид спереди (главный вид);
  • 2    — вид сверху;
  • 3    — вид слева;
  • 4    — вид справа;
  • 5    — вид снизу;
  • 6    — вид сзади.

Основные виды располагаются в определенном порядке, как показано на рис. 3.3.

На чертеже виды располагают по отношению к главному виду (рис. 3.3) в такой последовательности: вид сверху — под главным видом, вид слева — справа от главного вида, вид снизу — над главным видом, а вид справа — слева от главного вида. Вид сзади разрешается помещать справа от вида слева или с левой стороны от вида справа.

Названия видов на чертежах не надписывают, за исключением случая, когда виды сверху, справа, слева, снизу, сзади не находятся в непосредственной проекционной связи с главным изображением (видом или разрезом, изображенным на фронтальной плоскости проекций). Тогда направление проектирования должно быть указано стрелкой около соответствующего изображения. Над стрелкой и над полученным изображением (видом) следует нанести одну и ту же прописную букву русского алфавита (рис. 3.4). Буквенные обозначения присваиваются в алфавитном порядке без повторений и без пропусков. Буквы И, О, X, Ъ,
Ы, Ь ,Ё, 3, Ч, согласно ГОСТу 2.316-2008, при выполнении чертежей не наносят.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Когда какая-либо часть предмета не может быть показана на одном из основных видов без искажения ее формы и размеров или можно ограничиться не целым видом, а изображением узко ограниченного места на поверхности предмета, применяют дополнительные и местные виды.

Дополнительными называются виды, получаемые на плоскостях, не параллельных ни одной из основных плоскостей проекций (рис. 3.5). Дополнительный вид на чертеже должен быть отмечен прописной буквой (рис. 3.5, о, б, г), а у изображения предмета, связанного с дополни-тельным видом должна быть поставлена стрелка, указывающая направление взгляда, где дополнительный вид обозначают той же буквой.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Когда дополнительный вид расположен в непосредственной связи с соответствующим изображением, стрелку и обозначение вида не наносят (рис. 3.5, а).

Дополнительный вид допускается повертывать (рис. 3.5, в, г), при этом буквенное обозначение вида должно быть дополнено знаком Проекционное черчение - примеры с решением заданий и выполнением чертежей -«повернуто» (рис. 3.5, в). При необходимости указывают угол поворота (рис. 3.5, г)

Местным видом называется изображение отдельного узко ограниченного места поверхности предмета.

Местный вид обозначается на чертеже подобно дополнительному виду и применяется в тех случаях, когда из всего вида только часть его необходима для уточнения формы предмета, остальная же часть вида не дает дополнительных сведений о предмете (рис. 3.6):
Проекционное черчение - примеры с решением заданий и выполнением чертежей

  • —    если изображение имеет ось симметрии, то допускается показывать его половину (рис. 3.6 — вид «А»);
  • —    если местный вид выполняется в проекционной связи по направлению взгляда, то стрелку и надпись над местным видом не наносят;
  • —    местный вид может быть ограничен линией обрыва;
  • —    местный вид может и не быть ограничен линией обрыва -вид «Б».
     

Разрезы

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы бывают:

горизонтальные — секущая плоскость параллельна горизонтальной плоскости проекций (рис. 3.11, разрез А-А);

вертикальные — секущая плоскость перпендикулярна горизонтальной плоскости проекций (например, рис. 3.8, разрезы А-А, Б-Б);

наклонные — секущая плоскость составляет с горизонтальной плоскостью проекций угол, отличный от прямого.

Вертикальный разрез называется фронтальным, если секущая плоскость параллельна фронтальной плоскости проекций (рис. 3.8, разрез А-А) и профильным, если секущая плоскость параллельна профильной плоскости проекции (рис. 3.8, разрез Б-Б).

В зависимости от числа секущих плоскостей разрезы бывают: простыми — при одной секущей плоскости (рис. 3.8, 3.9, 3.11); сложными — при двух и более секущих плоскостях.

Сложные разрезы в свою очередь подразделяют на ступенчатые, если секущие плоскости параллельны (рис. 3.12), и ломаные, если секущие плоскости пересекаются (рис. 3.13).

Форму предмета в отдельном узко ограниченном его месте определяет местный разрез (рис. 3.14, 3.15).

Положение (след) секущей плоскости показывают на чертеже разомкнутой линией (рис. 3.7, а), называемой линией сечения. При простом разрезе показывают только начальный и конечный штрихи линий сечения (рис. 3.8), а при сложном показывают се штрихи и в местах перегибов (рис. 3.12, 3.13). На начальном и конечном штрихах линии сечения ставят стрелки (рис. 3.7, а), указывающие направление взгляда (проецирования). Начальный и конечный штрихи этой линии не должны пересекать контур изображения.

У начала и конца линии сечения ставят одну и ту же прописную букву русского алфавита (рис. 3.7, б), разрез отмечается надписью по типу «А-А» (всегда только двумя буквами через тире).

В том случае, когда секущая плоскость совпадает с плоскостью симметрии детали и разрез расположен на одном листе в проекционной связи с другими изображениями детали, не обозначается положение секущей плоскости и разрез надписью не сопровождается.

Проекционное черчение - примеры с решением заданий и выполнением чертежей

На разрезе невидимые линии внутреннего контура становятся видимыми и изображаются сплошными основными линиями.

Мысленное рассечение предмета относится только к данному разрезу и не влечет за собой изменения других изображений того же предмета.

Штриховка на всех изображениях детали выполняется в одном направлении, с правым или левым наклоном, под углом 45° к горизонтальной линии чертежа тонкими линиями, условно приняв, что все детали, приведенные в примерах, металлические. Расстояние между штриховыми линиями должно быть одинаковым.

Простые разрезы

Простым разрезом называется разрез, получаемый при рассечении детали одной секущей плоскостью. Чаще всего применяются вертикальные и горизонтальные разрезы.

Вертикальными называются разрезы, образованные секущими плоскостями, параллельными фронтальной или профильной плоскостям проекций.

Вертикальный разрез называется фронтальным, если секущая плоскость параллельна фронтальной плоскости проекций, и профильным, если секущая плоскость параллельна профильной плоскости проекций.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Горизонтальными разрезами называются разрезы, образованные секущими плоскостями, параллельными горизонтальной плоскости проекций.

Горизонтальные, фронтальные и профильные разрезы могут размещаться на месте соответствующих основных видов.

На рис. 3.7 выполнены два вертикальных разреза: фронтальный (А-А) и профильный (Б-Б), где деталь не имеет осей симметрии, поэтому на чертеже указано положение секущих плоскостей и соответствующие им разрезы сопровождаются надписями.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Для упрощения построения чертежа на одном изображении допускается соединять часть вида и часть разреза.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

При соединении симметричных частей вида и разреза, если с осью симметрии совпадает проекция какой-либо линии, например ребра (рис. 3.9), то вид от разреза отделяется тонкой сплошной волнистой линией, проводимой правее (рис. 3.9, а) или левее (рис. 3.9, 6) оси симметрии.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Если деталь симметрична (рис. 3.10), то можно соединить половину вида и половину разреза (рис. 3.11), разделяя их штрихпунктирной тонкой линией, являющейся осью симметрии. Часть разреза может располагаться правее (рис. 3.12, а, разрез А-А,) или ниже (рис. 3.12, б, разрез А-А) оси симметрии, разделяющей часть вида с частью разреза, причем разрез А-А на рис, 3.12, а предпочтительнее.

Сложные разрезы

Сложными называются разрезы, получаемые с помощью двух и более секущих плоскостей. Они применяются в случаях, когда количество элементов деталей, их форма и расположение не могут быть изображены на простом разрезе одной секущей плоскостью и это вызывает необходимость применения нескольких секущих плоскостей.

Сложные разрезы разделяются на ступенчатые и ломаные. Они могут быть так же, как и простые разрезы, горизонтальными, фронтальными и профильными. Сложные разрезы бывают и комбинированными, т. е. состоящими из ступенчатых и ломаных разрезов.

Ступенчатыми разрезами называются разрезы, выполненные нескольким и параллельным и секущими плоскостями.

Разрез на рис. 3.12 осуществлен тремя секущими фронтальными плоскостями. Положение секущих плоскостей указывается штрихами линии сечения со стрелками, отмеченными одной и той же буквой. Эти штрихи принимаются за начальный и конечный штрихи линии сечения. Линия сечения имеет также перегибы, показывающие места перехода от одной секущей плоскости к другой. Перегибы линии сечения еще выполняются штрихами разомкнутой линии. Наличие перегибов в линии сечения не отражается на графическом оформлении ступенчатого разреза, линии перехода между секущими плоскостями не показывают.

Ломаными называются разрезы, полученные от рассечения предмета пересекающимися плоскостями. Секущие плоскости условно повертывают около линии взаимного пересечения до совмещения с плоскостью (рис. 3.13), параллельной какой-либо из основных плоскостей проекций, при этом линия поворота может не совпадать с направлением взгляда.

Если совмещенные плоскости окажутся параллельными одной из основных плоскостей проекций, то ломаный разрез допускается помещать на месте соответствующего вида (рис. 3,13).

Вместе с секущей плоскостью поворачивается расположенная в ней фигура сечения детали. На рис. 3.13 для наглядности нанесены линии связи, эти построения на чертеже не должны быть показаны.

При повороте секущей плоскости элементы предмета, расположенные за ней, вычерчивают так, как они проецируются на соответствующую плоскость, с которой производится совмещение.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Разрез, служащий для выявления формы предмета лишь в отдельном ограниченном месте, называется местным и отделяется от вида сплошной волнистой тонкой линией (рис. 3.14) или сплошной тонкой линией с изломом. Эти линии не должны совпадать с какими-либо линиями изображения.
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Если местный разрез выполняется на части изображаемого предмета, представляющей собой симметричную фигуру (рис. 3.15), где разделяющей линией служит ось симметрии, то местный разрез с видом может разделяться этой осевой линией или линией обрыва.

Сечения

Сечением называется изображение фигуры, получающееся при мысленном рассечении предмета одной или несколькими плоскостями. Секущие плоскости нужно выбирать так, чтобы получились нормальные поперечные сечения. В отличие от разреза на сечении показывается только то, что расположено непосредственно в секущей плоскости, а все, что расположено за ней, не изображается (рис. 3,16).
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Сечения, не входящие в состав разреза, разделяют на вынесенные и наложенные.

Вынесенные сечения располагаются на свободном поле чертежа и более предпочтительны для однозначного чтения чертежа. Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями (рис. 3.16). Не обозначают вынесенные сечения, когда их располагают на линии сечения, если они имеют ось симметрии. При этом положение секущей плоскости показывают штрихпунктирной линией. В случае расположения сечения на свободном месте их обозначают аналогично разрезам (рис. 3.16, сечение А-А). Сечения необходимо обозначать, даже если они находятся в проекционной связи (рис. 3.16, сечение Б-Б).
Проекционное черчение - примеры с решением заданий и выполнением чертежей

Наложенные сечения располагаются непосредственно на изображении предмета (рис. 3.17, б, 3.18, б). Вынесенные сечения могут располагаться не только на свободном поле чертежа (рис. 3.16), но и в разрыве изображения предмета (рис. 3.17, а, 3.18, а). Вынесенное симметричное сечение может располагаться в непосредственной близости от изображения, причем его ось симметрии должна совпадать с положением секущей плоскости и пересекать контур изображения предмета.

На чертежах для несимметричных сечений, расположенных в разрыве (рис. 3.18, а) или наложенных сечениях (рис. 3.18, б), линии сечения обозначают разомкнутой линией со стрелкой, но нс буквами.

Несимметричное сечение по построению и расположению должно соответствовать направлению, указанному стрелками (рис. 3.18).

Контур выносного сечения, а также сечения, входящего в состав разреза, выполняется сплошной основной линией (толщиной 5), контур наложенного сечения выполняется сплошной тонкой линией (от S/2 до S/3), как показано на рис. 3.17, б и 3.18, б.

Выносные элементы

Дополнительное отдельное изображение какой-либо части фигуры, обычно увеличенное, требующее графического или других пояснений в отношении формы, размеров и иных данных, называется выносным элементом (рис. 3.19, 3.20).

Проекционное черчение - примеры с решением заданий и выполнением чертежей
Рис. 3.19. Выносной элемент
При применении выносного элемента соответствующее место изображения отмечают замкнутой сплошной тонкой линией (окружностью или овалом) с обозначением выносного элемента прописной буквой русского алфавита или сочетанием прописной буквы с арабской цифрой на полке линии-выноски (рис. 3.19, а и 3.20, а).

Над выносным элементом (рис. 3.19, б и 3.20, б) указывается та же цифра и масштаб, в котором выполнен выносной элемент (масштабы могут быть различные).

Проекционное черчение - примеры с решением заданий и выполнением чертежей

Выносной элемент следует располагать как можно ближе к соответствующему месту на изображении предмета. Выносной элемент может содержать подробности, не указанные на соответствующем изображении, и отличаться от него по содержанию. Например, изображение может быть видом, а выносной элемент — разрезом.

Кстати вы всегда можете заказать чертежи.

Лекции по предметам:

  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Аксонометрическое черчение
  7. Строительное черчение
  8. Техническое черчение
  9. Геометрическое черчение

Проекция – это способ изображения объемной фигуры на проекционной полости.

Виды проекций на чертеже по ГОСТу

Согласно ГОСТ 2.305-2008 и правилам аксонометрии предусматривается использование нескольких видов проекций на чертеже:

  • ортогональная проекция или прямоугольная проекция, предполагает перенос изображения на плоскость, перпендикулярную направлению лучей предмета или его части;
  • параллельная проекция получается путем проецирования предмета или его части параллельным пучком лучей на плоскость.

Как расположены проекции на чертеже

При выполнении чертежей используется метод прямоугольного проецирования и предполагается, что некий предмет, элемент или деталь располагаются между наблюдателем и плоскостью проекции. В качестве плоскостей проекции используются шесть граней куба. Фронтальная проекция считается главным видом, поэтому расположение предмета должно быть таким, чтобы на этой проекция было отражено полное представление о форме и размерах.

Шесть плоскостей проекций

Рисунок 1. Шесть плоскостей проекций

Аксонометрические проекции на чертеже

Работа по выполнению аксонометрических проекций начинается с построения осей. Оси необходимо построить в трех направлениях: горизонтальная ось Х, вертикальная ось Y и ось, идущая под углом – Z.В изометрической проекции вертикальная и горизонтальная ось располагаются под углом в тридцать градусов к горизонтальной линии.

В аксонометрической проекции масштабы по всем осям равны.

Аксонометрическая проекция

Рисунок 2. Аксонометрическая проекция

Аксонометрическая проекция по чертежу в Компас

При выполнении аксонометрической проекции в программе Компас работа сводятся к построению проекций точек и их соединению в определённой последовательности.

Рассмотрим порядок действий на примере прямоугольника. Вначале в меню «Создать» выбираем «Деталь», в «Дерево модели» раскрываем меню «Начало координат» и выбираем плоскость ХY, затем переходим в двухмерное построение, нажимаем инструмент «Прямоугольник» вводим соответствующие размеры. Закрыв двухмерный эскиз переходим, в трехмерный режим создания детали. С помощью инструмента «Выдавливание» создаем объект.

Аксонометрическая проекция в Компас

Рисунок 3. Аксонометрическая проекция в Компас

Горизонтальные проекции на чертеже

Построение горизонтальных и вертикальных проекций выполняется достаточно легко, для этого необходимо перенести изображение предмета с помощью проекционных лучей. Профильная плоскость называется так, поскольку дает полное представление о детали. Профильная плоскость располагается вертикально, справа от детали. Комплексный чертеж содержит все три проекции.

Горизонтальная, вертикальная и профильная проекции

Рисунок 4. Горизонтальная, вертикальная и профильная проекции

Изометрические проекции на чертеже

Изометрическая проекция является разновидностью аксонометрической, которая позволяет отобразить трехмерный объект с одинаковым коэффициентом искажения по всем осям. Изометрическая проекция может быть прямоугольной, косоугольной фронтальной и косоугольной горизонтальной.

Дальнейший порядок построения предполагает построение передней грани детали, откладывая фактические размеры высоты вдоль оси Z, а длины вдоль горизонтальной оси X. Затем строят ребра, они идут параллельно оси Y, их длина соответствует толщине детали. В изометрическом изображении откладывается действительная длина, в диметрической проекции построены меньше в два раза. Затем полученные точки соединяют прямыми, параллельными передней фронтальной плоскости и удаляют невидимый контур.

Изометрические проекции

Рисунок 5. Изометрические проекции

Проекции пересекающихся прямых на комплексном чертеже

Существует несколько способов задания плоскости, в том числе с помощью пересекающихся линий. На комплексном чертеже проекции плоскости задаются проекциями элементов. Проекции точки пересечения прямых всегда находятся на одной линии связи.

Пересекающиеся прямые на плоскости проекции

Рисунок 6. Пересекающиеся прямые на плоскости проекции

Чертеж в трех проекциях

Для выполнения чертежа используется метод ортогонального проецирования, который позволяет начертить любое техническое изделие. В ортогональном проецировании лучи параллельны друг другу и перпендикулярны плоскости, но на каждой проекции видны лишь два измерения (высота и длина). Поэтому лишь три проекции дают полное представление о трехмерном предмете. В совмещенных на одном листе чертежах можно найти точные сведения о всех геометрических характеристиках детали.

Чертеж в трех проекциях

Рисунок 7. Чертеж в трех проекциях

Чертежи в системе прямоугольных проекций

Согласно названию используют ортогональное проецирование на одну, две или три плоскости. Если плоскость расположена перед наблюдающим, то она называется фронтальной, проекция на нее строится первой. Предмет располагается так, чтобы его поверхности были параллельными плоскости проекции. Выполнив построение в двух плоскостях проекции, можно получить основные данные о высоте, ширине и длине детали и мысленно представить себе ее в объеме. Но этой информации недостаточно для выявление характерных особенностей, к примеру формы выемки в детали, поэтому требуется третья проекция.

Как сделать чертеж в трех проекциях в Компас

Чтобы выполнить чертеж и совместить на одном листе три проекции, вначале нужно воспользоваться командой «Новый чертеж». Затем выберите формат листа, чтобы разместить все 3 изображения, приведенные в модели (потребуется формат А3 или А4). Затем выбираем виды и то, как они будут расположены на чертеже, через команду «Вид» основного меню.

Чертеж в трех проекциях в Компасе

Рисунок 8. Чертеж в трех проекциях в Компасе

Ответы на вопросы

Как обозначаются изометрические проекции?

Чтобы показать изометрическую проекцию используют обозначение осей, также показывают углы между осями.

Как найти проекцию точек по заданному положению на поверхности предмета?

Построение начинается с построения проекции поверхности, на которой расположена отдельная заданная точка, а затем проводят линию связи к проекции, где поверхность изображена линией и находят вторую проекцию точки, третья проекция будет лежат на пересечении линий связи.

Построение проекций точек, заданных на поверхности предмета

Рисунок 9. Построение проекций точек, заданных на поверхности предмета

Как расположить проекции на чертеже?

Виды располагаются в проекционной связи. Главный вид располагается в левом верхнем углу, вид сверху располагается под ним, справа от главного вида расположен вид слева (сбоку).

Как начертить изометрию?

Начнем
с того, что определимся с направлением
осей в изометрии.

Возьмем
для примера не очень сложную деталь.
Это параллелепипед 50х60х80мм, имеющий
сквозное вертикальное отверстие
диаметром 20 мм и сквозное прямоугольное
отверстие 50х30мм.

Начнем
построение изометрии с вычерчивания
верхней грани фигуры. Расчертим на
требуемой нам высоте тонкими линиями
оси Х и У. Из получившегося центра отложим
вдоль оси Х 25 мм (половина от 50) и через
эту точку проведем отрезок параллельный
оси У длиной 60 мм. Отложим по оси У 30 мм
(половина от 60) и через полученную точку
проведем отрезок параллельный оси Х
длиной 50 мм. Достроим фигуру.

Мы
получили верхнюю грань фигуры.

Не
хватает только отверстия диаметром 20
мм. Построим это отверстие. В изометрии
окружность изображается особым образом
— в виде эллипса. Это связано с тем, что
мы смотрим на нее под углом. Изображение
окружностей на всех трех плоскостях я
описал в отдельном
уроке
,
а пока лишь скажу, что в
изометрии окружности проецируются в
эллипсы

с размерами осей a=1,22D и b=0,71D. Эллипсы,
обозначающие окружности на горизонтальных
плоскостях в изометрии изображаются с
осью а расположенной горизонтально, а
ось b — вертикально. При этом расстояние
между точками расположенными на оси Х
или У равно диаметру окружности (смотри
размер 20 мм).

Теперь,
из трех углов нашей верхней грани
начертим вниз вертикальные ребра — по
80 мм и соединим их в нижних точках. Фигура
почти полностью начерчена — не хватает
только прямоугольного сквозного
отверстия.

Чтобы
начертить его опустим вспомогательный
отрезок 15 мм из центра ребра верхней
грани (указан голубым цветом). Через
полученную точку проводим отрезок 30 мм
параллельный верхней грани (и оси Х). Из
крайних точек чертим вертикальные ребра
отверстия — по 50 мм. Замыкаем снизу и
проводим внутреннее ребро отверстия,
оно параллельно оси У.

На
этом простая изометрическая проекция
может считаться завершенной. Но как
правило, в курсе инженерной графики
выполняется изометрия с вырезом одной
четверти. Чаще всего, это четверть нижняя
левая на виде сверху — в этом случае
получается наиболее интересный с точки
зрения наблюдателя разрез (конечно же
все зависит от изначальной правильности
компоновки чертежа, но чаще всего это
так). На нашем примере эта четверть
обозначена красными линиями. Удалим
ее.

Как
видим из получившегося чертежа, сечения
полностью повторяют контур разрезов
на видах (смотри соответствие плоскостей
обозначенных цифрой 1), но при этом они
вычерчены параллельно изометрическим
осям. Сечение же второй плоскостью
повторяет разрез выполненный на виде
слева (в данном примере этот вид мы не
чертили).

Надеюсь,
этот урок оказался полезным, и построение
изометрии вам уже не кажется чем-то
совершенно неведомым. Возможно, некоторые
шаги придется прочитать по два, а то и
по три раза, но в конечном итоге понимание
должно будет прийти. Удачи вам в учебе!

Как
начертить окружность в изометрии?

Как
вы наверняка знаете, при построении
изометрии окружность изображается в
виде эллипса. Причем вполне конкретного:
длина большой оси эллипса AB=1.22*D, а длина
малой оси CD=0.71*D (где D — диаметр той самой
исходной окружности, которую мы хотим
начертить в изометрической проекции).
Как начертить эллипс зная длину осей?
Об этом я рассказывал в
отдельном уроке
.
Там рассматривалось построение больших
эллипсов. Если же исходная окружность
имеет диаметр где-то до 60-80 мм, то скорее
всего мы сможем начертить ее и без лишних
построений, используя 8 опорных точек.
Рассмотрим следующий
рисунок:

Это
фрагмент изометрии детали, полный чертеж
которой можно увидеть ниже. Но сейчас
мы говорим о построении эллипса в
изометрии. На данном рисунке AB — большая
ось эллипса (коэффициент 1.22), CD — малая
ось (коэффициент 0.71). На рисунке половина
короткой оси (ОD) попала в вырезанную
четверть и отсутствует — используется
полуось СО (не забудьте об этом, когда
будете откладывать значения по короткой
оси — полуось — имеет длину равную половине
короткой оси). Итак, мы уже имеем 4 (3)
точки. Теперь отложим по двум оставшимся
изометрическим осям точки 1,2,3 и 4 — на
расстоянии равном радиусу исходной
окружности (таким образом 12=34=D). Через
полученные восемь точек уже можно
провести достаточно ровный эллипс, либо
аккуратно от руки, либо по лекалу.

Для
лучшего понимания направления осей
эллипсов в зависимости от того, какое
направление имеет циллиндр, рассмотрим
три разных отверстия в детали, имеющей
форму параллелепипеда. Отверстие — тот
же цилиндр, только из воздуха :) Но для
нас это особого значения не имеет.
Полагаю, что ориентируясь на эти примеры
вы без труда сможете правильно расположить
оси своих эллипсов. Если же обобщить,
то получится так: большая ось эллипса
перпендикулярна той оси, вокруг которой
образован цилиндр (конус).

Соседние файлы в папке графика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Аксонометрические проекции

По вопросам репетиторства по инженерной графике (черчению), вы можете связаться любым удобным для вас способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.

Во многих случаях при выполнении технических чертежей оказывается полезным наряду изображением предметов в системе ортогональных проекций иметь более наглядные изображения. Для построения таких изображений применяются проекции, называемые аксонометрическими.

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α (Рисунок 4.1).

Способ аксонометрического проецирования
Рисунок 4.1<>p/

Направление проецирования S определяет положение аксонометрических осей на плоскости проекций α, а также коэффициенты искажения по ним. При этом необходимо обеспечить наглядность изображения и возможность производить определения положений и размеров предмета.
В качестве примера на Рисунке 4.2 показано построение аксонометрической проекции точки А по ее ортогональным проекциям.

построение аксонометрической проекции точки по ее ортогональным проекциям
Рисунок 4.2

Здесь буквами kmn обозначены коэффициенты искажения по осям OXOY и OZ соответственно. Если все три коэффициента равны между собой, то аксонометрическая проекция называется изометрическойесли равны между собой только два  коэффициента, то проекция называется диметрической, если же k≠m≠n, то проекция называется триметрической.
Если направление проецирования S перпендикулярно плоскости проекций α, то аксонометрическая проекция носит названия прямоугольной. В противном случае, аксонометрическая проекция называется косоугольной.
ГОСТ 2.317-2011 устанавливает следующие прямоугольные и косоугольные аксонометрические проекции:

  • прямоугольные изометрические и диметрические;
  • косоугольные фронтально изометрические, горизонтально изометрические и фронтально диметрические;

Ниже приводятся параметры только трех наиболее часто применяемых на практике аксонометрических проекций.
Каждая такая проекция определяется положением осей, коэффициентами искажения по ним, размерами и направлениями осей эллипсов, расположенных в плоскостях, параллельных координатным плоскостям. Для упрощения геометрических построений коэффициенты искажения по осям, как правило, округляются.

4.1.  Прямоугольные проекции

4.1.1. Изометрическая проекция

Направление аксонометрических осей приведено на Рисунке 4.3.
Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции
Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции

Действительные коэффициенты искажения по осям OXOY и OZ равны 0,82. Но с такими значениями коэффициентов искажения работать не удобно, поэтому, на практике, используются приведенные коэффициенты искажений. Эта проекция обычно выполняется без искажения, поэтому, приведенные коэффициенты искажений принимается k = m = n =1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в эллипсы, большая ось которых равна 1,22, а малая – 0,71 диаметра образующей окружности D.

Большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ  и OX, соответственно.

Пример выполнения изометрической проекции условной детали с вырезом приводится на Рисунке 4.4.

Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции
Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции

4.1.2. Диметрическая проекция

Положение аксонометрических осей проводится на Рисунке 4.5.

Для построения угла, приблизительно равного 7º10´, строится прямоугольный треугольник, катеты которого составляют одну и восемь единиц длины; для построения угла, приблизительно равного 41º25´ — катеты треугольника, соответственно, равны семи и восьми единицам длины.

Коэффициенты искажения по осям ОХ и OZ k=n=0,94 а по оси OY – m=0,47. При округлении этих параметров принимается k=n=1 и m=0,5. В этом случае размеры осей эллипсов будут: большая ось эллипса 1 равна 0,95D и эллипсов 2 и 3 – 0,35D (D – диаметр окружности). На Рисунке 4.5  большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и  OX, соответственно.

Пример прямоугольной диметрической проекции условной детали с вырезом приводится на Рисунке 4.6.

Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции
Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции
Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции
Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на Рисунке 4.7. Допускается применять фронтальные диметрические проекции с углом наклона к оси OY, равным 300 и 600.

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1.

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D, а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол  7º 14´, а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

4.3 Построение эллипса

4.3.1 Построения эллипса по двум осям

На данных осях эллипса АВ и СD строятся как на диаметрах две концентрические окружности (Рисунок 4.9, а).

Одна из этих окружностей делится на несколько равных (или неравных) частей.

Через точки деления и центр эллипса проводятся радиусы, которые делят также вторую окружность. Затем через точки деления большой окружности проводятся прямые, параллельные линии АВ.

Точки пересечения соответствующих прямых и будут точками, принадлежащими эллипсу. На Рисунке 4.9, а показана лишь одна искомая точка 1.

Рисунок 4.9 – Построение эллипса по двум осям b по хордам
                      а                                б                                              в
Рисунок 4.9 – Построение эллипса по двум осям (а), по хордам (б)

4.3.2 Построение эллипса по хордам

Диаметр окружности АВ делится на несколько равных частей, на рисунке 4.9,б их 4. Через точки 1-3 проводятся хорды параллельно диаметру CD. В любой аксонометрической проекции (например, в косоугольной диметрической) изображаются эти же диаметры с учетом коэффициента искажения. Так на Рисунке 4.9,б А1В1=АВ и С1 D1 = 0,5CD. Диаметр А 1В1 делится на то же число равных частей, что и диаметр АВ, через полученные точки 1-3 проводятся отрезки, равные соответственным хордам, умноженным на коэффициент искажение (в нашем случае – 0,5).

4.4 Штриховка сечений

Линии штриховки сечений (разрезов) в аксонометрических проекциях наносятся параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рисунок 4.10: а – штриховка в прямоугольной изометрии; б – штриховка в косоугольной фронтальной диметрии).

Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях
                                     а                                                                                б
Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях

По вопросам репетиторства по инженерной графике (черчению), вы можете связаться любым удобным для вас способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.

Понравилась статья? Поделить с друзьями:
  • Как найти общую энергию конденсаторов
  • Как найти значение выражение прямоугольника
  • Как найти среднегодовое колво осадков
  • Как найти самое маленькое число которое делится
  • Как найти бесплатно whatsapp