Как найти к общую электротехника

В таблице представлены основные расчетные формулы по электротехнике для расчета тока, напряжения, сопротивления, мощности и других парметров электрических схем.

Измеряемые величины

Формулы

Обозначение и единицы измерения

Сопротивление проводника омическое (при постоянном токе)

— омическое сопротивление, Ом;

— удельное сопротивление, Ом

— длина, м;

s — сечение, мм2

Активное сопротивление при переменном токе

r — активное сопротивление, Ом;

k — коэффициент, учитывающий поверхностный эффект, а в магнитных проводниках — также явление намагничивания

Зависимость омического сопротивления проводника от температуры

, — сопротивление проводника в омах соответственно при температуре и °C

Индуктивное (реактивное) сопротивление

— индуктивное

сопротивление, Ом;

— угловая скорость; при частоте/= 50 Гц; = 314;

— емкостное сопротивление, Ом;

f— частота, Гц;

L — коэффициент самоиндукции (индуктивность), Гц;

С — емкость, Ф;

Z — полное сопротивление, Ом

Емкостное (реактивное) сопротивление

Полное реактивное сопротивление

Полное сопротивление переменному току

или

Емкость пластинчатого конденсатора

С — емкость, Ф;

S — площадь между двумя

электродами, см

n — число пластин;

— диэлектрическая постоянная изоляции;

b — толщина слоя диэлектрика, см

Общая емкость цепи:

а) при последовательном соединении емкостей

б) при параллельном соединении емкостей

, , — отдельные емкости, Ф

Закон Ома; цепь переменного тока с реактивным сопротивлением

или

I — ток в цепи, А;

U — напряжение цепи, В;

1-й закон Кирхгофа (для узла)

— токи в отдельных ответвлениях, сходящихся в одной

точке, А; i = 1, 2… n;

Е — ЭДС, действующая в контуре, В;

r — сопротивление отдельных

участков, Ом

— ток первой ветви, А;

— ток второй ветви А;

— сопротивление первой ветви, Ом;

— сопротивление второй ветви, Ом

2-й закон Кирхгофа (для замкнутого контура)

Распределение тока в двух параллельных ветвях цепи переменного тока

Закон электромагнитного индукции для синусоидального тока

— наведенная ЭДС, В;

f — частота, Гц;

w — число витков обмотки;

В — индукция магнитного поля в стали, Тс;

S — сечение магнитопровода, см2

Электродинамический эффект тока для двух параллельных проводников

F — сила, действующая на 1 (см) длины проводника, кГ;

, — амплитудные значения токов в параллельных проводниках, А;

а — расстояние между проводниками, си;

—длина проводника, см

Подъемная сила электромагнита

Р — подъемная сила, кГ;

В3 — индукция в воздушном

зазоре; В3 = 1000 Гс (электромагниты для подъема стружки и мелких деталей); В3 = 8000 — 10 000 Гс (электромагниты для подъема крупных деталей)

S — сечение стального сердечника, см2

Тепловой эффект тока

или

  — количество выделяемого

тепла, кал;

t— время протекания тока, сек;

r — сопротивление, Ом;

А — количество вещества, от-

ложившегося на электроде, мг;

α — электрохимический эквивалент вещества

Химический эффект тока

Зависимости в цепи переменного тока при частоте 50 Гц:

а) период изменения тока

б) угловая скорость

[радиан] или 360°

Т — период изменения тока, сек;

fчастота тока, Гц;

— угловая скорость

Зависимости токов и напряжений в цепи переменного тока:

а) ток в цепи

б) напряжение в цепи

I — полный ток в цепи, А;

— активная составляющая

тока, А;

— реактивная составляющая тока, А;

— угол сдвига (град) во времени между током и напряжением в цепи;

U— напряжение в цепи, В;

— активная составляющая

напряжения, В;

— реактивная составляющая напряжения, В

Соотношения токов и напряжений в трехфазной системе:

а) соединение в звезду

б) соединение в треугольник

— ток линейный, А;

— ток фазный, А;

— напряжение линейное, В;

— напряжение фазное, В

Коэффициент мощности

Р — активная мощность, Вт;

Q — реактивная мощность, нар;

S —полная мощность, B*А;

r — активное сопротивление,

z — полное сопротивление, Ом

Мощность в цепи постоянного тока

Мощность в цепи переменного тока:

а) цепь однофазно тока

б) цепь трехфазного тока

Энергия в цепи постоянного тока

— активная энергия, Вт*ч;

— реактивная энергия, вар*ч;

t —время ч

Энергия в цепи переменного тока:

а) цепь однофазного тока

б) цепь трехфазного тока

Способы нахождения общего сопротивления цепи

Содержание

  • 1 Определение сопротивления
  • 2 Соединение параллельным и последовательным способом
    • 2.1 Сопротивление при подключении проводников последовательно
    • 2.2 Напряжение при подключении проводников последовательно
    • 2.3 Параллельное подключение потребителей
    • 2.4 Сопротивление при подключении проводников параллельно
    • 2.5 Напряжение при подключении проводников параллельно
    • 2.6 Сила тока при подключении проводников параллельно
  • 3 Практическое применение
  • 4 Комбинированное соединение
  • 5 Видео по теме

Нередко при использовании электрооборудования бывает необходимо найти общее сопротивление цепи. С помощью данной величины определяют противодействие перемещению электричества в цепи или проводнике. В первый раз ее обосновали в законе Ома – трудах физика из Германии, ставившего опыты, связанные электричеством. По его имени и получила название единица сопротивления – Ом.

Резистор основной элемент сопротивляемости электроцепи

Определение сопротивления

Есть 2 вида напряжения – переменное и постоянное, а сопротивление электрической цепи может быть активным и реактивным. Дополнительно оно подразделяется на емкостное и индуктивное. Частоты в электросети не влияют на активное сопротивление. Этому параметру совершенно неважно, какой вид электроэнергии перемещается по проводам. А вот реактивная разновидность, наоборот, способна изменяться при перемене частоты. Дополнительно емкостные показатели в конденсаторах, а также индуктивные в трансформаторах проявляют себя по-разному.

Кроме сопротивления электрических приборов, работающих от сети, на ее общее состояние воздействуют промежуточные проводники, также способные сопротивляться электронапряжению. Чтобы правильно определить параметры электроцепи, необходимо понимать, что такое общее сопротивление, и по каким формулам осуществляется его расчет.

Необходимо учитывать, что индуктивный вид сопротивления при увеличении частоты электротока в сети также увеличивается. Его находят по формуле:

Индуктивное сопротивление

Емкостное сопротивление конденсатора с увеличением частоты электротока, наоборот, снижается. По этой причине принимается, что конденсатор при использовании постоянного тока имеет бесконечно большое сопротивление. Чтобы рассчитать емкостное сопротивление участка цепи, следует воспользоваться формулой:

Емкостное сопротивление

Полное сопротивление включает в себя активную и реактивную составляющие. Графически оно выражается гипотенузой прямоугольного треугольника, катеты которого – активное и реактивное сопротивление.

Полное сопротивление в цепи

Чтобы посчитать общее активное сопротивление, достаточно знать значение тока и напряжения в цепи, подключенной к определенному источнику питания. В данной ситуации достаточно воспользоваться законом Ома.

Закон Ома

Но значение общего сопротивления в электроцепи зависит не только от используемых радиоэлементов и присутствующего в схеме вида сопротивления. Особое влияние в этом случае оказывает метод сборки электроцепи из отдельных элементов. На практике используется 2 способа подключения потребителей:

  • Параллельный;
  • Последовательный.

Соединение параллельным и последовательным способом

Эти способы часто используются в электротехнике и электронике, во многих случаях без них невозможна правильная работа оборудования или узла электроники. В первую очередь нужно понять, как функционируют простейшие цепи радиоэлектронных устройств — проводники.

По существу, проводник — особый материал, хорошо передающий электрический ток. Каждый из них обладает собственным сопротивлением. Вычисляют этот параметр для какого-либо проводника по следующей формуле:

Формула сопротивления

По факту каждый проводник – это простейший резистор, имеющий собственное сопротивление.

Сопротивление при подключении проводников последовательно

При таком соединении к одному из проводников подключается следующий и таким образом соединяется цепочка из отдельных элементов. Подобная сборка электроцепи называется последовательной. Допустимо соединять в одну систему необходимое количество резисторов и прочих компонентов.

Узнать общее сопротивление схемы с последовательным подключением элементов совсем несложно. Для этого найдем, чему равна сумма сопротивлений всех использованных проводников. В результате получается формула для определения общего сопротивления цепи с последовательным подключением:

Определение сопротивления при последовательном соединении резисторов

Например, соединяют последовательно в одну цепь 3 проводника. Один из них имеет сопротивление 3 Ома, следующий 4 Ома и последний 2 Ома. Для подсчета общего сопротивления нужно суммировать значение всех установленных элементов:

R цепи = R1 + R2 + R3 = 3 + 4 + 2 = 9 Ом.

Напряжение при подключении проводников последовательно

При соединении элементов цепи последовательно, через каждый из них проходит одинаковая сила тока. Но нужно понять, как определить напряжение и что с ним происходит на каждом участке цепи.

Следует вспомнить закон Ома и станет просто находить, чему равно реальное напряжение на каждом резисторе. Например, есть собранная система элементов с такими характеристиками как на рисунке:

Пример электрической цепи

В этой цепи, как выяснили выше, везде присутствует одинаковая сила тока. Но как узнать ее номинальное напряжение? Сперва нужно модифицировать систему, изменив ее как на изображении, представленном ниже. При этом принимаем сумму сопротивлений всех элементов системы, как RАВ:

Преобразованная схема с заменой трех резисторов одним эквивалентным

В результате выходит по расчетам, что:

RАВ = R1 + R2 + R3 = 2 + 3 + 4 = 9 Ом.

По вычисленному RАВ с учетом закона Ома определяется сила тока, имеющаяся в цепи:

I = U/R = 9/9 = 1 Ампер.

После этого нужно найти напряжение на всех установленных резисторах. Точнее говоря, требуется вычислить значения, соответствующие UR1, UR2, UR3. Для их нахождения также следует воспользоваться законом Ома, согласно которому U = IR.

В результате выходит, что:

  • UR1 = IR1= 1×2 = 2 В.
  • UR2= IR2 = 1×3 = 3 В.
  • UR3= IR3 = 1×4 = 4 В.

После этих вычислений если суммировать все найденные напряжения на отдельных участках, то в результате получится характеристика, равная 10 Вольтам. С учетом этого выходит, что U = UR1 + UR2 + UR3. В результате мы получили элементарный делитель напряжения.

Следовательно, при последовательном подключении сумма изменения напряжения на отдельных участках соответствует общему напряжению источника питания.

Законы последовательного соединения проводников

Параллельное подключение потребителей

Это соединение выполняется по-другому, пример показан на рисунке:

Параллельное соединение сопротивлений

Сопротивление при подключении проводников параллельно

Общее сопротивление считают по формуле:

Определение сопротивлений при параллельном соединении

Если подсоединены параллельно только 2 компонента, то формулу можно сделать проще. Выглядеть она должна таким образом:

Упрощенная формула для двух резисторов

Напряжение при подключении проводников параллельно

С этим все просто. Благодаря тому, что все потребители подключаются параллельно, то они имеют равное напряжение. По этой причине выходит, что напряжение, которое можно получить на R1 не станет отличаться от показаний на всех других участках.

Сила тока при подключении проводников параллельно

Если все было просто с напряжением, то появляются сложности с силой тока. При соединении последовательным способом на всех проводниках одинаковая сила тока, а при параллельном все происходит наоборот. На установленные потребители будет поступать разная сила тока. Чтобы ее определить, придется еще раз воспользоваться законом Ома.

Проще разобраться в принципе работы и расчетов, на реальном примере. На изображении, расположенном ниже, 3 резистора соединены параллельно, и запитаны от источника U.

Схема с параллельным соединением сопротивлений

В любом из установленных устройств напряжение отличаться не будет, как выяснили ранее. Но на разных участках цепи будет собственная сила тока. Для каждого потребителя ее определяют по закону Ома, используя для этой цели соотношение I=U/R.

Таким образом получается:

  • I1 = U/R1
  • I2 = U/R2
  • I3 = U/R3

Если в системе присутствуют другие подключенные параллельно приборы, для них используют: In = U/Rn

В результате сила тока всей цепи определяется по формуле:

Определение силы тока при параллельном соединении сопротивлений

В электронике способ параллельного подсоединения потребителей называют дополнительно «делителем тока», причина в том, что в схемах резисторы поступающий ток делят между установленными элементами.

Законы параллельного соединения проводников

Практическое применение

Попробуем решить следующую задачу: найти проходящую через каждый резистор силу тока и определить общую силу тока при известных номиналах резисторов и напряжении питания.

Пример схемы для решения задачи

Решение

Расчет проводится с помощью выше приведенных формул:

  • I1 = U/R1
  • I2 = U/R2
  • I3 = U/R3

В результате получается:

  • I1 = U/R1 = 10/2=5 Ампер
  • I2 = U/R2 = 10/5=2 Ампера
  • I3 = U/R3 = 10/10=1 Ампер

После этого используется формула расчета общего сопротивления цепи, позволяющая определить силу тока, проходящую по ней.

Следовательно, Iобщ = 5 + 2 + 1 = 8 Ампер.

В результате получается I=I1 + I2 + I3 = 5+2+1=8 Ампер

Комбинированное соединение

На практике используются довольно сложные электроцепи, состоящие и из последовательно подключенных сопротивлений, и из параллельно. Такую цепь следует разбить на отдельные участки, включающие элементы, соединенные только последовательным способом или только параллельным.

Расчет следует начинать с того участка цепи, который является наиболее удаленным от двух конечных выводов, выступающих в роли контактов общего сопротивления. Схему соединения элементов, называемую «треугольником» можно трансформировать в «звезду» и обратно.

Перевод звезды в треугольник

Чтобы не напрягаться с различными расчетами, на практике очень часто используют онлайн-калькуляторы.

Видео по теме

Формулы, примеры решения задач: ТОЭ | Электрические машины | Высшая математика | Теоретическая механика

    Электрический ток, плотность тока, электрическое напряжение, энергия при протекании тока, мощность электрического тока

  • Электрический ток
    Электрический ток — это явление упорядоченного движения электрических зарядов. За направление электрического тока принимается направление движения положительных зарядов.
    Направление электрического тока
    Формула электрического тока:
    i=lim{Delta{t{right}0}}{{{Delta}{q}}/{{Delta}{t}}}
    Электрический ток измеряется в амперах. СИ: А.
    Электрический ток обозначается латинскими буквами i или I. Символом i(t) обозначается «мгновенное» значение тока, т.е. ток произвольного вида в любой момент времени. В частном случае он может быть постоянным или переменным.
    Виды электрического тока
    Прописной латинской буквой I обозначается, как правило, постоянное значение тока.
    В любом участке неразветвленной электрической цепи протекает одинаковый по величине ток, который прямо пропорционален напряжению на концах участка и обратно пропорционален его сопротивлению. Величина тока определяется по закону Ома:
    1) для цепи постоянного тока I=U/R
    2) для цепи переменного тока I=U/Z,
    где U — напряжение, В;
    R — омическое сопротивление, Ом;
    Z — полное сопротивление, Ом.
    Омическое сопротивление проводника:
    R={rho}*{l/s},
    где l — длина проводника, м;
    s — поперечное сечение, мм2;
    ρ — удельное сопротивление, (Ом · мм2) / м.
    Зависимость омического сопротивления от температуры:
    Rt = R20 [1 + α(t — 20°)],
    где R20 — сопротивление при 20°C, Ом;
    Rt — сопротивление при t°C, Ом;
    α — температурный коэффициент сопротивления.
    Полное сопротивление цепи переменного тока:
    Z=sqrt{r^2+({x_L}-{x_C})^2},
    где r — активное сопротивление, Ом;
    x_L=w*L=2*{pi}*f*L — индуктивное сопротивление, Ом;
    L — индуктивность, Гн;
    x_C=1/{w*C}=1/{2*{pi}*f*C} — емкостное сопротивление, Ом;
    C — ёмкость, Ф.
    Активное сопротивление больше омического сопротивления R:
    r={K_f}*R,
    где K_f — коэффициент, учитывающий увеличение сопротивления при переменном токе, зависящий от: частоты тока; магнитных свойств, проводимости и диаметра проводника.
    При промышленной частоте, для нестальных проводников, принимают K_f=1 и считают r=R.
  • Плотность тока
    Плотность тока (j) — это сила тока, рассчитанная на единицу площади поперечного сечения (s)
    j={di}/{ds}.
    Для равномерного распределения плотности тока и сонаправленности её с нормалью к поверхности, через которую протекает ток, формула плотности тока принимает вид:
    j=I/s,
    где I — сила тока через поперечное сечение проводника площадью s.
    СИ: А/м2
  • Электрическое напряжение
    При протекании тока, как и при всяком перемещении зарядов, происходит процесс преобразования энергии. Электрическое напряжение — количество энергии, которое необходимо затратить на перемещение единицы заряда из одной точки в другую.
    Формула электрического напряжения:
    u=lim{Delta{q{right}0}}{{{Delta}{w}}/{{Delta}{q}}}={dw}/{dq}
    Электрическое напряжение обозначается латинской буквой u. Символом u(t) обозначается «мгновенное» значение напряжения, а прописной латинской буквой U обозначается, как правило, постоянное напряжение.
    Электрическое напряжение измеряется в вольтах. СИ: В.
  • Энергия при протекании электрического тока
    Формула энергии, при протекании электрического тока:
    w=int{-{infty}}{t}{uidt}=int{-{infty}}{t}{pdt}
    СИ: Дж
  • Мощность при протекании электрического тока
    Формула мощности, при протекании электрического тока:
    p={dw}/{dt}
    СИ: Вт.
    Электрическая цепь

  • Электрическая цепь — это совокупность устройств, предназначенных для протекания по ним электрического тока.
    Эти устройства называются элементами цепи.
  • Источники электрической энергии — устройства, преобразующие различные виды энергии, например механическую или химическую, в энергию электрического тока.
  • Идеальный источник напряжения — источник, напряжение на зажимах которого не зависит от величины протекающего через него тока.
    Идеальный источник напряжения и его ВАХ
    Внутреннее сопротивление идеального источника напряжения можно условно принять равным нулю.
  • Идеальный источник тока — источник, величина протекающего тока через который не зависит от напряжения на его зажимах.
    Идеальный источник тока и его ВАХ
    Внутреннее сопротивление такого источника можно условно принять равным бесконечности.
  • Приемник — это устройство, потребляющее энергию или преобразующее электрическую энергию в другие виды энергии.
  • Двухполюсник — это цепь, имеющая два зажима для подключения (полюса).
  • Идеальный R-элемент (резистивный элемент, резистор) — это такой пассивный элемент цепи, в котором происходит необратимый процесс преобразования электрической энергии в тепловую.
    Основной параметр резистора — это его сопротивление.
    R=u/i
    Сопротивление измеряется в омах. СИ: Ом
    Проводимость — это обратная величина по отношению к сопротивлению.
    G=i/u=1/R.
    Измеряется проводимость в сименсах. СИ: См.
    Формула мощности R-элемента:
    p=ui=Ri^2=Gu^2.
    Формула энергии R-элемента:
    w=int{t_1}{t_2}{pdt}=int{t_1}{t_2}{uidt}=int{t_1}{t_2}{Ri^2dt}=int{t_1}{t_2}{Gu^2dt}.
  • Идеальный С-элемент (емкостной элемент, или конденсатор) — это такой пассивный элемент цепи, в котором происходит процесс преобразования энергии электрического тока в энергию электрического поля и наоборот. В идеальном C-элементе потери энергии отсутствуют.
    Формула ёмкости:
    C=q/u. Примеры: задача 1, задача 2.
    Ток в ёмкости:
    i=C{{du}/{dt}}
    Напряжения на ёмкости:
    u=u(0)+{1/C}int{0}{t}{idt}.
    Закон коммутации для емкостного элемента. При токе конечной амплитуды заряд на C-элементе не может измениться скачком: {q}{(0^+)}={q}{(0^{-})}.
    i={{dq}/{dt}}=lim{{dt}{right}0}{{dq}/{dt}}.
    При неизменной ёмкости, напряжение на емкостном элементе не может измениться скачком: {u_C}{(0^+)}={u_C}{(0^{-})}.
    Мощность C-элемента: p=ui.
    При p > 0 — энергия запасается, при p < 0 — энергия возвращается в источник.
    Энергия C-элемента:
    w=int{-{infty}}{t}{pdt}=int{-{infty}}{t}{uidt}, или
    w={w(0)}+int{0}{t}{uidt}.
    Если к моменту времени t=0, энергия равна 0, то
    w=int{0}{t}{C{{du}/{dt}}udt}=int{0}{t}{{Cu^2}/2}
    Емкость измеряется в фарадах. СИ: Ф.
  • Идеальный L-элемент (индуктивный элемент или катушка индуктивности) — это такой пассивный элемент цени, в котором происходит процесс преобразования энергии электрического тока в энергию магнитного поля и наоборот. В идеальном L-элементе потери энергии отсутствуют.
    Для линейного L-элемента формула индуктивности (L) имеет вид:
    L=psi/i,
    где psi — потокосцепление.
    Индуктивность обозначается буквой L и играет роль коэффициента пропорциональности между потоком psi и током i.
    Напряжение на индуктивном элементе:
    u=L{{di}/{dt}}.
    Ток в индуктивном элементе:
    i=i(0)+{1/L}int{0}{t}{udt}.
    Закон коммутации для индуктивного элемента. При напряжении конечной амплитуды, потокосцепление не может измениться скачком: {psi}{(0^+)}={psi}{(0^{-})}.
    u={{d{psi}}/{dt}}=lim{{dt}{right}0}{{d{psi}}/{dt}}.
    При неизменной индуктивности ток в индуктивном элементе не может измениться скачком: {i_L}{(0^+)}={i_L}{(0^{-})}.
    Мощность L-элемента: p=ui.
    При p > 0 — энергия запасается, при p < 0 — энергия возвращается в источник.
    Энергия L-элемента:
    w=int{-{infty}}{t}{pdt}=int{-{infty}}{t}{uidt}, или
    w={w(0)}+int{0}{t}{uidt}.
    Если к моменту времени t=0, энергия равна 0, то
    w=int{0}{t}{L{{di}/{dt}}idt}=int{0}{t}{{Li^2}/2}
    Индуктивность измеряется в генри. СИ: Гн
    Пример: задача 3.
  • R, L, C — основные пассивные двухполюсные элементы электрических цепей.
    Резистор, индуктивность, ёмкость
    Основные законы электрических цепей

  • Закон Ома для участка цепи, не содержащего источник ЭДС.
    Закон Ома для участка цепи, не содержащего источник ЭДС, устанавливает связь между током и напряжением на этом участке.
    Изображение к закону Ома для участка цепи, не содержащего источник ЭДС
    Применительно к данному рисунку, математическое выражение закона Ома имеет вид:
    U_{ab}=I*R, или I=U_{ab}/R=({{varphi}_a}-{{varphi}_b})/R
    Формулируется это равенство так: при неизменном сопротивлении проводника напряжение на нем пропорционально току в проводнике.
  • Закон Ома для участка цепи, содержащего источник ЭДС
    Для схемы
    Рисунок №1 к закону Ома для участка цепи, содержащего источник ЭДС
    I={({{varphi}_a}-{{varphi}_c})+E}/R={{U_{ac}}+E}/R.
    Для схемы
    Рисунок №2 к закону Ома для участка цепи, содержащего источник ЭДС
    I={({{varphi}_a}-{{varphi}_c})-E}/R={{U_{ac}}-E}/R.
    В общем случае
    I={({{varphi}_a}-{{varphi}_c}){pm}E}/R={{U_{ac}}{pm}E}/R.
  • Закон Джоуля-Ленца. Энергия, выделяемая на сопротивлении R при протекании по нему тока I, пропорциональна произведению квадрата силы тока и величины сопротивления:
    W=I^2*R*t
  • Законы Кирхгофа.
    Топология (строение) цепи.
    Электрическая схема — графическое изображение электрической цепи.
    Ветвь ‐ участок цепи, содержащий один или несколько последовательно соединенных элементов и заключенный между двумя узлами.
    Узел ‐ точка цепи, где сходится не менее трех ветвей. Узлы нумеруют произвольно, как правило, арабской цифрой. На схеме узел может быть обозначен точкой, а может и не быть обозначен. Как правило, не обозначают те узлы, расположение которых очевидно (т‐образные соединения). Если пересекающиеся ветви образуют узел, то он обозначается точкой. Если в месте пересечения ветвей точки нет, то и узла нет (провода лежат друг на друге).
    Контур – замкнутый путь, проходящий по нескольким ветвям. Контуры независимы, если отличаются хотя бы одной ветвью. Контура обозначают стрелкой с указанным направлением обхода и римской цифрой. Направление обхода выбирают произвольно. Независимых контуров в схеме может быть много, при этом не все эти контура необходимы для составления достаточного для решения задачи количества уравнений.
    Первый закон Кирхгофа:
    Первый закон Кирхгофа
    1) алгебраическая сумма токов, подтекающих к любому узлу схемы, равна нулю:
    sum{k=1}{n}{I_k}=0;
    {I_1}-{I_2}-{I_3}-{I_4}=0
    2) сумма подтекающих к любому узлу токов равна сумме утекающих от узла токов:
    {I_1}={I_2}+{I_3}+{I_4}. Пример 1. Первый закон Кирхгофа.
    Второй закон Кирхгофа:
    1) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:
    sum{k=1}{n}{{I_k}{R_k}}=sum{p=1}{m}{E_p}
    2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:
    sum{k=1}{n}{U_k}=0. Пример 2. Второй закон Кирхгофа.
  • Матричная форма записи уравнений Кирхгофа:
    A*I=B*E,
    где А, В — квадратные матрицы коэффициентов при токах и напряжениях порядка p х p (p — число ветвей схемы; q — число узлов схемы);
    I, E — матрицы-столбцы неизвестных токов и заданных ЭДС
    Элементами матрицы А являются коэффициенты при токах в левой части уравнений, составленных по первому и второму законам Кирхгофа. Первые q-1 строки матрицы А содержат коэффициенты при токах в уравнениях, составленных по первому закону Кирхгофа, и имеют элементы +1, -1, 0 в зависимости от того, с каким знаком входит данный ток в уравнение.
    Элементы следующих p-q+1 строк матрицы А равны значениям сопротивлении при соответствующих токах в уравнениях, составленных по второму закону Кирхгофа, с соответствующим знаком. Элементы матрицы В равны коэффициентам при ЭДС в правой части уравнений, составленных по законам Кирхгофа. Первые q-1 строки матрицы имеют нулевые элементы, так как ЭДС в правой части уравнений, записанных по первому закону Кирхгофа, отсутствуют. Остальные p-q+1строки содержат элементы +1, -1 в зависимости от того, с каким знаком входит ЭДС в уравнение, и 0, если ЭДС в уравнения не входит.
    Общее решение уравнений, составленных по законам Кирхгофа:
    I=(A^{-1}*B)*E=G*E,
    где G=A^{-1}*B — матрица проводимостей.
    G = (matrix{4}{4}{{G_{11}} {G_{12}} {...} {G_{1p}~} {G_{21}} {G_{22}} {...} {G_{2p}} {...} {...} {...} {...} {G_{p1}} {G_{p2}} {...} {G_{pp}}}).
    Токи в каждой ветви:
    I_1=G_{11}*E_{11}+G_{12}*E_{12}+...+G_{1p}*E_p;
    I_2=G_{21}*E_{21}+G_{22}*E_{22}+...+G_{2p}*E_p;
    ...
    I_p=G_{p1}*E_{p1}+G_{p2}*E_{p2}+...+G_{pp}*E_p.
    Режимы работы электрических цепей

  • Номинальный режим работы элемента электрической цепи — это режим, при котором он работает с номинальными параметрами.
  • Согласованный режим — это режим, при котором мощность, отдаваемая источником или потребляемая приемником, имеет максимальное значение. Такое значение получается при определенном соотношении (согласовании) параметров электрической цепи.
  • Режим холостого хода — это такой режим, при котором через источник или приемник не протекает электрический ток. При этом источник не отдает энергию во внешнюю часть цепи, а приемник не потребляет ее. Для двигателя это будет режим без механической нагрузки навалу.
  • Режим короткого замыкания — это режим, возникающий при соединении между собой разноименных зажимов источника или пассивного элемента, а также участка электрической цепи, находящегося под напряжением.
    Электрические цепи постоянного тока

  • Если ток постоянный, то отсутствует явление самоиндукции и напряжение на катушке индуктивности равно нулю:
    U_L=L*{{di}/{dt}},~{{di}/{dt}}=0, так как i=const.
  • Постоянный ток через емкость не проходит.
  • Простая цепь постоянного тока — это цепь с одним источником при последовательном, параллельном или смешанном соединение приемников.
    Простая цепь постоянного тока
    При последовательном соединении приемников:
    E=I*R_1+I*R_2+...+I*R_n=I*(R_1+R_2+...+R_n)=I×Rэкв;
    Rэкв=ΣRi.
    При параллельном соединении приемников напряжение на всех приемниках одинаково.
    По закону Ома токи в каждой ветви:
    I_1=E/R_1;~ I_2=E/R_2;~I_n=E/R_n.
    По первому закону Кирхгофа общий ток:
    I=I_1+I_2+...+I_n=E*(1/R_1+1/R_2+...+1/R_n)=E×Gэкв;
    Gэкв=G1+G2+…+Gn; Rэкв=1/Gэкв.
    При смешанном соединении:
    Rэкв=R_1+{{R_2*R_3}/{R_2+R_3}}.
  • Метод контурных токов.
    Метод основан на применении второго закона Кирхгофа и позволяет сократить при расчете сложных систем число решаемых уравнений.
    Во взаимно независимых контурах, где для каждого контура хотя бы одна ветвь входит только в этот контур, рассматривают условные контурные токи во всех ветвях контура.
    Контурные токи, в отличие от токов ветвей, имеют следующие индексы: I_{I},~I_{II},~I_{III},~... или I_{11},~I_{22},~I_{33},~...
    Уравнения составляют по второму закону Кирхгофа для контурных токов.
    Токи ветвей выражают через контурные токи по первому закону Кирхгофа.
    Число выбираемых контуров и число решаемых уравнений равно числу уравнений, составляемых по второму закону Кирхгофа: k=p-q+1.
    Сумма сопротивлений всех резистивных элементов каждого контура со знаком плюс является коэффициентом при токе контура, имеет следующие индексы: R_{I},~R_{II},~R_{III},~... или R_{11},~R_{22},~R_{33},~...
    Знак коэффициента при токе смежных контуров зависит от совпадения или несовпадения направления смежных контурных токов. ЭДС входят в уравнение со знаком плюс, если направления ЭДС и направление тока контура совпадают. Пример 3. Метод контурных токов.
  • Метод узловых потенциалов.
    Метод основан на применении первого закона Кирхгофа и позволяет сократить число решаемых уравнений при нахождении неизвестных токов до q-1. При составлении уравнений потенциал одного из узлов схемы принимают равным нулю, а токи ветвей выражают через неизвестные потенциалы остальных q-1 узлов схемы и для них записывают уравнения по первому закону Кирхгофа. Решение системы q-1 уравнений позволяет определить неизвестные потенциалы, а через них найти токи ветвей.
    При q-1

<p -q+1 следует отдавать предпочтение методу узловых потенциалов.
  • Формула двух узлов:
    U_{12}={sum{i=1}{m}{E_i/R_i}}/{sum{i=1}{n}{1/R_i}}={sum{i=1}{m}{E_i*G_i}}/{sum{i=1}{n}{G_i}}.
    Пример 4. Метод узловых потенциалов.
  • Метод пропорциональных величии.
    Метод применяют для нахождения неизвестных токов при цепочечном соединении резистивных элементов в электрических цепях с одним источником. Токи и напряжения, а также и известную ЭДС цепи выражают через ток самой удаленной от источника ветви. Задача сводится к решению одного уравнения с одним неизвестным.
  • Баланс мощностей
    На основании закона сохранения энергии мощность, развиваемая источниками электрической энергии, должна быть равна мощности преобразования в цепи электрической энергии в другие виды энергии:
    {Sigma}E*I={Sigma}I^2*R.
    {Sigma}E*I — сумма мощностей, развиваемых источниками;
    {Sigma}I^2*R — сумма мощностей всех приемников и необратимых преобразований энергии внутри источников.
    Баланс мощностей составляют, чтобы проверить правильность найденного решения. При этом сравнивают мощность, внесенную в цепь источниками энергии с мощностью, затрачиваемой потребителями.
    Формула мощности для одного резистора:
    P_n={I_n}^2*R_n
    Суммарная мощность потребителей:
    PП={I_1}^2*R_1+{I_2}^2*R_2+...+{I_n}^2*R_n
    Мощность источников:
    Pист = PE + PJ,
    где PE = ±EI — мощность источника ЭДС (определятся умножением его ЭДС на ток, протекающий в данной ветви. Ток берут со знаком, полученным в результате расчета. Минус перед произведением ставят, если направление тока и ЭДС не совпадают на схеме);
    PJ = JUJ — мощность источника тока (определятся умножением тока источника на падение напряжения на нем).
    Для определения UJ выбирают любой контур, который включал бы в себя источник тока. Обозначают падение UJ на схеме против тока источника, и записывают контурное уравнение. Все величины, кроме UJ, в данном уравнении уже известны, что позволяет рассчитать падение напряжения UJ.
    Сравнение мощностей: Pист = PП. Если равенство соблюдено, значит, баланс сошелся и расчет токов верен.
  • Алгоритм расчета цепи по законам Кирхгофа
      Топология цепи.

    • Определяем общее число ветвей p*.
    • Определяем число ветвей с источниками тока pит. Токи в данных ветвях считаем известными и равными токам источников.
    • Определяем число ветвей с неизвестными токами: p*‐pит
    • Находим количество узлов q.
    • Находим число уравнений, составляемых по первому закону Кирхгофа: q-1.
    • Находим число уравнений, составляемых по второму закону Кирхгофа: n=p-(q-1).
    1. Произвольно наносим на схему номера и направления неизвестных токов.
    2. Произвольно наносим на схему номера узлов.
    3. Составляем узловые уравнения для произвольно выбранных узлов (по первому закону).
    4. Обозначаем на схеме контура и выбираем направления их обхода.
    5. Количество обозначаемых контуров равно количеству уравнений, составляемых по второму закону Кирхгофа. При этом ни один из контуров не должен включать в себя ветвь с источником тока.
    6. Составляем контурные уравнения для выбранных контуров (по второму закону).
    7. Объединяем составленные уравнения в систему. Известные величины переносим в правую часть уравнений. Коэффициенты при искомых токах вносим в матрицу А (левые части уравнений)(о матрицах читаем здесь). Заполняем матрицу F, занося в нее правые части уравнений.
    8. Решаем полученную систему уравнений (примеры решения систем уравнений).
    9. Проверяем правильность решения составлением баланса мощностей.
      Пример: задача 4.
    Электрические цепи переменного тока

  • Электрическая цепь синусоидального тока — это электрическая цепь, в которой ЭДС, напряжения и и токи, изменяющиеся по синусоидальному закону:
    u=U_m*sin({omega}t+{psi}_u),~i=I_m*sin({omega}t+{psi}_i).
  • Переменный ток — это ток, периодически меняющийся по величине и направлению и характеризующийся амплитудой, периодом, частотой и фазой.
  • Амплитуда переменного тока — это наибольшее значение, положительное или отрицательное, принимаемое переменным током.
  • Период — это время, в течение которого происходит полное колебание тока в проводнике.
  • Частота — это величина, обратная периоду.
  • Фаза — это угол {omega}t или {omega}t{pm}{psi}, стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.
  • Периодический режим: I_0(t)=I_0(t+kT). К такому режиму может быть отнесен и синусоидальный:
    U_0(t)=U_0({omega}t)={U_m}sin({omega}t+{psi}_u),
    где U_m — амплитуда;
    {psi}_u — начальная фаза;
    {omega}={2{pi}}/T=2{pi}f — угловая скорость вращения ротора генератора.
    При f = 50 Гц T=1/f=1/50=0,02~c,~{omega}{approx}314 рад/с.
  • Синусоидальный ток — это ток изменяющийся во времени по синусоидальному закону:
    i={I_m}sin({2{pi}t}/T+{psi}})={I_m}sin({omega}t+{psi}).
  • Среднее значение синусоидального тока (ЭДС, напряжение), формула:
    I_cp=1/{T/2}int{0}{T/2}{{I_m}sin{omega}tdt=2/{pi}I_m},
    то есть среднее значение синусоидального тока составляет 2/{pi}=0,638 от амплитудного. Аналогично,
    E_cp={2E_m}/{pi};~U_cp={2U_m}/{pi}.
  • Действующее значение синусоидального тока (ЭДС, напряжение), формула:
    I=sqrt{{1/T}int{0}{T}{i^2dt}}=sqrt{{1/T}int{0}{T}{{{I_m}^2}{sin^2}{omega}tdt}}=I_m/{sqrt{2}}=0,707I_m. Аналогично,
    E=E_m/{sqrt{2}};~U=U_m/{sqrt{2}}.
  • Количество теплоты, выделенное за один период синусоидальным током, формула:
    int{0}{T}{R{i^2}tdt}=R*{I_m}^2*{T/2}.
    Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты,что и синусоидальный ток.
    R*{I_m}^2*{T/2}=R×Iпост2×T или Iпост=I=I_m/{sqrt{2}}
  • Коэффициент амплитуды синусоидального тока (κa) — это отношение амплитуды синусоидального тока к действующему значению синусоидального тока: {kappa}_a=I_m/I={sqrt{2}}.
  • Коэффициент формы синусоидального тока (κф) — это отношение действующего значения синусоидального тока к среднему за пол периода значению синусоидального тока:
    κф=I/I_cp={I_m/{sqrt{2}}}/{{{2I_m}/{pi}}}={pi}/{2{sqrt{2}}}=1,11.
    Для несинусоидальных периодических токов κa{sqrt{2}}, κф≠1,11. Это отклонение косвенно свидетельствует о том, насколько несинусоидальный ток отличается от синусоидального.
    Резонансные явления в электрических цепях
    Идеальное активное сопротивление не зависит от частоты, индуктивное сопротивление линейно зависит от частоты, емкостное сопротивление зависит от частоты по гиперболическому закону:
    R=const;~X_L=j{omega}L;~X_C=-j{1/{{omega}C}}.
    График зависимости активного сопротивления о частоты
    График зависимости индуктивного сопротивления о частоты
    График зависимости емкостного сопротивления о частоты

  • Резонанс напряжений.
    Резонансом в электрических цепях называется режим участка электрической цепи, содержащей индуктивный и емкостной элементы, при котором разность фаз между напряжением и током равна нулю {varphi}=0.
    Режим резонанса может быть получен при изменении частоты ω питающего напряжения или изменением параметров L и C.
    При последовательном соединении возникает резонанс напряжения.
    Схема электрической цепи с последовательным соединением  R, L, C
    Ток в схеме равен:
    I=U/{sqrt{R^2+X^2}}=U/{sqrt{R^2+({X_L}^2-{X_C}^2)}}=U/{sqrt{R^2+({omega}L-1/{{omega}C})^2}}.
    При совпадении вектора тока с вектором напряжения по фазе:
    I=I_{max}=U/R;~ {varphi}=0;
    {{omega}_0}L-{1/{{omega}_0}C}=0;
    Z=sqrt{R^2+({omega_0}L-{1/{{omega_0}C}})^2}=R,
    где {omega_0} — резонансная частота напряжения, определяемая из условия
    delim{|}{X_L}{|}=delim{|}{X_C}{|};~{omega_0}L=1/{{omega_0}C}.
    Тогда
    {omega_0}^2=1/{LC}~right~omega_0=sqrt{1/{LC}}.
    Волновое или характеристическое сопротивление последовательного контура:
    delim{|}{X_L}{|}=delim{|}{X_C}{|}={omega_0}L=sqrt{L/C}=Z_B.
    Добротность контура — это отношение напряжения на индуктивности или емкости к напряжению на входе в режиме резонанса:
    Q={U_L}/{U_{BX}}={U_C}/{U_{BX}}={{X_L}I}/{RI}={X_L}/R.
    Добротность контура представляет собой коэффициент усиления по напряжению:
    ULрез=IрезXрез={U/R}X_L=U{{X_L}/R}.
    В промышленных сетях резонанс напряжений является аварийным режимом, так как увеличение напряжения на конденсаторе может привести к его пробою, а рост тока — к нагреву проводов и изоляции.
  • Резонанс токов.
    Схема параллельного соединения реактивных элементов
    Резонанс токов может возникнуть при параллельном соединении реактивных элементов в цепях переменного тока. В этом случае: b_L-b_C=0, где
    b_L={X_L}/{Z^2};~b_C={X_C}/{Z^2};
    тогда {varphi}=arctg{b_L-b_C}/{g_1+g_2}=0;
    underline{I}=underline{I}_L+underline{I}_C=underline{U}(g_L-jb_L+g_C+jb_C)=underline{U}(g-j(b_L-b_C)).
    При резонансной частоте реактивные составляющие проводимости могут сравниться по модулю и суммарная проводимость будет минимальной. При этом общее сопротивление становится максимальным, общий ток минимальным, вектор тока совпадает с вектором напряжения. Такое явление называется резонансом токов.
    Волновая проводимость: b_L=b_C=sqrt{C/L}=gamma.
    При g << bL ток в ветви с индуктивностью значительно больше общего тока, поэтому такое явление называется резонансом токов.
    Резонансная частота:
    ω*={1/sqrt{LC}}sqrt{{L/C-{R_L}^2}/{{L/C-{R_L}^2}}}={omega}sqrt{{{rho}^2-{R_L}^2}/{{{rho}^2-{R_L}^2}}}
    Из формулы следует:
    1) резонансная частота зависит от параметров не только реактивных сопротивлений, но и активных;
    2) резонанс возможен, если RL и RC больше или меньше ρ, в противном случае частота будет мнимой величиной и резонанс не возможен;
    3) если RL = RC = ρ, то частота будет иметь неопределенное значение, что означает возможность существования резонанса на любой частоте при совпадении фаз напряжения питания и общего тока;
    4) при RL = RC << ρ резонансная частота напряжения равна резонансной частоте тока.
    Энергетические процессы в цепи при резонансе токов аналогичны процессам при резонансе напряжений.
    Реактивная мощность при резонансе токов равна нулю. Подробно, реактивная мощность рассмотрена здесь.

Главная

Примеры решения задач ТОЭ

Расчет электрической цепи постоянного тока с конденсаторами

Расчет электрической цепи постоянного тока с конденсаторами


Расчет электрической цепи постоянного тока с конденсаторами

Основные положения и соотношения

1. Общее выражение емкости конденсатора

C= Q U .

2. Емкость плоского конденсатора

C= ε a ⋅S d = ε r ⋅ ε 0 ⋅S d ,

здесь

S — поверхность каждой пластины конденсатора;

d — расстояние между ними;

εa = εr·ε0 — абсолютная диэлектрическая проницаемость среды;

εr — диэлектрическая проницаемость среды (относительная диэлектрическая проницаемость);

ε 0 = 1 4π⋅ с 2 ⋅ 10 −7 ≈8,85418782⋅ 10 −12    Ф м  – электрическая постоянная.

3. При параллельном соединении конденсаторов С1, С2, …, Сn эквивалентная емкость равна

C= C 1 + C 2 +…+ C n = ∑ k=1 n C k .

4. При последовательном соединении конденсаторов эквивалентная емкость определяется из формулы

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Для двух последовательно соединенных конденсаторов эквивалентная емкость составляет:

C= C 1 ⋅ C 2 C 1 + C 2 ,

а напряжения между отдельными конденсаторами распределяются обратно пропорционально их емкостям:

U 1 =U⋅ C 2 C 1 + C 2 ;    U 2 =U⋅ C 1 C 1 + C 2 .

5. Преобразование звезды емкостей в эквивалентный треугольник емкостей или обратно (рис. а и б)

Преобразование звезды емкостей в эквивалентный треугольник емкостей

Рис. 0

осуществляется по формулам:

Y→Δ { C 12 = C 1 ⋅ C 2 ΣC ;   C 13 = C 1 ⋅ C 3 ΣC ;   C 23 = C 2 ⋅ C 3 ΣC , где          ΣC= C 1 + C 2 + C 3 , Δ→Y { C 1 = C 12 + C 13 + C 12 ⋅ C 13 C 23 ; C 2 = C 12 + C 23 + C 12 ⋅ C 23 C 13 ; C 3 = C 13 + C 23 + C 13 ⋅ C 23 C 12 .

6. Энергия электростатического поля конденсатора:

W= C⋅ U 2 2 = Q⋅U 2 = Q 2 2C .

7. Расчет распределения зарядов в сложных цепях, содержащих источники э.д.с. и конденсаторы, производится путем составления уравнений по двум законам:

1) По закону сохранения электричества (закон сохранения электрического заряда): алгебраическая сумма зарядов на обкладках конденсаторов, соединенных в узел и не подключенных к источнику энергии, равна алгебраической сумме зарядов, имевшихся на этих обкладках до их соединения:

ΣQ=Σ Q ′ .

2) По второму закону Кирхгофа: алгебраическая сумма э. д. с. в замкнутом контуре равна алгебраической сумме напряжений на участках контура, в том числе на входящих в него конденсаторах:

∑ k=1 n E k = ∑ k=1 n U C k = ∑ k=1 n Q k C k .

Приступая к решению задачи, надо задаться полярностью зарядов на обкладках конденсаторов.

Решение задач на расчет электрической цепи постоянного тока с конденсаторами

Задача. Доказать формулу эквивалентной емкости при последовательном соединении конденсаторов (рис. 1).

эквивалентная емкость при последовательном соединении конденсаторов

Рис. 1

Решение

На рис. 1 представлено последовательное соединение трех конденсаторов. Если батарею конденсаторов подключить к источнику напряжения U12, то на левую пластину конденсатора С1 перейдет заряд +q, на правую пластину конденсатора С3 заряд –q.

Вследствие электризации через влияние правая пластина конденсатора С1 будет иметь заряд –q, а так как пластины конденсаторов С1 и С2 соединены и были электронейтральны, то вследствие закона сохранения заряда заряд левой пластины конденсатора C2 будет равен +q, и т. д. На всех пластинах конденсаторов при таком соединении будет одинаковый по величине заряд.

Найти эквивалентную емкость — это значит найти конденсатор такой емкости, который при той же разности потенциалов будет накапливать тот же заряд q, что и батарея конденсаторов.

Разность потенциалов U12 = φ1 — φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов

U 12 = φ 1 − φ 2 =( φ 1 − φ A )+( φ A − φ B )+( φ B − φ 2 )= U 1A + U AB + U B2 .

Воспользовавшись формулой напряжения на конденсаторе

U= q C ,

запишем

q C = q C 1 + q C 2 + q C 3 .

Откуда эквивалентная емкость батареи из трех последовательно включенных конденсаторов

1 C = 1 C 1 + 1 C 2 + 1 C 3 .

В общем случае эквивалентная емкость при последовательном соединении конденсаторов

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Задача 1. Определить заряд и энергию каждого конденсатора на рис. 2, если система подключена в сеть с напряжением U = 240 В.

Определить заряд и энергию каждого конденсатора, если система подключена в сеть

Рис. 2

Емкости конденсаторов: C1 =50 мкФ; C2 =150 мкФ; C3 =300 мкФ.

Решение

Эквивалентная емкость конденсаторов C1 и C2, соединенных параллельно

C12 = C1 + C2 = 200 мкФ,

эквивалентная емкость всей цепи равна

C= C 12 ⋅ C 3 C 12 + C 3 = 200⋅300 500 =120  мкФ.

Заряд на эквивалентной емкости

Q = C·U = 120·10–6·240 = 288·10–4 Кл.

Той же величине равен заряд Q3 на конденсаторе C3, т.е. Q3 = Q = 288·10–4 Кл; напряжение на этом конденсаторе

U 3 = Q 3 C 3 = 288⋅ 10 −4 300⋅ 10 −6 =96  В.

Напряжение на конденсаторах C1 и C2 равно

U1 = U2 = U — U3 = 240 — 96 = 144 В.

их заряды имеют следующие значения

Q1 = C1·U1 = 50·10–6·144 = 72·10–4 Кл;

Q2 = C2·U2 = 150·10–6·144 = 216·10–4 Кл.

Энергии электростатического поля конденсаторов равны

W 1 = Q 1 ⋅ U 1 2 = 72⋅ 10 −4 ⋅144 2 ≈0,52  Дж; W 2 = Q 2 ⋅ U 2 2 = 216⋅ 10 −4 ⋅144 2 ≈1,56  Дж; W 3 = Q 3 ⋅ U 3 2 = 288⋅ 10 −4 ⋅96 2 ≈1,38  Дж.

Задача 2. Плоский слоистый конденсатор (рис. 3), поверхность каждой пластины которого S = 12 см2, имеет диэлектрик, состоящий из слюды (εr1 = 6) толщиною d1 = 0,3 мм и стекла (εr2 = 7) толщиною d2 =0,4 мм.

Пробивные напряженности слюды и стекла соответственно равны E1 = 77 кВ/мм, E2 = 36 кВ/мм.

Емкость плоского двухслойного конденсатора

Рис. 3

Вычислить емкость конденсатора и предельное напряжение, на которое его можно включать, принимая для более слабого слоя двойной запас электрической прочности.

Решение

Эквивалентная емкость слоистого конденсатора определится как емкость двух последовательно соединенных конденсаторов

C= C 1 ⋅ C 2 C 1 + C 2 = ε a1 ⋅S d 1 ⋅ ε a2 ⋅S d 2 ε a1 ⋅S d 1 + ε a2 ⋅S d 2 = ε a1 ⋅ ε a2 ⋅S ε a1 ⋅ d 2 + ε a2 ⋅ d 1 .

Подставляя сюда числовые значения, предварительно заменив εa1 = εr1·ε0 и εa2 = εr2·ε0, получим

C= ε 0 ⋅ ε r1 ⋅ ε r2 ⋅S ε r1 ⋅ d 2 + ε r2 ⋅ d 1 =8,85⋅ 10 −12 ⋅ 6⋅7⋅12⋅ 10 −4 6⋅0,4⋅ 10 −3 +7⋅0,3⋅ 10 −3 =99⋅ 10 −12   Ф.

Обозначим общее напряжение, подключаемое к слоистому конденсатору, через Uпр, при этом заряд конденсатора будет равен

Q = C·Uпр.

Напряжения на каждом слое будут равны

U 1 = Q C 1 = C⋅ U пр ε a1 ⋅S d 1 = ε a2 ⋅ d 1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр ; U 2 = Q C 2 = C⋅ U пр ε a2 ⋅S d 2 = ε a1 ⋅ d 2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр .

Напряженности электростатического поля в каждом слое

E 1 = U 1 d 1 = ε a2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ′ пр ; E 2 = U 2 d 2 = ε a1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ″ пр .

Здесь U’np — общее напряжение, подключаемое к конденсатору, при котором пробивается первый слой, a np — общее напряжение, при котором происходит пробой второго слоя.

Из последнего выражения находим

U ′ пр = E 1 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a2 =49,5  кВ; U ″ пр = E 2 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a1 =27,0  кВ.

Таким образом, более слабым слоем является второй; согласно условию, принимая для него двойной запас прочности, находим, что конденсатор может быть включен на напряжение, равное

27,0 кВ / 2 = 13,5 кВ.

Задача 3. Обкладки плоского конденсатора с воздушным диэлектриком расположены на расстоянии d1 = 1 см друг от друга. Площадь обкладок S = 50 см2. Конденсатор заряжается до напряжения U = 120 В и затем отсоединяется от источника электрической энергии.

Определить, какую надо совершить работу, если увеличить расстояние между пластинами до d2 = 10 см. Краевым эффектом можно пренебречь; другими словами, емкость конденсатора можно считать обратно пропорциональной расстоянию между обкладками.

Решение

Энергия заряженного плоского конденсатора равна

W 1 = C 1 ⋅ U 2 2 = ε 0 ⋅S d 1 ⋅ U 2 2 ,

где С1 — емкость до раздвижения обкладок.

Так как конденсатор отключен от источника, то при изменении расстояния между обкладками его заряд остается постоянным. Поэтому из~ соотношения

Q = C2·U2,

где C2 — емкость конденсатора после раздвижения обкладок, следует, что, так как C2 = ε0·S/d2 стало меньше в 10 раз (d2 увеличилось в 10 раз), то напряжение на конденсаторе U2 увеличилось в 10 раз, т. е. U2 = 10U.

Таким образом, энергия конденсатора после отключения и раздвижения обкладок на расстояние d2 будет больше первоначальной

W 2 = ε 0 ⋅S d 2 ⋅ U 2 2 2 = ε 0 ⋅S 10 d 1 ⋅ ( 10U ) 2 2 =10⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =10⋅ W 1 .

Увеличение энергии произошло за счет работы внешних сил, затраченной на раздвижение обкладок.

Таким образом, надо совершить работу, равную

W 2 − W 1 =9⋅ W 1 =9⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =2,86⋅ 10 −7   Дж.

Задача 4. Для схемы (рис. 4) определить напряжение каждого конденсатора в двух случаях: при замкнутом и разомкнутом ключе К.

Даны: C1 = 30 мкФ; C2 = 20 мкФ; r1 = 100 Ом. r2 = 400 Ом. r3 = 600 Ом, U = 20 В.

Решение

Ключ К разомкнут. Конденсаторы соединены между собой последовательно; их ветвь находится под полным напряжением источника; напряжение распределяется между ними обратно пропорционально емкостям

U 1 = C 2 C 1 + C 2 ⋅U= 20⋅ 10 −6 30⋅ 10 −6 +20⋅ 10 −6 ⋅20=8  В; U 2 =U− U 1 =20−8=12  В.

Определить напряжение каждого конденсатора

Рис. 4

Ключ К замкнут. Через сопротивления r1 и r2 протекает ток

I= U r 1 + r 2 = 20 500 =0,04  А,

а через сопротивление r3 ток не протекает.

Поэтому точки c и d равнопотенциальны (φc = φd). Следовательно, напряжение между точками a и c (Uac = φa — φc) равно напряжению между точками a и d (Uad = φa — φd).

Таким образом, напряжение на первом конденсаторе равно падению напряжения на сопротивлении r1

UC1 = I·r1 = 0,04·100 = 4 В.

Аналогично напряжение на втором конденсаторе равно

UC2 = I·r2 = 0,04·400 = 16 В.

Задача 5. Определить напряжение на зажимах конденсаторов и их энергию после перевода рубильника из положения 1 в положение 2, показанное пунктиром на рис. 5, если U = 25 В; C1 = 5 мкФ; C2 = 120 мкФ. Конденсатор C2 предварительно не был заряжен.

Определить напряжение на зажимах конденсаторов и их энергию

Рис. 5

Решение

Когда рубильник находится в положении 1, то конденсатор C1 заряжен до напряжения U и его заряд равен

Q = C1·U = 5·10–6·25 = 125·10–6 Кл.

После перевода рубильника в положение 2, заряд Q распределяется между конденсаторами C1 и C2 (рис. 5). Обозначим эти заряды через Q’1 и Q’2.

На основании закона сохранения электричества имеем

Q = Q’1 + Q’2 = 125 10–6 Кл. (1)

По второму закону Кирхгофа имеем

0= U C1 − U C2 = Q ′ 1 C 1 − Q ′ 2 C 2 ,

или

Q ′ 1 5⋅ 10 −6 − Q ′ 2 120⋅ 10 −6 =0.   (2)

Решая уравнения (1) и (2), найдем

Q’1 = 5 10–6 Кл; Q’2 = 120 10–6 Кл.

Доставка свежих и аппетитных японских суши в Новороссийске — ям ям..

Напряжение на зажимах конденсаторов станет равным

U C1 = Q ′ 1 C 1 = U C2 = Q ′ 2 C 2 = 5⋅ 10 −6 5⋅ 10 −6 =1  В.

Энергия обоих конденсаторов будет равна

W= C 1 ⋅ U C1 2 2 + C 2 ⋅ U C2 2 2 =62,5⋅ 10 −6   Дж.

Подсчитаем энергию, которая была запасена в конденсаторе С1, при его подключении к источнику электрической энергии

W нач = C 1 ⋅U 2 = 5⋅ 10 −6 ⋅ 25 2 2 =1562,5⋅ 10 −6   Дж.

Как видим, имеет место большая разница в запасе энергии до и после переключения. Энергия, равная 1562,5·10–6 — 62,5·10–6 = 1500·10–6 Дж, израсходовалась на искру при переключении рубильника из положения 1 в положение 2 и на нагревание соединительных проводов при перетекании зарядов из конденсатора C1 в конденсатор C2 после перевода рубильника в положение 2.

Задача 6. Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2.

Емкости конденсаторов равны: C1 = 10 мкФ; C2 = 30 мкФ; C3 = 60 мкФ; напряжение U = 30 В, а э. д. с. E = 50 В.

Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2

Рис. 6

Решение

Рубильник находится в положении 1. Заряд конденсатора C1 равен

Q1 = C1·U = 10·10–6·30 = 0,3·10–3 Кл.

В указанном положении рубильника конденсаторы C2 и C3 соединены последовательно друг с другом, поэтому их заряды равны: Q2 = Q3. Знаки зарядов показаны на рис. 6 отметками без кружков. По второму закону Кирхгофа имеем

E= U C2 + U C3 = Q 2 C 2 + Q 3 C 3 = Q 2 ⋅ C 2 + C 3 C 2 ⋅ C 3 ,

откуда

Q 2 = Q 3 = C 2 ⋅ C 3 C 2 + C 3 ⋅E= 30⋅ 10 −6 ⋅60⋅ 10 −6 90⋅ 10 −6 ⋅50=1⋅ 10 −3   Кл.

При переводе рубильника в положение 2 произойдет перераспределение зарядов. Произвольно задаемся новой полярностью зарядов на электродах (показана в кружках; предположена совпадающей с ранее имевшей место полярностью); соответствующие положительные направления напряжений на конденсаторах обозначены стрелками. Обозначим эти заряды через Q’1, Q’2 и Q’3. Для их определения составим уравнения на основании закона сохранения электрических зарядов и второго закона Кирхгофа.

Для узла a

Q’1 + Q’2 — Q’3 = Q1 + Q2 — Q3. (1)

Для контура 2ebda2

0= U ′ C1 − U ′ C2 = Q ′ 1 C 1 − Q ′ 2 C 1 .

Для контура bcadb

E= U ′ C2 − U ′ C3 = Q ′ 2 C 2 + Q ′ 3 C 3 .

Уравнения (1) — (3), после подстановки числовых значений величин, примут вид

Q’1 + Q’2 — Q’3 = 0,3·10–3; (4)

3Q’1 — Q’2 = 0; (5)

2Q’2 + Q’3 = 3·10–3. (6)

Решая совместно уравнения (4) — (6), получим

Q’1 = 0,33·10–3 Кл; Q’2 = 0,99·10–3 Кл; Q’3 = 1,02·10–3 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность обкладок соответствует предварительно выбранной.

Напряжения на конденсаторах после перевода рубильника будут равны

U C1 = Q ′ 1 C 1 = 0,33⋅ 10 −3 10⋅ 10 6 =33  В; U C2 = Q ′ 2 C 2 = 0,99⋅ 10 −3 30⋅ 10 6 =33  В; U C3 = Q ′ 3 C 3 = 1,02⋅ 10 −3 60⋅ 10 6 =17  В.

Задача 7. Определить заряд и напряжение конденсаторов, соединенных по схеме рис. 7, если C1 = 5 мкФ; C2 = 4 мкФ; C3 = 3 мкФ; э. д. с. источников E1 = 20 В и E2 = 5 В.

Определить заряд и напряжение конденсаторов, соединенных по схеме

Рис. 7

Решение

Составим систему уравнений на основании закона сохранения электричества и второго закона Кирхгофа, предварительно задавшись полярностью обкладок конденсаторов, показанной в кружках

− Q 1 + Q 2 − Q 3 =0; E 1 = U C1 − U C3 = Q 1 C 1 − Q 3 C 3 ; E 2 =− U C2 − U C3 =− Q 2 C 2 − Q 3 C 3 .

Подставляя сюда числовые значения и решая эту систему уравнений, получим, что Q1 = 50 мкКл; Q2 = 20 мкКл; Q3 = –30 мкКл.

Таким образом, истинная полярность зарядов на обкладках конденсаторов C1 и C2 соответствует выбранной, а у конденсатора C3 — противоположна выбранной.

Задача 8. Пять конденсаторов соединены по схеме рис. 3-22, а, емкости которых C1 = 2 мкФ; C2 = 3 мкФ; C3 = 5 мкФ; C4 = 1 мкФ; C5 = 2,4 мкФ.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов

Рис. 8

Индивидуалка Дана (34 лет) т.8 926 650-82-63 Москва, метро Сокол.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов, если приложенное напряжение U = 10 В.

Решение

1-й способ. Звезду емкостей C1, C2 и C3 (рис. 8, а) преобразуем в эквивалентный треугольник емкостей (рис. 8, б)

C 12 = C 1 ⋅ C 2 C 1 + C 2 + C 3 =0,6  мкФ; C 13 = C 1 ⋅ C 3 C 1 + C 2 + C 3 =1,0  мкФ; C 23 = C 2 ⋅ C 3 C 1 + C 2 + C 3 =1,5  мкФ.

Емкости C12 и C5 оказываются соединенными параллельно друг другу и подключенными к точкам 1 и 2; их эквивалентная емкость

C6 = C12 + C5 = 3 мкФ.

Аналогично

C7 = C13 + C4 = 2 мкФ.

Схема принимает вид изображенный на рис. 8, в. Емкость схемы между точками а и b равняется

C ab = C 23 + C 6 ⋅ C 7 C 6 + C 7 =2,7  мкФ.

Вычислим напряжение на каждом из конденсаторов.

На конденсаторе C7 напряжение равно

U 7 = C 6 C 6 + C 7 ⋅U=6  В.

Таково же напряжение и на конденсаторах C4 и C13

U4 = U31 = 6 В.

Напряжение на конденсаторе C6 равно

U6 = U — U7 = 4 В;

U5 = U12 = 4 В.

Вычислим заряды

Q4 = C4·U4 = 6·10–6 Кл;

Q5 = C5·U5 = 9,6·10–6 Кл;

Q12 = C12·U12 = 6·10–6 Кл;

Q13 = C13·U31 = 2,4·10–6 Кл.

По закону сохранения электричества для узла 1 схем 8, а и б имеем

Q4 — Q1 + Q5 = –Q4 — Q13 + Q12 + Q5,

отсюда

Q1 = Q13 — Q12 = 3,6·10–6 Кл,

а напряжение на конденсаторе, емкостью C1 составляет

U 1 = Q 1 C 1 =1,8  В.

Далее находим напряжения и заряды на остальных конденсаторах

U31 = U1 + U3,

отсюда

U3 = U31 — U1 = 4,2 В;

Q3 = C3·U3 = 21·10–6 Кл,

также

U12 = U2 — U1 = 4,2 В,

откуда

U2 = U12 + U1 = 5,8 В;

Q2 = C2·U2 = 17,4·10–6 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность зарядов на обкладках совпадает с предварительно выбранной.

2-й способ. Выбрав положительные направления напряжений на конденсаторах (а тем самым и знаки зарядов на каждом из них) по формуле закона сохранения электричества (закона сохранения заряда) составляем два уравнения и по второму закону Кирхгофа три уравнения (рис. 8, а)

для узла 1

Q5 — Q1 — Q4 = 0; (1)

для узла О

Q1 + Q2 — Q3 = 0; (2)

для контура О13О

Q 1 C 1 − Q 4 C 4 + Q 3 C 3 =0;  (3)

для контура О12О

Q 1 C 1 + Q 5 C 5 − Q 2 C 2 =0;  (4)

для контура a3О2b

Q 3 C 3 + Q 2 C 2 =U.  (5)

Система уравнений (1) — (5) — содержит пять неизвестных: Q1, Q2, Q3, Q4 и Q5. Решив уравнения, найдем искомые заряды, а затем и напряжения на конденсаторах. При втором способе решения эквивалентную емкость схемы Сab можно найти из отношения

C ab = Q U ,

где Q = Q3 + Q4, или Q = Q2 + Q5.

Задача 9. В схеме рис. 9 найти распределение зарядов, если E1 = 20 В; E2 = 7 В; C1 = 7 мкФ; C2 = 1 мкФ; C3 = 3 мкФ; C4 = 4 мкФ; C5 = C6 = 5 мкФ.

В схеме найти распределение зарядов

Рис. 9

Решение

При выбранном распределении зарядов (в кружках), как показано на схеме, система уравнений будет иметь вид:

для узла а

Q1 + Q2 + Q3 = 0;

для узла b

Q3 — Q4 — Q5 = 0;

для узла c

Q1 + Q4 + Q6 = 0;

для контура afcba

E 1 = U C1 + U C4 − U C3 = Q 1 C 1 + Q 4 C 4 − Q 3 C 3 ;

ля контура gdbag

E 2 = U C5 − U C3 + U C2 = Q 5 C 5 − Q 3 C 3 + Q 2 C 2 ;

для контура cbdc

0= U C4 − U C5 − U C6 = Q 4 C 4 − Q 5 C 5 − Q 6 C 6 .

Подставляя сюда числовые значения и решая полученную систему шести уравнений, найдем искомые заряды

Q1 = 35 мкКл; Q2 = –5 мкКл; Q3 = –30 мкКл;

Q4 = 20 мкКл; Q5 = 10 мкКл; Q6 = 15 мкКл.

Таким образом, истинные знаки зарядов Q1, Q4, Q5 и Q6 соответствуют выбранным, а знаки Q2 и Q3 противоположны выбранным.

Фактическое расположение знаков зарядов на конденсаторах дано не в кружках.

Задача 10. Определить заряд и энергию каждого конденсатора в схеме (рис. 10). Данные схемы: C1 = 6 мкФ; C2 = 2 мкФ; C3 = 3 мкФ; r1 = 500 Ом; r2 = 400 Ом; U = 45 В.

Определить заряд и энергию каждого конденсатора в схеме

Рис. 10

Решение

Через сопротивления протекает ток

I= U r 1 + r 2 =0,05  А.

Задавшись полярностью зарядов на обкладках конденсаторов, составим систему уравнений:

− Q 1 + Q 2 + Q 3 =0; U= U C1 + U C2 = Q 1 C 1 + Q 2 C 2 ; I⋅ r 1 = U C1 + U C3 = Q 1 C 1 + Q 3 C 3 ,

или

Q 1 = Q 2 + Q 3 ; 45= Q 1 6⋅ 10 −6 + Q 2 2⋅ 10 −6 ; 25= Q 1 6⋅ 10 −6 + Q 3 3⋅ 10 −6 .

Решив эту систему уравнений, найдем, что

Q1 = 90 мкКл; Q2 = 60 мкКл; Q3 = 30 мкКл.


последовательное соединение конденсаторов,
параллельное соединение конденсаторов,
Расчет цепи конденсаторов,
Конденсатор в цепи постоянного тока,
Цепи с конденсаторами

Комментарии


Загрузить PDF


Загрузить PDF

Элементы электрической цепи можно соединить двумя способами. Последовательное соединение подразумевает подключение элементов друг к другу, а при параллельном соединении элементы являются частью параллельных ветвей. Способ соединения резисторов определяет метод вычисления общего сопротивления цепи.

  1. Изображение с названием Calculate Total Resistance in Circuits Step 1

    1

    Определите, является ли цепь последовательной. Последовательное соединение представляет собой единую цепь без каких-либо разветвлений. Резисторы или другие элементы расположены друг за другом.

  2. Изображение с названием Calculate Total Resistance in Circuits Step 2

    2

    Сложите сопротивления отдельных элементов. Сопротивление последовательной цепи равно сумме сопротивлений всех элементов, входящих в эту цепь.[1]
    Сила тока в любых частях последовательной цепи одна и та же, поэтому сопротивления просто складываются.

    • Например, последовательная цепь состоит из трех резисторов с сопротивлениями 2 Ом, 5 Ом и 7 Ом. Общее сопротивление цепи: 2 + 5 + 7 = 14 Ом.
  3. Изображение с названием Calculate Total Resistance in Circuits Step 3

    3

    Вычислите сопротивление по известной силе тока и напряжению. Если сопротивление каждого элемента цепи не известно, воспользуйтесь законом Ома: V = IR, где V – напряжение, I – сила тока, R – сопротивление. Сначала найдите силу тока и общее напряжение.

    • Сила тока в любых частях последовательной цепи одна и та же.[2]
      Поэтому можно использовать известное значение силы тока на любом участке последовательной цепи.
    • Общее напряжение равно напряжению источника тока. Оно не равно напряжению на каком-либо элементе цепи.[3]
  4. Изображение с названием Calculate Total Resistance in Circuits Step 4

    4

    Подставьте известные значения в формулу, описывающую закон Ома. Перепишите формулу V = IR так, чтобы обособить сопротивление: R = V/I. Подставьте известные значения в эту формулу, чтобы вычислить общее сопротивление.

    • Например, напряжение источника тока равно 12 В, а сила тока равна 8 А. Общее сопротивление последовательной цепи: RO = 12 В / 8 А = 1,5 Ом.

    Реклама

  1. Изображение с названием Calculate Total Resistance in Circuits Step 5

    1

    Определите, является ли цепь параллельной. Параллельная цепь на некотором участке разветвляется на несколько ветвей, которые затем снова соединяются. Ток течет по каждой ветви цепи.

    • Если цепь включает элементы, расположенные до или после разветвления, или если на одной ветви два и более элементов, перейдите к третьему разделу этой статьи (такая цепь является комбинированной).
  2. Изображение с названием Calculate Total Resistance in Circuits Step 6

    2

    Вычислите общее сопротивление на основе сопротивления каждой ветви. Каждый резистор уменьшает силу тока, проходящего через одну ветвь, поэтому она оказывает небольшое влияние на общее сопротивление цепи. Формула для вычисления общего сопротивления: {frac  {1}{R_{O}}}={frac  {1}{R_{1}}}+{frac  {1}{R_{2}}}+{frac  {1}{R_{3}}}+...{frac  {1}{R_{n}}}, где R1 – сопротивление первой ветви, R2 – сопротивление второй ветви и так далее до последней ветви Rn.

  3. Изображение с названием Calculate Total Resistance in Circuits Step 7

    3

    Вычислите сопротивление по известной силе тока и напряжению. Сделайте это, если сопротивление каждого элемента цепи не известно.

    • В параллельной цепи напряжение на одной ветви равно общему напряжению в цепи.[4]
      Поэтому достаточно знать значение напряжение на любой ветви цепи. Общее напряжение также равно напряжению источника тока.
    • В параллельной цепи сила тока на каждой ветви разная. Поэтому необходимо знать значение общей силы тока, чтобы найти общее сопротивление.
  4. Изображение с названием Calculate Total Resistance in Circuits Step 8

    4

    Подставьте известные значения в формулу закона Ома. Если известны значения общей силы тока и напряжения в цепи, общее сопротивление вычисляется по закону Ома: R = V/I.

    • Например, напряжение в параллельной цепи равно 9 В, а общая сила тока равна 3 А. Общее сопротивление: RO = 9 В / 3 А = 3 Ом.
  5. Изображение с названием Calculate Total Resistance in Circuits Step 9

    5

    Поищите ветви с нулевым сопротивлением. Если у ветви параллельной цепи вообще нет сопротивления, то весь ток будет течь через такую ветвь. В этом случае общее сопротивление цепи равно 0 Ом.

    • В реальной жизни это означает, что резистор неисправен или шунтирован (замкнут); в этом случае большая сила тока может повредить другие элементы цепи.[5]

    Реклама

  1. Изображение с названием Calculate Total Resistance in Circuits Step 10

    1

    Разбейте комбинированную цепь на последовательную и параллельную. Комбинированная цепь включает элементы, которые соединены как последовательно, так и параллельно. Посмотрите на схему цепи и подумайте, как разбить ее на участки с последовательным и параллельным соединением элементов. Обведите каждый участок, чтобы упростить задачу по вычислению общего сопротивления.

    • Например, цепь включает резистор, сопротивление которого равно 1 Ом, и резистор, сопротивление которого равно 1,5 Ом. За вторым резистором схема разветвляется на две параллельные ветви – одна ветвь включает резистор с сопротивлением 5 Ом, а вторая – с сопротивлением 3 Ом. Обведите две параллельные ветви, чтобы выделить их на схеме цепи.
  2. Изображение с названием Calculate Total Resistance in Circuits Step 11

    2

    Найдите сопротивление параллельной цепи. Для этого воспользуйтесь формулой для вычисления общего сопротивления параллельной цепи: {frac  {1}{R_{O}}}={frac  {1}{R_{1}}}+{frac  {1}{R_{2}}}+{frac  {1}{R_{3}}}+...{frac  {1}{R_{n}}}.

  3. Изображение с названием Calculate Total Resistance in Circuits Step 12

    3

    Упростите цепь. После того как вы нашли общее сопротивление параллельной цепи, ее можно заменить одним элементом, сопротивление которого равно вычисленному значению.

    • В нашем примере избавьтесь от двух параллельных ветвей и замените их одним резистором с сопротивлением 1,875 Ом.
  4. Изображение с названием Calculate Total Resistance in Circuits Step 13

    4

    Сложите сопротивления резисторов, соединенных последовательно. Заменив параллельную цепь одним элементом, вы получили последовательную цепь. Общее сопротивление последовательной цепи равно сумме сопротивлений всех элементов, которые включены в эту цепь.

    • После упрощения цепи она состоит из трех резисторов со следующими сопротивлениями: 1 Ом, 1,5 Ом и 1,875 Ом. Все три резистора соединены последовательно: R_{O}=1+1,5+1,875=4,375Ом.
  5. Изображение с названием Calculate Total Resistance in Circuits Step 14

    5

    Воспользуйтесь законом Ома, чтобы найти неизвестные величины. Если сопротивление каждого элемента цепи не известно, попытайтесь вычислить его. Вычислить сопротивление по известной силе тока и напряжению можно по закону Ома: R = V/I.

    Реклама

  1. Изображение с названием Calculate Total Resistance in Circuits Step 15

    1

    Запомните формулы, включающие мощность. Электрическая мощность – это величина, которая характеризует скорость преобразования электроэнергии и скорость ее передачи (например, к лампочке).[6]
    Общая мощность цепи равна произведению общего напряжения на общую силу тока. Формула: P = VI.[7]

    • Запомните: чтобы вычислить общее сопротивления, нужно знать общую мощность. Значение мощности на одном элементе цепи для этих целей не подходит.
  2. Изображение с названием Calculate Total Resistance in Circuits Step 16

    2

    Вычислите сопротивление по известным значениям мощности и силы тока. В этом случае можно объединить две формулы, чтобы найти сопротивление.

    • P = VI (мощность = напряжение х сила тока)
    • Закон Ома: V = IR.
    • В первую формулу вместо V подставьте произведение IR: P = (IR)I = I2R.
    • Обособьте переменную R: R = P / I2.
    • Сила тока в любых частях последовательной цепи одна и та же. Это не так в параллельной цепи.
  3. Изображение с названием Calculate Total Resistance in Circuits Step 17

    3

    Вычислите сопротивление по известным значениям мощности и напряжения. В этом случае можно объединить две формулы, чтобы найти сопротивление. Учитывайте общее напряжение в цепи, которое равно напряжению источника тока.

    • P = VI
    • Перепишите закон Ома так: I = V/R
    • В первой формуле замените I на V/R: P = V(V/R) = V2/R.
    • Обособьте переменную R: R = V2/P.
    • В параллельной цепи напряжение на одной ветви равно общему напряжению в цепи. Это не так в последовательной цепи, где общее напряжение не равно напряжению на одном элементе цепи.

    Реклама

Советы

  • Мощность измеряется в ваттах (Вт).
  • Напряжение измеряется в вольтах (В).
  • Сила тока измеряется в амперах (А) или в миллиамперах (мА). 1 мА = 1*10^{{-3}}A = 0,001 А.
  • В приведенных формулах переменная Р – это мгновенная мощность, то есть мощность в определенный момент времени. Если цепь подключена к источнику переменного тока, мощность постоянно меняется. Поэтому для цепей с источником переменного тока специалисты вычисляют среднюю мощность; для этого используется формула: PСР = VIcosθ, где cosθ – это коэффициент мощности цепи.[8]

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 408 213 раз.

Была ли эта статья полезной?

Понравилась статья? Поделить с друзьями:
  • Как же хочется найти опору
  • Как составить библиографическое описание на журнал
  • Как исправить ошибку загрузки на андроид
  • Как найти медианное число
  • Как найти клона человека