Как найти каноническое уравнение прямой онлайн

Этот онлайн калькулятор предназначен для проверки решений задач, которые можно сформулировать следующим образом:

Записать канонические (или параметрические) уравнения прямой, заданной уравнениями двух плоскостей
left{ A_1x+B_1y+C_1z+D_1=0 atop A_2x+B_2y+C_2z+D_2=0.

Вы задаете коэффициенты уравнений плоскостей, А₁, B₁, C₁, D₁ и A₂, B₂, C₂, D₂, калькулятор выдает уравнения прямой в параметрической и канонической формах, а также найденную точку, принадлежащую прямой и направляющий вектор прямой.

Обратите внимание, в том случае если уравнения плоскостей заданы в виде
left{ A_1x+B_1y+C_1z=D_1 atop A_2x+B_2y+C_2z=D_2
при вводе коэффициентов D₁ и D₂ надо поменять знак.

Немного теории, как обычно, можно почерпнуть под калькулятором

PLANETCALC, Нахождение уравнений прямой, заданной пересечением двух плоскостей

Нахождение уравнений прямой, заданной пересечением двух плоскостей

Общее уравнение первой плоскости

Общее уравнение второй плоскости

Точка, принадлежащая прямой

Направляющий вектор прямой

Канонические уравнения прямой

Параметрические уравнения прямой

Точность вычисления

Знаков после запятой: 2

Канонические уравнения прямой, заданной пересечением двух плоскостей

Если плоскости пересекаются, то система уравнений, приведенная в начале статьи, задает прямую в пространстве. Для записи уравнений этой прямой в каноническом виде, надо найти какую либо точку, принадлежащую этой прямой, и направляющий вектор.

Точка, принадлежащая прямой, также принадлежит и каждой из плоскостей, то есть является одним из решений системы уравнений выше. Для нахождения точки, принадлежащей прямой, переходят от системы из двух уравнений с тремя неизвестными к системе из двух уравнений с двумя неизвестными, произвольно принимая какую-либо координату точки за ноль. Как правило, при решении задач, выбирают ту координату, при занулении которой решение системы из двух уравнений с двумя неизвестными дает в ответе целые числа. Калькулятор учитывает этот факт и также пытается найти целочисленное решение, зануляя все координаты по очереди.

Направляющий вектор прямой ортогонален нормальным векторам плоскостей, которые задаются коэффициентами A, B и С в общем уравнении плоскости Ax+By+Cz+D=0. Таким образом его можно найти как результат векторного произведения нормальных векторов плоскостей hat{p}=hat{n_1}timeshat{n_2}.

Точка (x_0;y_0;z_0) и вектор (p_1;p_2;p_3) дают нам канонические уравнения прямой:

frac{x-x_0}{p_1}=frac{y-y_0}{p_2}=frac{z-z_0}{p_3}

Существуют частные случаи, когда одна или две координаты направляющего вектора равны нулю.

В случае, если нулю равны две координаты, направляющий вектор коллинеарен одной из координатных осей. Соответственно, точки прямой могут принимать любое значение по этой оси, при этом значения по двум другим осям будут постоянны. Например, если двумя нулевыми координатами будут y и z, канонические уравнения прямой будут выглядеть так:
y-y_0=0; z-z_0=0

В случае. если нулю равна одна координата, направляющий вектор лежит в одной из координатных плоскостей (плоскостей, образованных парами координатных осей), значение координаты по третьей оси, ортогональной этой плоскости (как раз той, для которой координата направляющего вектора равна нулю), опять будет постоянным. Например, если нулевой координатой будет x, то канонические уравнения прямой будут выглядеть так:
x-x_0=0; frac{y-y_0}{p_2}=frac{z-z_0}{p_3}

Эти случаи также учитываются калькулятором.

Параметрические уравнения прямой, заданной пересечением двух плоскостей

Зная точку, принадлежащую прямой и ее направляющий вектор, несложно записать и параметрические уравнения прямой.
Для точки (x_0;y_0;z_0), принадлежащей прямой, и направляющего вектора (p_1;p_2;p_3) параметрические уравнения прямой выглядят так:
x=p_1t+x_0\y=p_2t+y_0\z=p_3z+z_0

Онлайн калькулятор. Уравнение прямой проходящей через две точки

Этот онлайн калькулятор позволит вам очень просто найти параметрическое и каноническое уравнение прямой проходящей через две точки.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения прямой и закрепить пройденный материал.

Найти уравнение прямой

Прямая проходящая через две точки

Выберите необходимую вам размерность:

Размерность:

Введите координаты точек.

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.

Прямая — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнения прямой, проходящей через две точки могут быть следующих видов:

  • каноническое уравнение,
  • параметрическое уравнение,
  • общее уравнение прямой,
  • уравнение прямой с угловым коэффициентом,
  • уравнение прямой в полярных координатах и другие.

Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.

Каноническое уравнение прямой на плоскости

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

xa и ya — координаты первой точки A,

xb и yb — координаты второй точки B

Параметрическое уравнение прямой на плоскости

{begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases}}

xa, ya — координаты точки, лежащей на прямой,

{l;m} — координаты направляющего вектора прямой,

t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой в пространстве

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a} = dfrac{z-z_a}{z_b-z_a}}

xa, ya и za — координаты первой точки A,

xb, yb и zb — координаты второй точки B

Параметрическое уравнение прямой в пространстве

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a \ z=n cdot t + z_a end{cases} }

xa, ya и za — координаты точки, лежащей на прямой,

{l;m;n} — координаты направляющего вектора прямой,

t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Пример нахождения уравнения прямой, проходящей через две точки

Найдем уравнения прямой, проходящей через точки A(1,2) и B(3,8).

Каноническое уравнение прямой

Каноническое уравнение прямой, проходящей через две точки имеет вид {dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

Подставим в формулу координаты точек A и B: {dfrac{x-1}{3-1} = dfrac{y-2}{8-2}}

Получаем каноническое уравнение прямой: {dfrac{x-1}{2} = dfrac{y-2}{4}}

Уравнение прямой с угловым коэффициентом

Из канонического уравнения получаем уравнение прямой с угловым коэффициентом: {y=3x-1}

Параметрическое уравнение прямой

Параметрическое уравнение прямой имеет вид:

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases} }

где {x_a, y_b} — координаты точки, лежащей на прямой, {{l;m}} — координаты направляющего вектора прямой, t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении. В качестве координат используем координаты точки {A(x_a, y_b)}.

Найдем координаты направляющего вектора:

overline{AB} = {x_b — x_a; y_b — y_a} = {3-1; 8-2} = {2; 6}

Получаем параметрическое уравнение:

begin{cases} x=2 t + 1 \ y=6 t + 2 end{cases}

Используем калькулятор для проверки полученного ответа.

Составим уравнение прямой проходящей через две точки A(2; 1) и B(0; 2).

Составим каноническое уравнение прямой

Воспользуемся формулой канонического уравнения прямой

Подставим в формулу координаты точек:

В итоге получаем каноническое уравнение прямой:

Составим параметрическое уравнение прямой

Воспользуемся формулой параметрического уравнения прямой:

где:

— направляющий вектор прямой, в качестве которого можно взять вектор ;

— координаты точки лежащей на прямой, в качестве которых можно взять координаты точки A.

В итоге получим параметрическое уравнение прямой:

Уравнение прямой, проходящей через две точки онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через две точки − примеры и решения

Пример 1. Построить прямую, проходящую через точки A(2, 1, 1), B(3, 1, -2).

Решение.

Уравнение прямой, проходящей через точки A(x1, y1, z1) и B(x2, y2, z2) имеет следующий вид:

Подставив координаты точек A и B в уравнение (1), получим:

или

(Здесь 0 в знаменателе не означает деление на 0).

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Ответ.

Каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).

Решение.

Уравнение прямой, проходящей через точки A(x1, y1, z1) и B(x2, y2, z2) имеет следующий вид:

Подставив координаты точек A и B в уравнение (2), получим:

или

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Ответ.

Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Понравилась статья? Поделить с друзьями:
  • Как найти площадь лесного участка
  • Как найти антенну в смартфоне
  • Как найти работу в области физики
  • Матовое покрытие на ногтях пачкается как исправить
  • Как найти панель задач в яндексе