Как найти каноническую систему координат кривой

Установим на
плоскости прямоугольную систему
координат и рассмотрим общее уравнение
второй степени

,
(8.4.1)

в
котором
.

Множество
всех точек плоскости, координаты которых
удовлетворяют уравнению (8.4.1), называется
кривой
(линией)
второго
порядка
.

Для
всякой кривой второго порядка существует
прямоугольная система координат,
называемая канонической, в которой
уравнение этой кривой имеет один из
следующих видов:

1)
(эллипс);

2)

(мнимый эллипс);

3)
(пара мнимых пересекающихся прямых);

4)
(гипербола);

5)
(пара пересекающихся прямых);

6)
(парабола);

7)
(пара
параллельных прямых);

8)

(пара мнимых параллельных прямых);

9)
(пара совпадающих прямых).

Уравнения
1)–9) называются каноническими
уравнениями кривых второго порядка.

Решение
задачи приведения уравнения кривой
второго порядка к каноническому виду
включает нахождение канонического
уравнения кривой и канонической системы
координат. Приведение к каноническому
виду позволяет вычислить параметры
кривой и определить ее расположение
относительно исходной системы координат.
Переход от исходной прямоугольной
системы координат
к каноническойосуществляется путем поворота осей
исходной системы координат вокруг точкиО
на некоторый угол 
и последующего параллельного переноса
системы координат.

Инвариантами
кривой второго порядка

(8.4.1) называются такие функции от
коэффициентов ее уравнения, значения
которых не меняются при переходе от
одной прямоугольной системы координат
к другой такой же системе.

Для кривой второго
порядка (8.4.1) сумма коэффициентов при
квадратах координат

,

определитель,
составленный из коэффициентов при
старших членах

и определитель
третьего порядка

являются
инвариантами.

Значение
инвариантов s,
,

можно использовать для определения
типа и составления канонического
уравнения кривой второго порядка (табл.
8.1).

Таблица
8.1

Классификация кривых второго порядка, основанная на инвариантах

 >
0

Кривая

эллиптического

типа

  0

s
< 0. Эллипс

s
> 0. Мнимый
эллипс

 =
0

Пара
мнимых прямых, пересекающихся в
действительной точке

 <
0

Кривая

гиперболического

типа

  0

Гипербола

 =
0

Пара
пересекающихся прямых

 =
0

Кривая

параболического

типа

  0

Парабола

 =
0

Пара
параллельных прямых

(различных,
мнимых

или
совпадающих)

Рассмотрим подробнее
эллипс, гиперболу и параболу.

Эллипсом
(рис. 8.1) называется геометрическое место
точек плоскости, для которых сумма
расстояний до двух фиксированных точек
этой плоскости, называемыхфокусами
эллипса
,
есть величина постоянная (большая, чем
расстояние между фокусами). При этом не
исключается совпадение фокусов эллипса.
Если фокусы совпадают, то эллипс
представляет собой окружность.

Полусумму
расстояний от точки эллипса до его
фокусов обозначают через а,
половину расстояний между фокусами –
с.
Если прямоугольная система координат
на плоскости выбрана так, что фокусы
эллипса располагаются на оси Оx
симметрично относительно начала
координат, то в этой системе координат
эллипс задается уравнением

,
(8.4.2)

называемым
каноническим
уравнением эллипса
,
где
.

Рис. 8.1

При
указанном выборе прямоугольной системы
координат эллипс симметричен относительно
осей координат и начала координат. Оси
симметрии эллипса называют его осями,
а центр его
симметрии – центром
эллипса
.
Вместе с тем часто осями эллипса называют
числа 2a
и 2b,
а числа a
и b
большой
и малой
полуосью

соответственно.

Точки
пересечения эллипса с его осями называются
вершинами
эллипса
.
Вершины эллипса имеют координаты (а,
0),
(–а,
0), (0, b),
(0, –b).

Эксцентриситетом
эллипса

называется число

. (8.4.3)

Поскольку
0 
c
< a,
эксцентриситет эллипса 0 

< 1, причем у окружности 
= 0. Перепишем равенство (8.4.3) в виде

.

Отсюда
видно, что эксцентриситет характеризует
форму эллипса: чем ближе 
к нулю, тем больше эллипс похож на
окружность; при увеличении 
эллипс становится более вытянутым.

Пусть
– произвольная точка эллипса,
и– расстояния от точкиМ
до фокусов F1
и F2
соответственно. Числа r1
и r2
называются фокальными
радиусами точки

М
эллипса
и вычисляются по формулам

.

Директрисами
отличного от окружности эллипса
с каноническим уравнением (8.4.2) называются
две прямые

.

Директрисы эллипса
расположены вне эллипса (рис. 8.1).

Отношение
фокального радиуса
точки
M
эллипса к расстоянию
от этой точки до отвечающей фокусудиректрисы равно эксцентриситету

этого эллипса (фокус и директриса
считаются соответствующими, если они
расположены по одну сторону от центра
эллипса).

Гиперболой
(рис. 8.2) называется геометрическое место
точек плоскости, для которых модуль
разности расстояний до двух фиксированных
точек
иэтой плоскости, называемыхфокусами
гиперболы
,
есть величина постоянная (не равная
нулю и меньшая, чем расстояние между
фокусами).

Пусть
расстояние между фокусами равно 2с,
а указанный модуль разности расстояний
равен 2а.
Выберем прямоугольную систему координат
так же, как и для эллипса. В этой системе
координат гипербола задается уравнением

,
(8.4.4)

называемым
каноническим
уравнением гиперболы
,
где
.

Рис. 8.2

При данном выборе
прямоугольной системы координат оси
координат являются осями симметрии
гиперболы, а начало координат – ее
центром симметрии. Оси симметрии
гиперболы называют ее осями,
а центр симметрии – центром
гиперболы
.
Прямоугольник со сторонами 2a
и 2b,
расположенный, как показано на рис. 8.2,
называется основным
прямоугольником гиперболы
.
Числа 2a
и 2b
– оси гиперболы, а числа a
и b
– ее полуоси.
Прямые, являющиеся продолжением
диагоналей основного прямоугольника,
образуют асимптоты
гиперболы

.

Точки пересечения
гиперболы с осью Ox
называются вершинами
гиперболы
.
Вершины гиперболы имеют координаты (а,
0), (–а,
0).

Эксцентриситетом
гиперболы

называется число

. (8.4.5)

Поскольку
с
> a,
эксцентриситет гиперболы 
> 1. Перепишем равенство (8.4.5) в виде

.

Отсюда
видно, что эксцентриситет характеризует
форму основного прямоугольника и,
следовательно, форму самой гиперболы:
чем меньше ,
больше вытягивается основной прямоугольник,
а вслед за ним и сама гипербола вдоль
оси Ox.

Пусть
– произвольная точка гиперболы,и– расстояния от точкиМ
до фокусов F1
и F2
соответственно. Числа r1
и r2
называются фокальными
радиусами точки

М
гиперболы
и вычисляются по формулам

Директрисами
гиперболы
с каноническим уравнением (8.4.4) называются
две прямые

.

Директрисы
гиперболы пересекают основной
прямоугольник и проходят между центром
и соответствующей вершиной гиперболы
(рис. 8.2).

Отношение
фокального радиусаточки
M
гиперболы к расстоянию
от этой точки до отвечающей фокусудиректрисы равно эксцентриситету

этой гиперболы (фокус и директриса
считаются соответствующими, если они
расположены по одну сторону от центра
гиперболы).

Параболой
(рис. 8.3) называется геометрическое место
точек плоскости, для которых расстояние
до некоторой фиксированной точки F
(фокуса
параболы
)
этой плоскости равно расстоянию до
некоторой фиксированной прямой
(директрисы
параболы
),
также расположенной в рассматриваемой
плоскости.

Выберем
начало О
прямоугольной системы координат в
середине отрезка [FD],
представляющего собой перпендикуляр,
опущенный из фокуса F
на директрису (предполагается, что фокус
не принадлежит директрисе), а оси Ox
и Oy
направим так, как показано на рис. 8.3.
Пусть длина отрезка [FD]
равна p.
Тогда в выбранной системе координат
иканоническое
уравнение параболы

имеет вид

. (8.4.6)

Величина
p
называется параметром
параболы
.

Парабола имеет
ось симметрии, которая называется осью
параболы
.
Точка пересечения параболы с ее осью
называется вершиной
параболы
.
Если парабола задана своим каноническим
уравнением (8.4.6), то осью параболы является
ось Ox.
Очевидно, вершиной параболы является
начало координат.

Пример 1.
Точка А
= (2, –1) принадлежит эллипсу, точка
F
= (1, 0) является его фокусом, соответствующая
F
директриса задана уравнением
.
Составьте уравнение этого эллипса.

Решение.
Будем считать систему координат
прямоугольной. Тогда расстояние
от точкиА
до директрисы
в соответствии с соотношением (8.1.8), в
котором

,
равно

.

Расстояние
от точкиА
до фокуса F
равно

,

что
позволяет определить эксцентриситет
эллипса

.

Пусть M
= (x,
y)
– произвольная точка эллипса. Тогда
расстояние
от точкиМ
до директрисы
по формуле (8.1.8) равно

а
расстояние
от точкиМ
до фокуса F
равно

.

Поскольку для
любой точки эллипса отношение
есть величина постоянная, равная
эксцентриситету эллипса, отсюда имеем

,

или

,

или

.

Пример
2.
Кривая
задана уравнением

в
прямоугольной системе координат. Найдите
каноническую систему координат и
каноническое уравнение этой кривой.
Определите тип кривой.

Решение.
Квадратичная форма
имеет матрицу

.

Ее
характеристический многочлен

имеет
корни 1
= 4 и 2
= 9. Следовательно, в ортонормированном
базисе из собственных векторов матрицы
А
рассматриваемая квадратичная форма
имеет канонический вид

.

Перейдем к построению
матрицы ортогонального преобразования
переменных, приводящего рассматриваемую
квадратичную форму к указанному
каноническому виду. Для этого будем
строить фундаментальные системы решений
однородных систем уравнений
и ортонормировать их.

При
эта система имеет вид

Ее
общим решением является
.
Здесь одна свободная переменная. Поэтому
фундаментальная система решений состоит
из одного вектора, например, из вектора.
Нормируя его, получим вектор

.

При
также построим вектор

.

Векторы
иуже ортогональны, так как относятся к
различным собственным значениям
симметричной матрицыА.
Они составляют канонический
ортонормированный базис данной
квадратичной формы. Из столбцов их
координат строится искомая ортогональная
матрица (матрица поворота)

.

Проверим правильность
нахождения матрицы Р
по формуле
,
где– матрица квадратичной формы в базисе:

Матрица
Р
найдена верно.

Выполним
преобразование переменных

и
запишем уравнение данной кривой в новой
прямоугольной системе координат со
старым центром и направляющими векторами
:

где
.

Получили каноническое
уравнение эллипса

.

В силу того, что
результирующее преобразование
прямоугольных координат определяется
формулами

,

,

каноническая
система координат
имеет началои направляющие векторы.

Пример 3.
Применяя теорию инвариантов, определите
тип и составьте каноническое уравнение
кривой

.

Решение.
Поскольку

и

,

в
соответствии с табл. 8.1 заключаем, что
это – гипербола.

Так как s
= 0, характеристический многочлен матрицы
квадратичной формы

.

Его
корни
ипозволяют записать каноническое
уравнение кривой

,

где
С
находится из условия

,

или

.

Искомое каноническое
уравнение кривой

.

В задачах этого
параграфа координаты
x,
y
предполагаются прямоугольными.

8.4.1.
Для эллипсов
инайдите:

а) полуоси;

б) фокусы;

в) эксцентриситет;

г) уравнения
директрис.

8.4.2.
Составьте уравнения эллипса, зная его
фокус
,
соответствующую директрисуx
= 8 и эксцентриситет
.
Найдите второй фокус и вторую директрису
эллипса.

8.4.3.
Составьте
уравнение эллипса, фокусы которого
имеют координаты (1, 0) и (0, 1), а большая
ось равна двум.

8.4.4.
Дана гипербола
.
Найдите:

а)
полуоси a
и b;

б) фокусы;

в) эксцентриситет;

г) уравнения
асимптот;

д) уравнения
директрис.

8.4.5.
Дана гипербола
.
Найдите:

а)
полуоси а
и b;

б) фокусы;

в) эксцентриситет;

г) уравнения
асимптот;

д) уравнения
директрис.

8.4.6.
Точка
принадлежит гиперболе, фокус которой,
а соответствующая директриса задана
уравнением.
Составьте уравнение этой гиперболы.

8.4.7.
Составьте уравнение параболы, если даны
ее фокус
и директриса.

8.4.8.
Даны вершина параболы
и уравнение директрисы.
Составьте уравнение этой параболы.

8.4.9.
Составьте уравнение параболы, фокус
которой находится в точке

и
директриса задана уравнением
.

8.4.10.
Составьте уравнение кривой второго
порядка, зная ее эксцентриситет
,
фокуси соответствующую директрису.

8.4.11.
Определите тип кривой второго порядка,
составьте ее каноническое уравнение и
найдите каноническую систему координат:

а)
;

б)
;

в)
;

г)
;

д)
;

е)
;

ж)
;

з)
;

и)
;

к)
;

л)
.

8.4.12.
Докажите, что кривая второго порядка,
заданная уравнением

,

является
эллипсом. Найдите длины полуосей и
эксцентриситет этого эллипса, координаты
центра и фокусов, составьте уравнения
осей и директрис.

8.4.13.
Докажите, что кривая второго порядка,
заданная уравнением

,

является
гиперболой. Найдите длины полуосей и
эксцентриситет этой гиперболы, координаты
центра и фокусов, составьте уравнения
осей, директрис и асимптот.

8.4.14.
Докажите, что кривая второго порядка,
заданная уравнением

,

является
параболой. Найдите параметр этой
параболы, координаты вершин и фокуса,
составьте уравнения оси и директрисы.

8.4.15.
Каждое из следующих уравнений приведите
к каноническому виду. Изобразите на
чертеже соответствующую кривую второго
порядка относительно исходной
прямоугольной системы координат:

а)
;

б)
;

в)
;

г)
;

д)
;

е)
;

ж)
;

з)
;

и)
.

8.4.16.
Применяя теорию инвариантов, определите
тип и составьте каноническое уравнение
кривой:

а)
;

б)
;

в)
;

г)
;

д)
;

е)
.

Соседние файлы в папке сборник

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Канонические уравнения линий второго порядка

Рассмотрим задачу приведения уравнения линии второго порядка к наиболее простому (каноническому) виду.

Напомним, что алгебраической линией второго порядка называется геометрическое место точек плоскости, которое в какой-либо аффинной системе координат Ox_1x_2 может быть задано уравнением вида p(x_1,x_2)=0, где p(x_1,x_2) — многочлен второй степени двух переменных Ox_1x_2. Требуется найти прямоугольную систему координат, в которой уравнение линии приняло бы наиболее простой вид.

Результатом решения поставленной задачи является следующая основная теорема (3.3)


Классификация алгебраических линий второго порядка (теорема 3.3)

Для любой алгебраической линии второго порядка существует прямоугольная система координат Oxy, в которой уравнение этой линии принимает один из следующих девяти канонических видов:

Канонические уравнения линий второго порядка

Теорема 3.3 дает аналитические определения линий второго порядка. Согласно пункту 2 замечаний 3.1, линии (1), (4), (5), (6), (7), (9) называются вещественными (действительными), а линии (2), (3), (8) — мнимыми.


Приведем доказательство теоремы, поскольку оно фактически содержит алгоритм решения поставленной задачи.

Без ограничения общности можно предполагать, что уравнение линии второго порядка задано в прямоугольной системе координат Oxy. В противном случае можно перейти от непрямоугольной системы координат Ox_1x_2 к прямоугольной Oxy, при этом уравнение линии будет иметь тот же вид и ту же степень согласно теореме 3.1 об инвариантности порядка алгебраической линии.

Пусть в прямоугольной системе координат Oxy алгебраическая линия второго порядка задана уравнением

a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0=0,

(3.34)

в котором хотя бы один из старших коэффициентов a_{11},a_{12},a_{22} отличен от нуля, т.е. левая часть (3.34) — многочлен двух переменных x,y второй степени. Коэффициенты при первых степенях переменных x и y, а также при их произведении xcdot y взяты удвоенными просто для удобства дальнейших преобразований.

Для приведения уравнения (3.34) к каноническому виду используются следующие преобразования прямоугольных координат:

– поворот на угол varphi

begin{cases}x=x'cdotcosvarphi-y'cdotsinvarphi,\y=x'cdotsinvarphi+y'cdotcosvarphi;end{cases}

(3.35)

– параллельный перенос

begin{cases}x=x_0+x',\y=y_0+y';end{cases}

(3.36)

– изменение направлений координатных осей (отражения в координатных осях):

оси ординат begin{cases}x=x',\y=-y',end{cases} оси абсцисс begin{cases}x=-x',\y=y',end{cases} обеих осей begin{cases}x=-x',\y=-y';end{cases}quad (3.37)

– переименование координатных осей (отражение в прямой y=x)

begin{cases}x=y',\y=x',end{cases}

(3.38)

где x,y и x',y' — координаты произвольной точки в старой (Oxy) и новой O'x'y' системах координат соответственно.

Кроме преобразования координат обе части уравнения можно умножать на отличное от нуля число.

Рассмотрим сначала частные случаи, когда уравнение (3.34) имеет вид:

begin{aligned} &mathsf{(I)colon}~ lambda_2cdot y^2+a_0,~lambda_2ne0;\[2pt] &mathsf{(II)colon}~ lambda_2cdot y^2+2cdot a_1cdot x,~lambda_2ne0,~a_1ne0;\[2pt] &mathsf{(III)colon}~ lambda_1cdot x^2+lambda_2cdot y^2+a_0,~lambda_1ne0,~lambda_2ne0. end{aligned}

Эти уравнения (также многочлены в левых частях) называются приведенными. Покажем, что приведенные уравнения (I), (II), (III) сводятся к каноническим (1)–(9).

Уравнение (I). Если в уравнении (I) свободный член равен нулю (a_0=0), то, разделив обе части уравнения lambda_2y^2=0 на старший коэффициент (lambda_0ne0), получим y^2=0уравнение двух совпадающих прямых (9), содержащих ось абсцисс y=0. Если же свободный член отличен от нуля a_0ne0, то разделим обе части уравнения (I) на старший коэффициент (lambda_2ne0): y^2+frac{a_0}{lambda_2}=0. Если величина frac{a_0}{lambda_2} отрицательная, то, обозначив ее через -b^2, где b=sqrt{-frac{a_0}{lambda_2}}, получаем y^2-b^2=0уравнение пары параллельных прямых (7): y=b или y=-b. Если же величина frac{a_0}{lambda_2} положительная, то, обозначив ее через b^2, где b=sqrt{frac{a_0}{lambda_2}}, получаем y^2+b^2=0уравнение пары мнимых параллельных прямых (8). Это уравнение не имеет действительных решений, поэтому на координатной плоскости нет точек, отвечающих этому уравнению. Однако в области комплексных чисел уравнение y^2+b^2=0 имеет два сопряженных решения y=pm ib, которые иллюстрируются штриховыми линиями (см. пункт 8 теоремы 3.3).

Уравнение (II). Разделим уравнение на старший коэффициент (lambda_2ne0) и перенесем линейный член в правую часть: y^2=-frac{2a_1}{lambda_2},x. Если величина frac{a_1}{lambda_2} отрицательная, то, обозначая p=-frac{a_1}{lambda_2}&gt;0, получаем y^2=2pxуравнение параболы (6). Если величина frac{a_1}{lambda_2} положительная, то, изменяя направление оси абсцисс, т.е. выполняя второе преобразование в (3.37), получаем уравнение (y')^2=frac{2a_1}{lambda_2},x' или (y')^2=2px', где p=frac{a_1}{lambda_2}&gt;0. Это уравнение параболы в новой системе координат Ox'y'.

Уравнение (III). Возможны два случая: либо старшие коэффициенты одного знака (эллиптический случай), либо противоположных знаков (гиперболический случай).

В эллиптическом случае (lambda_1lambda_2&gt;0) при a_0ne0 переносим свободный член в правую часть и делим обе части на -a_0ne0:

mathsf{(III)}quadLeftrightarrowquad lambda_1cdot x^2+lambda_2cdot y^2=-a_0quad Leftrightarrow quad frac{lambda_1}{-a_0}cdot x^2+frac{lambda_2}{-a_0}cdot y^2=1

Если знак старших коэффициентов lambda_1,lambda_2 противоположен знаку a_0, то, обозначая положительные величины frac{-a_0}{lambda_1} и frac{-a_0}{lambda_2} через a^2 и b^2, получаем frac{x^2}{a^2}+frac{y^2}{b^2}=1уравнение эллипса (1).

Если знак старших коэффициентов lambda_1,lambda_2 совпадает со знаком a_0, то, обозначая положительные величины frac{a_0}{lambda_1} и frac{a_0}{lambda_2} через a^2 и b^2, получаем -frac{x^2}{a^2}-frac{y^2}{b^2}=1~Leftrightarrow~frac{x^2}{a^2}+frac{y^2}{b^2}=-1уравнение мнимого эллипса (2). Это уравнение не имеет действительных решений. Однако оно имеет решения в области комплексных чисел, которые иллюстрируются штриховой линией (см. пункт 2 теоремы 3.3).

Можно считать, что в уравнениях эллипса (действительного или мнимого) коэффициенты удовлетворяют неравенству ageqslant b, в противном случае этого можно добиться, переименовывая координатные оси, т.е. делая преобразование (3.38) системы координат.

Если свободный член уравнения (III) равен нулю (a_0=0), то, обозначая положительные величины frac{1}{|lambda_1|} и frac{1}{|lambda_2|} через a^2 и b^2, получаем frac{x^2}{a^2}+frac{y^2}{b^2}=0уравнение пары мнимых пересекающихся прямых (3). Этому уравнению удовлетворяет только точка с координатами x=0 и y=0, т.е. точка O — начало координат. Однако в области комплексных чисел левую часть уравнения можно разложить на множители frac{x^2}{a^2}+frac{y^2}{b^2}=left(frac{y}{b}+i,frac{x}{a}right)!!left(frac{y}{b}-i,frac{x}{a}right), поэтому уравнение имеет сопряженные решения y=pm i,frac{b}{a},x, которые иллюстрируются штриховыми линиями, пересекающимися в начале координат (см. пункт 3 теоремы 3.3).

В гиперболическом случае (lambda_1,lambda_2&lt;0) при a_0ne0 переносим свободный член в правую часть и делим обе части на -a_0ne0:

mathsf{(III)}quad Leftrightarrow quad lambda_1cdot x^2+lambda_2cdot y^2=-a_0 quad Leftrightarrow quad frac{lambda_1}{-a_0}cdot x^2+frac{lambda_2}{-a_0}cdot y^2=1.

Величины frac{-a_0}{lambda_1} и frac{-a_0}{lambda_2} имеют противоположные знаки. Без ограничения общности считаем, что знак lambda_2 совпадает со знаком свободного члена a_0, т.е. frac{a_0}{lambda_2}&gt;0. В противном случае нужно переименовать координатные оси, т.е. сделать преобразование (3.38) системы координат. Обозначая положительные величины frac{-a_0}{lambda_1} и frac{a_0}{lambda_2} через a^2 и b^2, получаем frac{x^2}{a^2}-frac{y^2}{b^2}=1уравнение гиперболы (4).

Пусть в уравнении (III) свободный член равен нулю (a_0=0). Тогда можно считать, что lambda_1&gt;0, а lambda_2&lt;0 (в противном случае обе части уравнения умножим на –1) . Обозначая положительные величины frac{1}{lambda_1} и -frac{1}{lambda_2} через a^2 и b^2, получаем frac{x^2}{a^2}-frac{y^2}{b^2}=0уравнение пары пересекающихся прямых (5). Уравнения прямых находятся в результате разложения на множители левой части уравнения

frac{x^2}{a^2}-frac{y^2}{b^2}=left(frac{x}{a}-frac{y}{b}right)!!left(frac{x}{a}+frac{y}{b}right)=0, то есть y=pmfrac{b}{a}cdot x

Таким образом, приведенные уравнения (I),(II),(III) алгебраической линии второго порядка сводятся к одному из канонических видов (1)–(9), перечисленных в теореме 3.3.

Осталось показать, что общее уравнение (3.34) можно свести к приведенным при помощи преобразований прямоугольной системы координат.

Упрощение общего уравнения (3.34) производится в два этапа. На первом этапе при помощи поворота системы координат «уничтожается» член с произведением неизвестных. Если произведения неизвестных нет (a_{12}=0), то поворот делать не надо (в этом случае переходим сразу ко второму этапу). На втором этапе при помощи параллельного переноса «уничтожаются» один или оба члена первой степени. В результате получаются приведенные уравнения (I),(II),(III).


Первый этап: преобразование уравнения линии второго порядка при повороте прямоугольной системы координат.

Если коэффициент a_{12}ne0, выполним поворот системы координат на угол varphi. Подставляя выражения (3.35) в уравнение (3.34), получаем:

begin{gathered} a_{11}(x'cosvarphi-y'sinvarphi)^2+2a_{12}(x'cosvarphi-y'sinvarphi)(x'sinvarphi+y'cosvarphi)+a_{22}(x'sinvarphi+y'cosvarphi)^2+\[2pt] +2a_1(x'cosvarphi-y'sinvarphi)+2a_2(x'sinvarphi+y'cosvarphi)+a_0=0. end{gathered}

Приводя подобные члены, приходим к уравнению вида (3.34):

a'_{11}(x')^2+2a'_{12}x'y'+a'_{22}(y')^2+2a'_1x'+2a'_2y'+a'_0=0,

(3.39)

где

begin{aligned}a'_{11}&=a_{11}cos^2varphi+2a_{12}cosvarphisinvarphi+a_{22}sin^2varphi;\[2pt] a'_{12}&=-a_{11}cosvarphisinvarphi+a_{12}(cos^2varphi-sin^2varphi)+a_{22}cosvarphisinvarphi;\[2pt] a'_{22}&=a_{11}sin^2varphi-2a_{12}cosvarphisinvarphi+a_{22}cos^2varphi;\[2pt] a'_1&=a_1cosvarphi+a_2sinvarphi;quad a'_2=-a_1sinvarphi+a_2cosvarphi; quad a'_0=a_0. end{aligned}

Определим угол varphi так, чтобы a'_{12}=0. Преобразуем выражение для a'_{12}, переходя к двойному углу:

a'_{12}= -frac{1}{2},a_{11}sin2varphi+a_{12}cos2varphi+frac{1}{2},a_{22}sin2varphi= frac{a_{22}-a_{11}}{2},sin2varphi+a_{12}cos2varphi.

Угол varphi должен удовлетворять однородному тригонометрическому уравнению frac{a_{22}-a_{11}}{2},sin2varphi+a_{12}cos2varphi=0, которое равносильно уравнению

operatorname{ctg}2varphi=frac{a_{11}-a_{22}}{2a_{12}},

(3.40)

поскольку a_{12}ne 0. Это уравнение имеет бесконечное количество корней

varphi=frac{1}{2}operatorname{arcctg}frac{a_{11}-a_{22}}{2a_{12}}+frac{pi}{2},n, quad ninmathbb{Z}.

Выберем любой из них, например, угол varphi из интервала 0&lt;varphi&lt;frac{pi}{2}. Тогда в уравнении (3.39) исчезнет член 2a'_{12}x'y', поскольку a'_{12}=0.

Обозначив оставшиеся старшие коэффициенты через lambda_1= a'_{11} и lambda_2=a'_{22}, получим уравнение

lambda_1cdot(x')^2+lambda_2cdot(y')^2+2cdot a'_1cdot x'+2cdot a'_2cdot y'+a'_0=0.

(3.41)

Согласно теореме 3.1, уравнение (3.41) является уравнением второй степени (при преобразовании (3.35) порядок линии сохраняется), т.е. хотя бы один из старших коэффициентов lambda_1 или lambda_2 отличен от нуля. Далее будем считать, что именно коэффициент при (y')^2 не равен нулю (lambda_2ne0). В противном случае (при lambda_2=0и lambda_1ne0) следует сделать поворот системы координат на угол varphi+frac{pi}{2}, который также удовлетворяет условию (3.40). Тогда вместо координат x',y' в (3.41) получим y',-x' соответственно, т.е. отличный от нуля коэффициент lambda_1 будет при (y')^2.


Второй этап: преобразование уравнения линии второго порядка при параллельном переносе прямоугольной системы координат.

Уравнение (3.41) можно упростить, выделяя полные квадраты. Нужно рассмотреть два случая: lambda_1ne0 или lambda_1=0 (согласно предположению lambda_2ne0), которые называются центральный (включающий эллиптический и гиперболический случаи) или параболический соответственно. Геометрический смысл этих названий раскрывается в дальнейшем.

Центральный случай: lambda_1ne0 и lambda_2ne0. Выделяя полные квадраты по переменным x',y', получаем

begin{gathered}lambda_1left[(x')^2+2,frac{a'_1}{lambda_1},x'+{left(frac{a'_1}{lambda_1}right)!}^2right]+ lambda_2left[(y')^2+2,frac{a'_2}{lambda_2},y'+{left(frac{a'_2}{lambda_2}right)!}^2right]- lambda_1{left(frac{a'_1}{lambda_1}right)!}^2-lambda_2{left(frac{a'_2}{lambda_2}right)!}^2+a'_0=0~Leftrightarrow\[3pt] Leftrightarrow~ lambda_1{left(x'+frac{a'_1}{lambda_1}right)!}^2+lambda_2{left(y'+frac{a'_2}{lambda_2}right)!}^2- lambda_1{left(frac{a'_1}{lambda_1}right)!}^2-lambda_2{left(frac{a'_2}{lambda_2}right)!}^2+a'_0=0. end{gathered}

После замены переменных

left{begin{aligned} x''&=x'+frac{a'_1}{lambda_1},\ y''&=y'+frac{a'_2}{lambda_2}, end{aligned}right.

(3.42)

получаем уравнение

lambda_1,(x'')^2+lambda_2,(y'')^2+a''_0=0,

(3.43)

где a''_0=-lambda_1{left(frac{a'_1}{lambda_1}right)!}^2-lambda_2{left(frac{a'_2}{lambda_2}right)!}^2+a'_0.

Параболический случай: lambda_1=0 и lambda_2ne0. Выделяя полный квадрат по переменной y', получаем

begin{gathered} lambda_2left[(y')^2+2cdotfrac{a'_2}{lambda_2}cdot y'+{left(frac{a'_2}{lambda_2}right)!}^2right]+2cdot a'_1cdot x'-lambda_2{left(frac{a'_2}{lambda_2}right)!}^2+a'_0=0 quad Leftrightarrow \[3pt] Leftrightarrow quad lambda_2{left(y'+frac{a'_2}{lambda_2}right)!}^2+2cdot a'_1cdot x'-lambda_2{left(frac{a'_2}{lambda_2}right)!}^2+a'_0=0.end{gathered}

(3.44)

Если a'_1ne0, то последнее уравнение приводится к виду

lambda_2{left(y'+ frac{a'_2}{lambda_2}right)!}^2+ 2cdot a'_1left[x'+frac{a'_0}{2a'_1}- frac{lambda_2}{2a'_1}{left(frac{a'_2}{lambda_2}right)!}^2right]=0.

Сделав замену переменных

left{begin{aligned} x''&=x'+frac{a'_0}{2a'_1}- frac{lambda_2}{2a'_1}{left(frac{a'_2}{lambda_2}right)!}^2,\ y''&=y'+ frac{a'_2}{lambda_2}, end{aligned}right.

(3.45)

получим, где a''_1=a'_1

lambda_2cdot(y'')^2+2cdot a''_1cdot x''=0,

(3.46)

Если a'_1=0, то уравнение (3.44) приводится к виду, где a''_0=-lambda_2{left(frac{a'_2}{lambda_2} right)!}^2+a'_0,

lambda_2cdot(y'')^2+a''_0,

(3.47)

left{begin{aligned}x''&=x',\y''&=y'+frac{a'_2}{lambda_2}.end{aligned}right.

(3.48)

Замены переменных (3.42), (3.45), (3.48) соответствуют параллельному переносу системы координат Ox'y' (см. пункт 1″a» замечаний 2.3).

Таким образом, при помощи параллельного переноса системы координат Ox'y' получаем новую систему координат O''x''y'', в которой уравнение линии второго порядка принимает вид (3.43), или (3.46), или (3.47). Эти уравнения являются приведенными (вида (III),(II) или (I) соответственно).

Основная теорема 3.3 о приведении уравнения алгебраической линии второго порядка к каноническому виду доказана.


Замечания 3.8

1. Система координат, в которой уравнение алгебраической линии второго порядка имеет канонический вид, называется канонической. Каноническая система координат определяется неоднозначно. Например, изменяя направление оси ординат на противоположное, снова получаем каноническую систему координат, так как замена переменной y на (-y) не изменяет уравнений (1)–(9). Поэтому ориентация канонической системы координат не имеет принципиального значения, ее всегда можно сделать правой, изменив при необходимости направление оси ординат.

2. Ранее показано, что преобразования прямоугольных систем координат на плоскости сводятся к одному из преобразований (2.9) или (2.10):

begin{cases} x=x_0+x'cdotcosvarphi-y'cdotsinvarphi,\ y=y_0+x'cdotsinvarphi+y'cdotcosvarphi, end{cases}quad begin{cases} x=x_0+x'cdotcosvarphi+y'cdotsinvarphi,\ y=y_0+x'cdotsinvarphi-y'cdotcosvarphi.end{cases}

Поэтому задача приведения уравнения линии второго порядка к каноническому виду сводится к нахождению начала O'(x_0,y_0) канонической системы координат O'x'y' и угла varphi наклона ее оси абсцисс O'x' к оси абсцисс Ox исходной системы координат Oxy.

3. В случаях (3),(5),(7),(8),(9) линии называются распадающимися, поскольку соответствующие им многочлены второй степени разлагаются в произведение многочленов первой степени.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Аналитическая геометрия
  • Общее уравнение кривой второго порядка. Приведение общего уравнения кривой второго порядка к каноническому виду.

Общее уравнение кривой второго порядка. Каноническое уравнение кривой второго порядка.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Множество точек плоскости $R^2,$ удовлетворяющих условию $$sumlimits_^2a_x_ix_j+2sumlimits_^nb_kx_k+c=0,$$ называется кривой второго порядка. Каноническое уравнение кривой второго порядка может принимать один из следующих видов:

$$1),, lambda_1x^2+lambda_2y^2+c=0,,, (lambda_1lambda_2neq 0);$$

$$2),, lambda_1x^2+by=0qquad(lambda_1neq 0);$$

$$3),, lambda_1x^2+c=0qquad(lambda_1neq 0).$$

Пример.

4.226. Написать каноническое уравнение кривой второго порядка, определить ее тип и найти каноническую систему координат.

Решение.

Матрица квадратичной части многочлена второй степени имеет вид $$begin9&-2\-2&6end.$$

Найдем ее собственные числа:

$$det(A-lambda E)=begin9-lambda&-2\-2&6-lambdaend=(9-lambda)(6-lambda)-(-2)cdot(-2)=$$ $$=lambda^2-15lambda+40=0.$$

Далее находим собственные вектора:

Собственный вектор для собственного числа $lambda_1=10$ найдем из системы $$(A-lambda E)X=0, Xneq 0, Rightarrow (A-10E)X=0, Xneq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=begin-1&-2\-2&-4end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=begin-1&-2\-2&-4end=4-4=0.$

Таким образом ранг матрицы $A$ равен одному.

Выберем в качестве базисного минор $M=begin-1end=-1neq 0.$ Тогда, полагая $x_2=c,$ получаем: $$-x_1-2c=0Rightarrow x_1=-2c.$$

Таким образом, общее решение системы $X(c)=begin-2c\cend.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=begin-2\1end.$

Соответствующий ортонормированный собственный вектор: $$e_1’=left(frac<-2><sqrt<4+1>>,frac<1><sqrt<4+1>>right)=left(frac<-2><sqrt 5>,frac<1><sqrt 5>right).$$

Собственный вектор для собственного числа $lambda_2=5$ найдем из системы $$(A-lambda E)X=0, Xneq 0, Rightarrow (A-5E)X=0, Xneq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=begin4&-2\-2&1end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=begin4&-2\-2&1end=4-4=0.$

Таким образом ранг матрицы $A$ равен одному.

Выберем в качестве базисного минор $M=begin4end=4neq 0.$ Тогда, полагая $x_2=c,$ получаем: $$4x_1-2c=0Rightarrow x_1=c/2$$

Таким образом, общее решение системы $X(c)=beginc/2\cend.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=begin1/2\1end.$

Соответсвующий ортонормированный собственный вектор: $$e_1’=left(frac<1><sqrt<4+1>>,frac<2><sqrt<4+1>>right)=left(frac<1><sqrt 5>,frac<2><sqrt 5>right).$$

Таким образом, мы нашли вектора

Выделим по переменной $x’$ полный квадрат: $$10^2-frac<40><sqrt 5>x’=10left(^2-frac<4><sqrt 5>+frac<4><5>right)-8=10left(x’-frac<2><sqrt 5>right)^2-8.$$

Делаем замену переменных:

$$x»=x’-frac<2><sqrt 5>, qquadquad y»=y’$$ (замена переменных соответствует сдвигу по оси $Ox.$ ) Получаем: $$10^2+5^2-10=0Rightarrow ^2+frac<^2><2>=1.$$ Это уравнение эллипса.

Результирующее преобрзование координат имеет вид

Ответ: Эллипс $^2+frac<^2><2>=1.$ $O=left(-frac<4><5>, frac<2><5>right),$

Домашнее задание:

Написать каноническое уравнение кривой второго порядка, определить ее тип и найти каноническую систему координат.

4.227. $x^2-2xy+y^2-10x-6y+25=0.$

Ответ: Парабола $^2=4sqrt 2 x.$ $O’=left(2, 1right),$

4.228.$5x^2+12xy-22x-12y-19=0.$

Ответ: Гипербола $ frac<^2><4>-frac<^2><9>=1.$ $O’=left(1, 1right),$

Приведение кривой второго порядка к каноническому виду

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение. Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ1=-2, λ2=8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x1 2 -2y1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x1=1: x 1=(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
x 2=(1,1); .
Итак, имеем новый ортонормированный базис ( i 1, j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

Задание. Привести к каноническому виду уравнение линии 17x 2 + 12xy + 8y 2 — 20 = 0.
Решение.Пример 2

Задание. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм и определить её вид. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Решение

Задание. Привести уравнение к каноническому виду: 16x 2 — 9y 2 -64x — 8y +199 = 0.
Решение.Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. Изобразить гиперболу на чертеже, указав фокусы, асимптоты и директрисы.
Решение:Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение:Скачать решение

Примеры решений: кривые второго порядка

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые второго порядка: приведение к каноническому виду, нахождение характеристик, построение графика т.п.

Кривые 2-го порядка: решения онлайн

Задача 1. Привести к каноническому виду уравнение кривой 2 порядка, найти все ее параметры, построить кривую.

Задача 2. Дана кривая. Привести к каноническому виду. Построить и определить вид кривой.

Задача 3. Выяснить вид кривой по общему уравнению, найти её параметры и положение в системе координат. Сделать рисунок.

Задача 4. Общее уравнение кривой второго порядка привести к каноническому. Найти координаты центра, координаты вершин и фокусов. Написать уравнения асимптот и директрис. Построить линии на графики, отметить точки.

Задача 5. Дана кривая $y^2+6x+6y+15=0$.
1. Докажите, что данная кривая – парабола.
2. Найдите координаты ее вершины.
3. Найдите значения ее параметра $р$.
4. Запишите уравнение ее оси симметрии.
5. Постройте данную параболу.

Задача 6. Дана кривая $5x^2+5y^2+6xy-16x-16y=16$.
1. Докажите, что эта кривая – эллипс.
2. Найдите координаты центра его симметрии.
3. Найдите его большую и малую полуоси.
4. Запишите уравнение фокальной оси.
5. Постройте данную кривую.

Задача 7. Найти уравнения параболы и её директрисы, если известно, что парабола имеет вершину в начале координат и симметрична относительно оси $Ox$ и что точка пересечения прямых $y=x$ и $x+y-2=0$ лежит на параболе.

Задача 8. Составить уравнение кривой, для каждой точки которой отношение расстояния до точки $F(0;10)$ к расстоянию до прямой $x=-4$ равно $sqrt<2/5>$. Привести это уравнение к каноническому виду и определить тип кривой.

Задача 9. Даны уравнения асимптот гиперболы $y=pm 5x/12$ и координаты точки $M(24,5)$, лежащей на гиперболе. Составить уравнение гиперболы.

Задача 10. Даны уравнение параболы $y=1/4 x^2+1$ и точка $C(0;2)$, которая является центром окружности. Радиус окружности $r=5$.
Требуется найти
1) точки пересечения параболы с окружностью
2) составить уравнение касательной и нормали к параболе в точках её пересечения с окружностью
3) найти острые углы, образуемые кривыми в точках пересечения. Чертёж.

источники:

http://math.semestr.ru/line/curve-canonica.php

http://www.matburo.ru/ex_ag.php?p1=agk2

После поворота получилось вот так:

9x^2 — y^2 — 90x/sqrt(10) — 10y/sqrt(10) = 11

Далее перенос (центр в т.(2;-1)):
подставляем вместо x и y:
x=x’+2
y=y’-1
Получается вот так:

9x^2 + 36 + 36x — y^2 — 1 + 2y — (90x+180)/sqrt(10) — (10y — 10)/sqrt(10) = 11

9x^2 — y^2 + 36x + 2y — (90x — 10y +190)/sqrt(10) = -24

Дальше, насколько я понимаю, надо выделить полные квадраты? Или это стоило сделать ещё до переноса?

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде Кривые второго порядка - определение и построение с примерами решения

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения Кривые второго порядка - определение и построение с примерами решения
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение Кривые второго порядка - определение и построение с примерами решения называется уравнением фигуры, если Кривые второго порядка - определение и построение с примерами решения, то есть (а, b) — решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения Кривые второго порядка - определение и построение с примерами решения, т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение Кривые второго порядка - определение и построение с примерами решения и надо построить фигуру Ф, уравнением которой является Кривые второго порядка - определение и построение с примерами решения;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения Кривые второго порядка - определение и построение с примерами решения и решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек Кривые второго порядка - определение и построение с примерами решения, есть величина постоянная (большая, чем расстояние между Кривые второго порядка - определение и построение с примерами решения).

Точки Кривые второго порядка - определение и построение с примерами решения называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с<а. Если это условие не выполнено, то рассматриваемое множество точек либо отрезок прямой, заключенной между фокусами, либо не содержит ни одной точки.

Из определения эллипса вытекает следующий метод его построения: если концы нерастяжимой нити длины 2а закрепить в точках Кривые второго порядка - определение и построение с примерами решения и натянуть нить острием карандаша, то при движении острия будет вычерчиваться эллипс с фокусами Кривые второго порядка - определение и построение с примерами решения и с суммой расстояний от произвольной точки эллипса до фокусов, равной 2 а (Рис. 7.1).

Кривые второго порядка - определение и построение с примерами решения

Составим уравнение эллипса. Для этой цели расположим декартову прямоугольную систему координат таким образом, чтобы ось Ох походила через фокусы Кривые второго порядка - определение и построение с примерами решения положительное направление оси — от Кривые второго порядка - определение и построение с примерами решения, начало координат выберем в середине отрезка Кривые второго порядка - определение и построение с примерами решения. Тогда координаты точек Кривые второго порядка - определение и построение с примерами решения будут соответственно (-с,0) и (с,0).

Пусть М(х,у) — произвольная точка эллипса, тогда: Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Подставляя сюда значения Кривые второго порядка - определение и построение с примерами решенияимеем:

Кривые второго порядка - определение и построение с примерами решения (7.1)

Уравнение (1) и есть уравнение эллипса. Преобразуя, упростим

его:

Кривые второго порядка - определение и построение с примерами решения

Возведя обе части уравнения в квадрат и приведя подобные члены, получим: Кривые второго порядка - определение и построение с примерами решения

Возведем еще раз обе части в квадрат и приведем подобные члены. Получаем Кривые второго порядка - определение и построение с примерами решения или

Кривые второго порядка - определение и построение с примерами решения (7.2)

Положительную величину Кривые второго порядка - определение и построение с примерами решения обозначим черезКривые второго порядка - определение и построение с примерами решения. Тогда уравнение (7.2) примет вид:

Кривые второго порядка - определение и построение с примерами решения (7.3)

Оно называется каноническим уравнение эллипса.

Координаты точек эллипса ограничены неравенствамиКривые второго порядка - определение и построение с примерами решения. Значит, эллипс ограниченная фигура, не выходящая за пределы прямоугольника со сторонами 2а и 2b •

Кривые второго порядка - определение и построение с примерами решения

Заметим, что в уравнение (7.3) входят лишь четные степени х и у. Поэтому, если точка M(х,у) принадлежит эллипсу, то и точки Кривые второго порядка - определение и построение с примерами решения также ему принадлежат. А это означает, что эллипс — линия симметричная относительно координатных осей Ох и Оу.

Поэтому для исследования формы эллипса достаточно рассмотреть его в первой координатной четверти, а в остальных четвертях его строение определяется по симметрии. Для первой четверти, из уравнения (7.3) имеем:

Кривые второго порядка - определение и построение с примерами решения (7.4)

При возрастании x от 0 до а, у монотонно убывает от а до 0. График функции изображен на Рис. 7.4.

Кривые второго порядка - определение и построение с примерами решения Рис. 7.4

Достроив остальные четверти эллипса по симметрии, получим весь эллипс (Рис. 7.5). Кривые второго порядка - определение и построение с примерами решения

Рис. 7.5. Оси симметрии эллипса (оси Ох и Оу) называются просто его осями, а центр симметрии — точка О — центром эллипса. Точки Кривые второго порядка - определение и построение с примерами решения пересечения эллипса с осями координат называются вершинами эллипса. Отрезки Кривые второго порядка - определение и построение с примерами решения, а также их длины а и Ь называются полуосями эллипса. В случае, когда фокусы эллипса находятся на оси Ох (как в нашем случае), из равенства Кривые второго порядка - определение и построение с примерами решения следует, что a>b. В этом случае а называется большой полуосью, a b — малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

Кривые второго порядка - определение и построение с примерами решения (7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку Кривые второго порядка - определение и построение с примерами решения координаты которой задаются формулами Кривые второго порядка - определение и построение с примерами решения будет окружность (4) переводить в эллипс, заданный соотношением Кривые второго порядка - определение и построение с примерами решения

Число Кривые второго порядка - определение и построение с примерами решения называется эксцентриситетом эллипса. Эксцентриситет Кривые второго порядка - определение и построение с примерами решения характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении Кривые второго порядка - определение и построение с примерами решения становится более вытянутым

Кривые второго порядка - определение и построение с примерами решения

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами Кривые второго порядка - определение и построение с примерами решения. Их длины Кривые второго порядка - определение и построение с примерами решения и Кривые второго порядка - определение и построение с примерами решениязадаются формуламиКривые второго порядка - определение и построение с примерами решения Прямые Кривые второго порядка - определение и построение с примерами решения называются директрисами эллипса. Директриса Кривые второго порядка - определение и построение с примерами решения называется левой, а Кривые второго порядка - определение и построение с примерами решения — правой. Так как для эллипса Кривые второго порядка - определение и построение с примерами решенияи, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. Кривые второго порядка - определение и построение с примерами решения

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек Кривые второго порядка - определение и построение с примерами решения есть величина постоянная (не равная нулю и меньшая, чем расстояние между Кривые второго порядка - определение и построение с примерами решения).

Точки Кривые второго порядка - определение и построение с примерами решения называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов Кривые второго порядка - определение и построение с примерами решения обозначим через а. По условию, а <с.

Выбрав декартову систему координат, как в случае эллипса, и используя определение гиперболы, составляем ее уравнение: Кривые второго порядка - определение и построение с примерами решения (7.6) где ху — координаты произвольной точки гиперболы,Кривые второго порядка - определение и построение с примерами решения

Уравнение (7.6) называется каноническим уравнением гиперболы.

Из уравнения (7.6) видно, что Кривые второго порядка - определение и построение с примерами решения. Это означает, что вся гипербола располагается вне полосы, ограниченной прямыми х = -а и х = а.

Так как в уравнение входят только четные степени x и у, то гипербола симметрична относительно каждой из координатных осей и начала координат. Поэтому достаточно построить эту кривую в первой четверти: в остальных четвертях гипербола строится по симметрии. Из уравнения (7.6) для первой четверти, имеем:

Кривые второго порядка - определение и построение с примерами решения

График этой функции от точки A(а,0) уходит неограниченно вправо и вверх (Рис. 7.7), и как угодно близко подходит к прямой:

Кривые второго порядка - определение и построение с примерами решения

Поэтому говорят, что гипербола асимптоматически приближается к прямой (7.7), и эту прямую называют асимптотой гиперболы. Из симметрии гиперболы следует, что у нее две асимптоты

Кривые второго порядка - определение и построение с примерами решения

Построим гиперболу. Сначала строим, так называемый, основной прямоугольник гиперболы, центр которой совпадает с началом координат, а стороны равны 2а и 2Ь параллельны осям координат. Прямые, на которых расположены диагонали этого прямоугольника, являются асимптотами гиперболы. Сделаем рисунок гиперболы (Рис. 7.8).

Кривые второго порядка - определение и построение с примерами решения

Гипербола состоит из двух отдельных ветвей. Центр симметрии гиперболы называется ее центром, оси симметрии называются осями гиперболы. Точки Кривые второго порядка - определение и построение с примерами решения, пересечения гиперболы с осью Ох называются вершинами гиперболы. Величины а и Ь называются полуосями гиперболы. Если а=Ь, то гипербола называется равносторонней.

Эксцентриситетом гиперболы называется числоКривые второго порядка - определение и построение с примерами решения. Для любой гиперболы Кривые второго порядка - определение и построение с примерами решения. Эксцентриситет характеризует форму гиперболы: чем меньше, тем больше вытягивается гипербола вдоль оси Ох. На рисунке 7.9 изображены гиперболы с различными значениями £.

Кривые второго порядка - определение и построение с примерами решения

Фокальными радиусами точки гиперболы называются отрезки прямых, соединяющие эту точку с фокусамиКривые второго порядка - определение и построение с примерами решения. Их длины Кривые второго порядка - определение и построение с примерами решенияи Кривые второго порядка - определение и построение с примерами решения задаются формулами:

Для правой — ветви Кривые второго порядка - определение и построение с примерами решения,

Для левой — ветви Кривые второго порядка - определение и построение с примерами решения

Прямые Кривые второго порядка - определение и построение с примерами решенияназываются директрисами гиперболы. Как и в случае эллипса, точки гиперболы характеризуются соотношением Кривые второго порядка - определение и построение с примерами решения

Парабола

Параболой называется линия, состоящая из всех точек плоскости, равноудаленных от данной точки F (фокуса) и данной прямой Кривые второго порядка - определение и построение с примерами решения (директрисы).

Для вывода канонического уравнения параболы ось Ох проводят через фокус F перпендикулярно директрисе Кривые второго порядка - определение и построение с примерами решения в направлении от директрисы к фокусу; начало координат берут в середине отрезка между фокусом F и точкой D пересечения оси Ох с директрисой Кривые второго порядка - определение и построение с примерами решения. Если обозначить через р расстояние фокуса от директрисы, то Кривые второго порядка - определение и построение с примерами решения и уравнение директрисы будет иметь видКривые второго порядка - определение и построение с примерами решения

В выбранной системе координат уравнение параболы имеет вид:

Кривые второго порядка - определение и построение с примерами решения (7.8)

Это уравнение называется каноническим уравнением параболы. Из уравнения (7.8) видно, что л: может принимать только неотрицательные значения. Значит, на рисунке вся парабола располагается справа от оси Оу. Так как уравнение (7.8) содержит у только в четной степени, то парабола симметрична относительно оси Ох и поэтому достаточно рассмотреть ее форму в первой четверти. В этой четверти Кривые второго порядка - определение и построение с примерами решения.

При неограниченном возрастании x неограниченно растет и у. Парабола, выходя из начала координат, уходит неограниченно вправо и вверх, четвертой четверти парабола строится по симметрии. Сделаем рисунок параболы (Рис. 7.10). Кривые второго порядка - определение и построение с примерами решения

Ось симметрии параболы называется ее осью. Точка пересечения с ее осью называется вершиной параболы.

Исследование на плоскости уравнения второй степени

Рассмотрим уравнение:

Кривые второго порядка - определение и построение с примерами решения (7.9)

где среди коэффициентов А, В, С есть отличные от нуля, т.е. (7.9) — уравнение второй степени относительно х и у.

Возьмем на плоскости две прямоугольные системы координат: Оху, которую будем называть старой, и новую, полученную из Оху поворотом ее вокруг начала координат на угол Кривые второго порядка - определение и построение с примерами решения

Старые координаты х, у выражаются через новые координаты Кривые второго порядка - определение и построение с примерами решенияпо формулам:

Кривые второго порядка - определение и построение с примерами решения (7.10)

Подставив выражения для х и у в уравнение (8), получим: Кривые второго порядка - определение и построение с примерами решения (7.11)

Это уравнение в системе координат Кривые второго порядка - определение и построение с примерами решения задает ту же линию, что и уравнение (7. 9) в системе Оху.

Если в уравнении (7.9) Кривые второго порядка - определение и построение с примерами решения, то за счет выбора угла а в (7.10) можно добиться того, что В’ = 0. Для этого угол а надо взять таким, чтобы Кривые второго порядка - определение и построение с примерами решения. Поэтому будем считать В’= 0, тогда уравнение (7.11) примет вид:

Кривые второго порядка - определение и построение с примерами решения (7.12)

Преобразуя это уравнение и применяя параллельный перенос координатных осей, придем к уравнению:

Кривые второго порядка - определение и построение с примерами решения (7.13)

В зависимости от знаков коэффициентов уравнения (7.13) рассмотрим следующие случаи:

Рассматривая далее методично все случаи, придем к выводу: уравнение вида (7.9) задает одну из следующих фигур: эллипс, гиперболу, параболу, пару пересекающихся прямых, пару параллельных прямых, прямую, точку или пустое множество.

Кривые второго порядка в высшей математике

Выяснение взаимосвязей между различными показателями экономического характера часто приводит к форме этих связей в виде гиперболы и параболы. В этой лекции приведём краткие сведения обо всех кривых второго порядка.

Окружность

Определение 9.1. Окружностью называется геометрическое место точек, равноудаленных от данной точки — центра окружности.

Если точка Кривые второго порядка - определение и построение с примерами решения — центр (рис.9.1), N(x,y) — произвольная точка окружности и R — её радиус, то согласно определения можно записать

Кривые второго порядка - определение и построение с примерами решения

или

Кривые второго порядка - определение и построение с примерами решения

Найдём условия, при которых общее уравнение второй степени с двумя переменными

Кривые второго порядка - определение и построение с примерами решения

определяет окружность. Раскрыв скобки в (9.1.1), получим

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Сравнивая (9.1.2) и (9.1.3), находим условия А = С, В = О,

Кривые второго порядка - определение и построение с примерами решения, при выполнении которых общее уравнение (9.1.2) определяет окружность.

Эллипс

Определение 9.2. Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, большая, чем расстояние между фокусами.

Пусть на плоскости хОу (рис. 9.2) дан эллипс с фокусами Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения. Пусть начало координат лежит на середине отрезка Кривые второго порядка - определение и построение с примерами решения. Выведем уравнение эллипса.

Если точка А — произвольная точка эллипса с координатами (х, у), то

Кривые второго порядка - определение и построение с примерами решения (9.2.1)

где Кривые второго порядка - определение и построение с примерами решения— постоянная сумма. Так как Кривые второго порядка - определение и построение с примерами решения

расположены симметрично относительно начала координат, то они имеют координаты (с,0) и (-с,0) соответственно. Воспользовавшись формулой для вычисления расстояния между двумя точками, находим Кривые второго порядка - определение и построение с примерами решения. Подставив значения Кривые второго порядка - определение и построение с примерами решения

и Кривые второго порядка - определение и построение с примерами решения в (9.2.1), получаем уравнение Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения

Обе части этого уравнения возведем в квад-Упростив и обозначивКривые второго порядка - определение и построение с примерами решения

получимКривые второго порядка - определение и построение с примерами решения. Разделим обе части уравнения на правую часть

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Уравнение (9.2.2) называется каноническим уравнением эллипса, где а — большая полуось, b — малая полуось.

Это уравнение второго порядка, следовательно, эллипс есть линия второго порядка. Для определения формы эллипса служит его эксцентриситет Кривые второго порядка - определение и построение с примерами решения, т.е. отношение расстояния между фокусами этого эллипса к длине его большей полуоси. Так как сКривые второго порядка - определение и построение с примерами решенияа, то эксцентриситет каждого эллипса меньше единицы. Поскольку

Кривые второго порядка - определение и построение с примерами решения , то подставив значение Кривые второго порядка - определение и построение с примерами решения в равенствоКривые второго порядка - определение и построение с примерами решения, получим Кривые второго порядка - определение и построение с примерами решения

Следовательно, эксцентриситет определяется отношение осей эллипса; а отношение осей определяется эксцентриситетом. Чем ближе эксцентриситет к единице, тем меньше Кривые второго порядка - определение и построение с примерами решения, тем меньше, следовательно, отношение Кривые второго порядка - определение и построение с примерами решения. Это значит, что эллипс вытянут вдоль оси Ох. В случае Ь=а иКривые второго порядка - определение и построение с примерами решения получаем окружность.

Две прямые, перпендикулярные к большей оси эллипса и расположенные симметрично относительно центра на расстоянии Кривые второго порядка - определение и построение с примерами решения от него, называются директрисами эллипса. Уравнения директрис

Кривые второго порядка - определение и построение с примерами решения

Пример:

Исследовать, какая линия определяется уравнениемКривые второго порядка - определение и построение с примерами решения

Решение:

Сгруппируем члены, содержащие одну и туже переменную, получимКривые второго порядка - определение и построение с примерами решения

Из второй скобки вынесем коэффициент при Кривые второго порядка - определение и построение с примерами решения , после чего предыдущее уравнение примет вид

Кривые второго порядка - определение и построение с примерами решения

В каждой из скобок выделим полный квадрат

Кривые второго порядка - определение и построение с примерами решения

или Кривые второго порядка - определение и построение с примерами решения

Произведём замену: Кривые второго порядка - определение и построение с примерами решения. Исследуемое уравнение принимает вид: Кривые второго порядка - определение и построение с примерами решения.

Разделив обе части этого уравнения на Кривые второго порядка - определение и построение с примерами решения, получим канонический вид данного уравнения:Кривые второго порядка - определение и построение с примерами решения

Заданное уравнение определяет эллипс с полуосями Кривые второго порядка - определение и построение с примерами решения, центр которого находится в точке Кривые второго порядка - определение и построение с примерами решения

Выбираем на плоскости произвольным образом прямоугольную систему координат хОу. С помощью параллельного переноса переносим оси координат в новое начало в точку Кривые второго порядка - определение и построение с примерами решения. В новой системе координат строим основной прямоугольник со сторонами Кривые второго порядка - определение и построение с примерами решения, стороны которого параллельны новым осям координат, а центр находится в точке Кривые второго порядка - определение и построение с примерами решения. Вписываем в него эллипс.

Кривые второго порядка - определение и построение с примерами решения

Гипербола

Определение 9.3.1. Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, меньшая, чем расстояние между фокусами и отличная от нуля (указанная разность берется по абсолютному значению). Кривые второго порядка - определение и построение с примерами решения

Пусть М- произвольная точка гиперболы с фокусами Кривые второго порядка - определение и построение с примерами решения (рис. 9.4). Отрезки Кривые второго порядка - определение и построение с примерами решения называются фокальными радиусами точки М и обозначаются Кривые второго порядка - определение и построение с примерами решенияПо определению гиперболы Кривые второго порядка - определение и построение с примерами решения . Так как Кривые второго порядка - определение и построение с примерами решения и т.к. Кривые второго порядка - определение и построение с примерами решения расположены симметрично относительно начала координат, то, применяя формулу для вычисления расстояния между двумя точками, находим Кривые второго порядка - определение и построение с примерами решения . Заменяя Кривые второго порядка - определение и построение с примерами решения в равенстве Кривые второго порядка - определение и построение с примерами решения найденными выражениями, получаем:

Кривые второго порядка - определение и построение с примерами решения.

Возведя в квадрат обе части этого уравнения и обозначая Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения, получим: Кривые второго порядка - определение и построение с примерами решения или, разделив все члены уравнения на правую часть, приводим его к виду:

Кривые второго порядка - определение и построение с примерами решения

Уравнение (9.3.1)- это каноническое уравнение гиперболы, линии второго порядка.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником. Его диагонали совпадают с асимптотами гиперболы Кривые второго порядка - определение и построение с примерами решения. Поэтому, если требуется построить гиперболу с полуосями а и b, то следует, прежде всего, построить ее основной прямоугольник, затем асимптоты.

Уравнение видаКривые второго порядка - определение и построение с примерами решения определяет гиперболу, вершины которой расположены на оси Оу (Рис. 9.5).

Кривые второго порядка - определение и построение с примерами решения

Форму гиперболы характеризует её эксцентриситет Кривые второго порядка - определение и построение с примерами решения, т.е. отношение расстояния между фокусами этой гиперболы к расстоянию между её вершинами. Поскольку Кривые второго порядка - определение и построение с примерами решения, то подставив в формулу Кривые второго порядка - определение и построение с примерами решенияполучимКривые второго порядка - определение и построение с примерами решенияоткудаКривые второго порядка - определение и построение с примерами решения. Следовательно, эксцентриситет oредсляется отношением Кривые второго порядка - определение и построение с примерами решения, а отношение Кривые второго порядка - определение и построение с примерами решения— эксцентриситетом. Следовательно, эксцентриситет характеризует форму гиперболы. Чем меньше эксцентриситет, тем меньше отношение Кривые второго порядка - определение и построение с примерами решения, а это значит, что основной прямоугольник вытянут в направлении оси, соединяющей вершины.

Прямые, заданные уравнениями Кривые второго порядка - определение и построение с примерами решения называются директрисами гиперболы.

Пример:

Составить уравнение геометрического места точек, отношение расстояний которых от данной точки А(4, 0) и от данной прямой х=1 равно 2.

Решение:

В системе координат хОу построим точку А(4, 0) и прямую х = 1. Пусть М(х, у) — произвольная точка искомого геометрического места точек. Опустим перпендикуляр MB на данную прямую х = 1 и определим координаты точки В. Так как точка В лежит на заданной прямой, то её абсцисса равна 1. Ордината точки В равна ординате точки М. Следовательно, B(1, у) (рис. 9.6).По условию задачи Кривые второго порядка - определение и построение с примерами решения .Подставив значения расстоянийКривые второго порядка - определение и построение с примерами решения, которые находим по формуле расстояния между двумя точками, получим:

Кривые второго порядка - определение и построение с примерами решения

Возводя в квадрат левую и правую части равенства и последовательно преобразовывая, находим уравнение:

Кривые второго порядка - определение и построение с примерами решения

Полученное уравнение определяет гиперболу, у которой действительная полуось -а = 2, а мнимая Кривые второго порядка - определение и построение с примерами решения.

Определим фокусы гиперболы. Для гиперболы выполняется равенство Кривые второго порядка - определение и построение с примерами решения . Следовательно, Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения — фокусы гиперболы. Как видно, заданная точка

А(4, 0) является правым фокусом гиперболы.

Эксцентриситет полученной гиперболы равен Кривые второго порядка - определение и построение с примерами решения

Подставив значения а и b в уравнения асимптот Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения

у =—получим уравнения асимптот гиперболы:Кривые второго порядка - определение и построение с примерами решенияи Кривые второго порядка - определение и построение с примерами решения.

Для построения гиперболы строим основной прямоугольник с полуосями Кривые второго порядка - определение и построение с примерами решения , затеем асимптоты Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения а далее строим и саму гиперболу (рис.9.6). Кривые второго порядка - определение и построение с примерами решения

  • Заказать решение задач по высшей математике

Парабола

Определение 9.4.1. Параболой называется геометрическое место точек, для каждой из которых, расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой,(директриса не проходит через фокус).

Обозначим фокус параболы — F, расстояние от фокуса до директрисы — р(р > 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть Кривые второго порядка - определение и построение с примерами решения. Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты Кривые второго порядка - определение и построение с примерами решения.

Кривые второго порядка - определение и построение с примерами решения

Тогда Кривые второго порядка - определение и построение с примерами решения А расстояние Кривые второго порядка - определение и построение с примерами решения Подставив в формулу r=d, будем иметьКривые второго порядка - определение и построение с примерами решения. Возведя обе части равенства в квадрат, получимКривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения или

Кривые второго порядка - определение и построение с примерами решения(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения Кривые второго порядка - определение и построение с примерами решениятакже определяют параболы.

Легко показать, что уравнение Кривые второго порядка - определение и построение с примерами решения, определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а Кривые второго порядка - определение и построение с примерами решения О. Для этого выделим полный квадрат:

Кривые второго порядка - определение и построение с примерами решения

и сделаем параллельный перенос по формуламКривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения

В новых координатах преобразуемое уравнение примет вид: Кривые второго порядка - определение и построение с примерами решения где р — положительное число, определяется равенствомКривые второго порядка - определение и построение с примерами решения .

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстояниюКривые второго порядка - определение и построение с примерами решения, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условиюКривые второго порядка - определение и построение с примерами решения, запишем это равенство с помощью координат: Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения , или после упрощения Кривые второго порядка - определение и построение с примерами решения. Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

Кривые второго порядка - определение и построение с примерами решения

где коэффициенты А, В и С не равны одновременно нулю Кривые второго порядка - определение и построение с примерами решения

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС<0.

Кривая второго порядка принадлежит параболическому типу, если коэффициент В равен нулю: В=0 и только один из коэффициентов А и С не равен нулю: АС=0 и Кривые второго порядка - определение и построение с примерами решения

Рассмотрим канонические (простейшие) уравнения эллипса, гиперболы и параболы.

Эллипсом называется множество всех точек плоскости, для которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная, большая расстояния между фокусами.

Геометрическое свойство точек эллипса выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину, о которой идет речь в определении эллипса, обозначим через 2а: 2а>2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

Кривые второго порядка - определение и построение с примерами решения которое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число Кривые второго порядка - определение и построение с примерами решения— мень-

шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки Кривые второго порядка - определение и построение с примерами решения называют вершинами эллипса, а Кривые второго порядка - определение и построение с примерами решения — его фокусами (рис. 12).

Кривые второго порядка - определение и построение с примерами решения

Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид Кривые второго порядка - определение и построение с примерами решения и определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Кривые второго порядка - определение и построение с примерами решения

Эксцентриситет изменяется от нуля до единицы Кривые второго порядка - определение и построение с примерами решения и характеризует форму эллипса. Для окружности Кривые второго порядка - определение и построение с примерами решения Чем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

Кривые второго порядка - определение и построение с примерами решения

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения — каноническое уравнение эллипса с центром в точкеКривые второго порядка - определение и построение с примерами решения большей полуосью а=3 и меньшей полуосью Кривые второго порядка - определение и построение с примерами решения

Найдем эксцентриситет эллипса:

Кривые второго порядка - определение и построение с примерами решения

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке Кривые второго порядка - определение и построение с примерами решения а оси Кривые второго порядка - определение и построение с примерами решения параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е. Кривые второго порядка - определение и построение с примерами решения

В новой системе координат координаты Кривые второго порядка - определение и построение с примерами решения вершин и фокусов гиперболы будут следующими:

Кривые второго порядка - определение и построение с примерами решения

Переходя к старым координатам, получим:

Кривые второго порядка - определение и построение с примерами решения

Построим график эллипса.

Кривые второго порядка - определение и построение с примерами решения Задача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а<2с. Точка М(х,у) принадлежит гиперболе тогда и только тогда, когда ее координаты удовлетворяют уравнению

Кривые второго порядка - определение и построение с примерами решения которое называют каноническим уравнением гиперболы.

Число а называют действительной полуосью гиперболы, число

Кривые второго порядка - определение и построение с примерами решения — мнимой полуосью гиперболы, 2а и 2b — соответственно действительной и мнимой осями гиперболы. Точки Кривые второго порядка - определение и построение с примерами решения называют вершинами гиперболы, Кривые второго порядка - определение и построение с примерами решения — ее фокусами (рис. 13).Кривые второго порядка - определение и построение с примерами решения

Координатные оси являются осями симметрии гиперболы, а начало координат — ее центром симметрии. Центр симметрии гиперболы называется центром гиперболы.

Точки гиперболы по мере удаления от начала координат неограниченно (асимптотически) приближаются к прямым у=±kх (где Кривые второго порядка - определение и построение с примерами решения), которые называются асимптотами гиперболы.

Эксцентриситетом гиперболы называется отношение фокусного расстояния к длине действительной оси:Кривые второго порядка - определение и построение с примерами решения

Эксцентриситет гиперболы изменяется от единицы до бесконечности Кривые второго порядка - определение и построение с примерами решения и характеризует форму гиперболы. Чем меньше эксцентриситет гиперболы, тем ее ветви более сжаты к оси Ох.

Замечание. Каноническое уравнение Кривые второго порядка - определение и построение с примерами решения определяет сопряженную гиперболу с действительной полуосью b, вершинами в точках Кривые второго порядка - определение и построение с примерами решения и фокусами на оси Оу.

Пример:

Составить каноническое уравнение гиперболы с центром в начале координат, если ее действительная полуось равна трем, а эксцентриситет -четырем третьим.

Решение:

Каноническое уравнение гиперболы имеет вид

Кривые второго порядка - определение и построение с примерами решения По условию задачи нам известно: а=3,Кривые второго порядка - определение и построение с примерами решения Найдем мнимую полуось.

Кривые второго порядка - определение и построение с примерами решения

Следовательно, уравнение искомой гиперболы:

Кривые второго порядка - определение и построение с примерами решения Задача решена.

Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом параболы, и от данной прямой, называемой директрисой и не проходящей через фокус.

Расстояние между фокусом и директрисой обозначим р. Для того чтобы точка М(х,у) принадлежала параболе, необходимо и достаточно, чтобы ее координаты удовлетворяли уравнению Кривые второго порядка - определение и построение с примерами решения которое называется каноническим уравнением параболы.

Точка O(0,0) называется вершиной параболы, число р — параметром параболы, Кривые второго порядка - определение и построение с примерами решения — директрисой пир,болы, а Кривые второго порядка - определение и построение с примерами решения— ее фокусом. Прямая у=0 является осью симметрии параболы, ветви которой направлены вправо. Центра симметрии у параболы нет (рис. 14). Кривые второго порядка - определение и построение с примерами решения

Если поменять ролями оси Ох и Оу, то каноническое уравнение параболы примет вид Кривые второго порядка - определение и построение с примерами решения (уравнение параболы с вертикальной осью, уравнением директрисы Кривые второго порядка - определение и построение с примерами решения фокусом Кривые второго порядка - определение и построение с примерами решения ветви направлены вверх).

Замечание. Канонические уравнения параболы можно рассматривать и в случае, когда ветви направлены влево или вниз:

Пример:

Составить уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и отсекающей на биссектрисе первого координатного угла отрезок длиной Кривые второго порядка - определение и построение с примерами решения

Решение:

Каноническое уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и ветвями, направленными вверх, имеет вид:

Кривые второго порядка - определение и построение с примерами решения

Уравнение биссектрисы первого координатного угла у=х. Найдем точки пересечения параболы с биссектрисой. Для этого решим систему уравнений

Кривые второго порядка - определение и построение с примерами решения

Следовательно, точка М(2р,2р) будет принадлежать параболе. С другой стороны, парабола отсекает на биссектрисе отрезок длиной Кривые второго порядка - определение и построение с примерами решения который является гипотенузой равнобедренного прямоугольного треугольника с катетами 2р. Кривые второго порядка - определение и построение с примерами решения

По теореме Пифагора

Кривые второго порядка - определение и построение с примерами решения

Тогда искомое уравнение параболы

Кривые второго порядка - определение и построение с примерами решения

Уравнение директрисы параболы: у=-1, координаты ее фокуса F(0,1).

Кривые второго порядка - определение и построение с примерами решения

Задача решена.

  • Евклидово пространство
  • Матрица — виды, операции и действия с примерами
  • Линейный оператор — свойства и определение
  • Многочлен — виды, определение с примерами
  • Числовые множества
  • Вектор — определение и основные понятия
  • Прямая — понятие, виды и её свойства
  • Плоскость — определение, виды и правила

Понравилась статья? Поделить с друзьями:
  • Как составить рацион питания бодибилдера
  • Ворд некоммерческое использование как исправить
  • Правильный восьмиугольник как найти внутренний угол
  • Как составить заявление в полицию если нет регистрации
  • Разность чисел как найти неизвестное