Как найти катет по формуле пифагора

Теорема пифагора

Определение теоремы пифагора

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

Обозначив гипотенузу буквой — c, катеты буквами a и b получим следующее равенство

c2=a2+b2

Расчёт катета по теореме пифагора

Введите гипотенузу

c = 

Введите катет

b = 

Катет по гипотенузе и катету

Формула пифагора для катета

Где a, b — катеты прямоугольного треугольника,
с — гипотенуза прямоугольного треугольника

Расчёт гипотенузы по теореме пифагора

Введите первый катет

a = 

Введите второй катет

b = 

Гипотенуза по двум катетам

Формула пифагора для гипотенузы

Где a, b — катеты прямоугольного треугольника,
с — гипотенуза прямоугольного треугольника

Доказательство теоремы пифагора

Дано

Прямоугольный треугольник с катетами a, b и гипотенузой c.

Прямоугольный треугольник

Доказать

c2=a2+b2

Доказательство

Достроим треугольник HFG до квадрата со стороной a+b.

Доказательство теоремы пифагора

Запишем площадь получевшегося квадрата двумя способами

S=(a+b)2

S=4*0.5*a*b +c2

Приравняем площади

(a+b)2=4*0.5*a*b +c2

a2+2*a*b +b2=2*a*b +c2

a2+b2=c2

Теорема доказана


Загрузить PDF


Загрузить PDF

Теорема Пифагора связывает три стороны прямоугольного треугольника одной формулой, которой пользуются до сих пор. Теорема гласит, что в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы: a2 + b2 = c2, где a и b — катеты треугольника (стороны, пересекающиеся под прямым углом), с — гипотенуза треугольника. Теорема Пифагора применима во многих случаях, например, при помощи этой теоремы легко найти расстояние между двумя точками на координатной плоскости.

  1. Изображение с названием Use the Pythagorean Theorem Step 1

    1

    Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

    • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.
  2. Изображение с названием Use the Pythagorean Theorem Step 2

    2

    Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты — стороны, пересекающиеся под прямым углом), а гипотенузу — как «с» (гипотенуза — самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).

  3. Изображение с названием Use the Pythagorean Theorem Step 3

    3

    Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.

    • Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
    • Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
  4. Изображение с названием Use the Pythagorean Theorem Step 4

    4

    Подставьте в формулу a2 + b2 = c2 данные вам значения (или найденные вами значения). Помните, что a и b — это катеты, а с — гипотенуза.

    • В нашем примере напишите: 3² + b² = 5².
  5. Изображение с названием Use the Pythagorean Theorem Step 5

    5

    Возведите в квадрат каждую известную сторону. Или же оставьте степени — вы можете возвести числа в квадрат позже.

    • В нашем примере напишите: 9 + b² = 25.
  6. Изображение с названием Use the Pythagorean Theorem Step 6

    6

    Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).

    • В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
  7. Изображение с названием Use the Pythagorean Theorem Step 7

    7

    Извлеките квадратный корень из обеих частей уравнения. На данном этапе на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне — свободный член (число).

    • В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4.
  8. Изображение с названием Use the Pythagorean Theorem Step 8

    8

    Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни — в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).

    • Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
      • «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • с = √425
        • с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров.

    Реклама

  1. Изображение с названием Use the Pythagorean Theorem Step 9

    1

    Выберите две точки на координатной плоскости. По теореме Пифагора можно вычислить длину отрезка, соединяющего две точки на координатной прямой. Для этого необходимо знать координаты (х,у) каждой точки.

    • Чтобы найти расстояние между двумя точками, вы будете рассматривать точки в качестве вершин треугольника, не прилежащих к прямому углу прямоугольного треугольника. Таким образом, вы сможете легко найти катеты треугольника, а затем вычислить гипотенузу, которая равна расстоянию между двумя точками.
  2. Изображение с названием Use the Pythagorean Theorem Step 10

    2

    Нанесите точки на координатную плоскость. Отложите координаты (х,у), где координата «х» откладывается по горизонтальной оси, а «у» — по вертикальной. Вы можете найти расстояние между точками без построения графика, но график позволяет визуально представить процесс ваших вычислений.

  3. Изображение с названием Use the Pythagorean Theorem Step 11

    3

    Найдите катеты треугольника. Вы можете сделать это, измерив длину катетов непосредственно на графике или с помощью формул: |x1 — x2| для вычисления длины горизонтального катета, и |y1 — y2| для вычисления длины вертикального катета, где (x1,y1) – координаты первой точки, а (x2,y2) – координаты второй точки.

    • Пример: даны точки: А(6,1) и В(3,5). Длина горизонтального катета:
      • |x1 — x2|
      • |3 — 6|
      • | -3 | = 3
    • Длины вертикального катета:
      • |y1 — y2|
      • |1 — 5|
      • | -4 | = 4
    • Таким образом, в прямоугольном треугольнике а = 3 и b = 4.
  4. Изображение с названием Use the Pythagorean Theorem Step 12

    4

    Используйте теорему Пифагора для нахождения гипотенузы. Расстояние между двумя точками равно гипотенузе треугольника, две стороны которого вы только что нашли. Используйте теорему Пифагора, чтобы найти гипотенузу, подставив в формулу найденные значения катетов (a и b).

    • В нашем примере а = 3 и b = 4. Гипотенуза вычисляется следующим образом:
      • (3)²+(4)²= c²
        c= √(9+16)
        c= √(25)
        c= 5. Расстояние между точками А(6,1) и В(3,5) равно 5.

    Реклама

Советы

  • Гипотенуза всегда:
    • лежит напротив прямого угла;
    • является самой длинной стороной прямоугольного треугольника;
    • обозначается как «с» в теореме Пифагора;
  • √(х) означает «квадратный корень из х».
  • Не забывайте проверять ответ. Если ответ кажется неправильным, проделайте вычисления снова.
  • Еще один момент — самая длинная сторона лежит напротив наибольшего угла, а самая короткая сторона — напротив наименьшего угла.
  • Выучите числа пифагоровой тройки, образующие стороны прямоугольного треугольника. Самая примитивная пифагорова тройка — это 3, 4, 5. Так, зная длину двух сторон, третью искать не придется.
    • Помните, гипотенуза — всегда самая длинная сторона.
  • Если дан обычный треугольник (а не прямоугольный), то требуется больше информации, чем просто длины двух сторон.
  • Графики являются наглядным способом нанесения обозначений а, b и с. Если вы решаете задачу, то в первую очередь постройте график.
  • Если дана длина только одной стороны, то теорему Пифагора применять нельзя. Попробуйте использовать тригонометрию (sin, cos, tan).
  • Если речь идет о задаче из некого сюжета, можно смело предположить, что деревья, столбы, стены и так далее образуют прямой угол с землей, если не указано иное.

Реклама

Об этой статье

Эту страницу просматривали 140 084 раза.

Была ли эта статья полезной?

Как найти стороны прямоугольного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как найти стороны прямоугольного треугольника

Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Прямоугольный треугольник

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Катет a =
Катет b =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:

c² = a² + b²

следовательно: c = a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = 3² + 4² = 9 + 16 = 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Катет (a или b) =
Прилежащий угол (β или α) =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула

c = a/cos(β) = b/cos(α)

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Катет (a или b) =
Противолежащий угол (α или β) =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула

c = a/sin(α) = b/sin(β)

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Гипотенуза c =
Катет (известный) =
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула

a = c² — b²

b = c² — a²

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = 5² — 4² = 25 — 16 = 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Гипотенуза c =
Угол (прилежащий катету) = °
Катет =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула

a = c ⋅ cos(β)

b = c ⋅ cos(α)

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Гипотенуза c =
Угол (противолежащий катету) = °
Катет =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула

a = c ⋅ sin(α)

b = c ⋅ sin(β)

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Катет (известный) =
Угол (прилежащий известному катету) = °
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула

a = b ⋅ tg(α)

b = a ⋅ tg(β)

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Катет (известный) =
Угол (противолежащий известному катету) = °
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула

a = b / tg(β)

b = a / tg(α)

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

a = 3 / tg(35) ≈ 3 / 0.7 ≈ 4.28 см

См. также

Как найти стороны прямоугольного треугольника

Онлайн калькулятор

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Катеты прямоугольного треугольника — свойства, основные формулы и примеры решений

Понятия и определения

Знак треугольника в первом веке ввёл в обиход древнегреческий философ и учёный Герон. Его свойства изучали Платон и Евклид. По их мнению, вся поверхность прямолинейного вида состоит из множеств различных треугольников. В геометрии под ними понимается область, лежащая в плоскости, ограниченной тремя отрезками, соединяющимися в трёх точках, не принадлежащих одной прямой.

Линии, образующие область, называются сторонами, а точки соприкосновения отрезков — вершинами. Основными элементами многоугольника являются:

  1. Медиана — отрезок, соединяющий середину с противолежащим углом. В треугольнике три медианы, которые пересекаются в одной точке. Называется она центроидом и определяет центр тяжести объекта.
  2. Высота — линия, опущенная из вершины на противоположную сторону, образующую с ней прямой угол. Место пересечения высот называют ортоцентром.
  3. Биссектриса — прямая, проведённая из угла таким образом, что делит его на две равные части. Если в треугольник вписать окружность, соприкасающуюся с его сторонами, то её центр совпадёт с точкой пересечения биссектрис. Называют это место — инцентр.

В зависимости от видов углов, треугольники разделяют на остроугольные, тупоугольные и прямоугольные. Но каким бы ни был тип фигуры, существует закономерность, что сумма всех углов всегда равна 180 градусам. Поэтому как минимум два угла должны быть острыми.

Различают треугольники и по числу равных сторон. Так, если они все равны, фигура называется равносторонней. Когда же по величине совпадают только две стороны, то многоугольник является равнобедренным. Его главное свойство в том, что углы равны. Частным случаем равнобедренного многоугольника является правильный треугольник (разносторонний).

Чтобы не возникала путаница, существуют стандартные обозначения величин. Вершины подписываются заглавными буквами A, B, C, а углы — греческими символами: α, β, γ. Стороны же обозначают прописными буквами латинского алфавита: a, b, c.

Свойства прямоугольного треугольника

Прямоугольный треугольник — это симметричный многоугольник, сумма двух углов которого равняется 90 градусов. Так как общая сумма всех трёх углов составляет 180 градусов, то соответственно третий угол равен 90 градусам. Стороны, образующие его, называют катетами, а оставшийся отрезок гипотенузой.

К основным свойствам фигуры относят следующее:

  • гипотенуза многоугольника всегда больше любого из его катетов;
  • сторона, располагающаяся напротив угла в 30 градусов, составляет половину гипотенузы;
  • два катета являются высотами треугольника;
  • середина окружности, описанная вокруг фигуры, совпадает с гипотенузой, при этом медиана, опущенная из прямого угла на гипотенузу, одинаковая с радиусом круга;
  • численное значение гипотенузы, возведённое в квадрат, равно сумме квадратов катетов (теорема Пифагора).

Эти основные признаки при решении геометрических задач помогают определить класс треугольника и рассчитать его величины. Большое значение при этом имеет вычисление значений катетов.

Так, если известна гипотенуза, то найти катеты, зная угол, не составит труда. Определив же длину катетов, вычислить оставшуюся сторону можно по теореме Пифагора. Периметр фигуры определяют сложением двух катетов и гипотенузы, а площадь находят перемножением катетов и делением полученного ответа на два.

Зная катеты, довольно просто вычислить угол. Нужно всего лишь запомнить, что соотношение сторон между собой равно тангенсу противолежащего угла и котангенсу, находящемуся рядом. При этом, зная любой из углов, найти второй можно простым вычитанием известного значения из девяноста. Высота же у прямоугольника равна косинусу прилежащего угла.

Формула для нахождения биссектрисы и медианы довольно сложная. Для нахождения первой величины используют преобразование радикала из суммы квадратов катетов к двум, а второй — подстановку радикала вместо стороны, лежащей напротив прямого угла.

Теорема Пифагора и углы

Эта теорема занимает одно из центральных мест в математике. Алгебраическая формулировка её гласит, что в прямоугольнике квадрат длины гипотенузы по своему значению равен сумме квадратов двух прилегающих к ней сторон, то есть катетов. Например, если обозначить гипотенузу буквой c, а катеты а и b, то математически её можно записать в виде формулы: a 2 +b 2 = c 2 .

Существует несколько доказательств этой теоремы. Самое простое из них — это использование подобия треугольников. В его основе лежат аксиомы. Пусть имеется геометрическая фигура ABC, у которой вершина C является прямой, то есть её угол равен 90 градусов. Если из точки С опустить высоту, а место пересечения с противолежащей стороной обозначить H, то получится два треугольника. Один будет состоять из вершин AHC, а другой BHC. Эти новые фигуры подобны ABC по двум углам. Следующие выражения будут верными:

Приведённые записи эквивалентны равенствам: BC 2 = AB * HB; AC 2 = AB * AH. Сложив первую и вторую формулу, получается: BC 2 + AC 2 = AB * (HB + AH) = AB 2 . Что и следовало доказать.

Используя это фундаментальное правило и свойство, что катет, расположенный напротив угла в 30 градусов, равен половине гипотенузы, проводят множество расчётов, связанных с вычислением длин сторон. Для доказательства, что AC = BC/2, приводят следующие рассуждения.

Так как вершина B равна 30 градусам, то, согласно правилу, разворот С должен составлять C =30*2 = 60 градусов. К имеющемуся треугольнику можно приложить точно такую же фигуру, делая сторону AB центром симметрии. Тогда для многоугольника BCD будет справедливо, что B = D = 60º. Исходя из этого можно утверждать, что DC = BC. Но, так как AC = ½ DC, то соответственно AC = ½ BC.

Но не всегда известны все данные, необходимые для нахождения длины катета по приведённым теоремам. Поэтому для вычисления катетов используются и тригонометрические соотношения.

Тригонометрические формулы

Для нахождения длины катета прямоугольного треугольника используют простые формулы. Для их применения нужно знать значение любой из сторон и величину разворота произвольной вершины. Существует четыре способа, позволяющих найти катет с использованием тригонометрических правил:

  1. В основе лежит аксиома, что синус находится из отношения противолежащего катета к гипотенузе. Например, пусть известно что длина гипотенузы составляет 100 сантиметров, а вершина A имеет разворот равный 30 градусам. Используя тригонометрические таблицы, можно утверждать, что синус угла A составляет ½. Учитывая преобразованное выражение, находят катет: a = 100 / 2 =50 (см). Таким образом, синус острого угла численно равен отношению одного из катетов, деленного на гипотенузу: sin A = BC/AB.
  2. Используется правило, что косинус в прямоугольнике представляет собой отношение прилежащего катета к прямому углу и гипотенузе: cosA = AC/AB. Например, пусть разворот вершины C равен 60 градусам, а гипотенуза равна 100 сантиметрам. Согласно тригонометрической таблице, угол в 60 градусов равен ½. Подставив это значение в формулу, можно найти значение катета: a=cos∠C*a; b=½*100=50 сантиметров.
  3. Тангенс угла можно вычислить, разделив значение длины противолежащего катета к прилежащему. Математическая формула этого утверждения имеет вид: tg = BC/AC. Катет многоугольника может быть найден как b = tg * a. Например, известно, что у фигуры один из углов равен 45 градусов, а длина гипотенузы составляет 100 сантиметров. Так как тангенс 45 градусов равен единице, то ответом на задачу будет: a = 1*100 = 100 сантиметров.
  4. Котангенс определяется из соотношения прилежащего катета к противолежащему. Фактически это величина, обратная тангенсу: ctg = AC/BC. Например, пусть разворот угла A составляет 30 градусов, а длина катета, находящегося напротив него, равняется 50 сантиметрам. Котангенс 30 градусов соответствует корню из трёх. Подставив в формулу известные данные, можно вычислить неизвестный катет: b =50√3 сантиметров.

Зная, как выглядят тригонометрические формулы и содержание двух теорем, вычислить значение катета можно будет в большинстве поставленных задач.

Типовые примеры

Для решения задач на нахождение катета не нужно обладать какими-то особенными знаниями. Нужно просто внимательно проанализировать условие. Например, пусть известно, что в прямоугольнике один катет длиннее другого на пять сантиметров. При этом площадь фигуры равняется 84 сантиметрам в квадрате. Необходимо определить длины сторон и периметр.

Так как в условии дана площадь, то при решении необходимо отталкиваться от неё. Известно, что площадь прямоугольного треугольника находится по формуле: S = AC*CB/2. Это выражение является частным случаем общей формулы для нахождения площади любого треугольника, где: AC — это высота, а CB — основание. Если принять, что AC равно X, то, согласно условию, длина CB будет составлять x+5.

Исходя из этого, площадь треугольника будет равна: S = (x*(x+5))/2. Подставив вместо S заданное значение, можно получить квадратное уравнение: x2 + 5x — 84 = 0. Решать его лучше методом детерминанта. Корнями уравнения будут -12 и 7. Так как -12 не удовлетворяет условию задачи, то верным ответом будет семь.

Длина второго катета равняется семи сантиметрам. Первого: AC = 7−5 = 2 см. Зная оба катета, по теореме Пифагора можно найти гипотенузу: c = (22 + 72)½ = (4+49)½ = 531/2 = 7,3 см. Найдя длины всех сторон, можно без усилий найти периметр обыкновенным сложением: P = 2+7+7,3 = 16,3 см. Задача решена.

Довольно интересные, но в то же время простые задачи на нахождение сторон и углов при известной длине гипотенузы и значения разворота одной из вершин. Пусть имеется прямоугольный треугольник, у которого гипотенуза BC равняется пяти сантиметрам, а угол между ней и катетом составляет 60 градусов. Нужно определить все остальные стороны и углы.

Так как известна гипотенуза и острый угол, то, воспользовавшись тригонометрическими формулами, можно найти длины катетов: AC=BC*sin60 = 5*(3) ½ /2; AB=BC*cos60 = 5/2. Сумма всех углов в треугольнике равна 180 градусов, так как один из них прямой, а второй задан и составляет 60 градусов, то третий находится путём вычитания C = 180 — (90 + 60) = 30.

Как найти катет прямоугольного треугольника

С задачками по геометрии сталкиваются все в средней школе. Кому-то такие задачки даются сложно, а кто-то их щелкает, как орешки. На самом деле эти задачи не особо сложные, просто нужно вникнуть и понять определенный алгоритм решения. Давайте подробнее разберем, как найти катет прямоугольного треугольника.

Геометрические определения

  • Если у треугольника есть прямой угол (∠=90 о ), то он является прямоугольным.
  • Катет – линия, создающая угол 90 градусов в треугольнике.
  • Гипотенуза – линия, которая находится напротив угла равного 90 градусов.
  • Две ортогональные линии образуют прямой угол, величина которого 90 градусов. Еще можно сказать, что это половина развернутого угла.

Свойства сторон в прямоугольном треугольнике

Гипотенуза всегда больше каждого из катетов.

Сторона, которая находится напротив угла равного 30 градусов, равна половине величины гипотенузы.

К прямоугольному треугольнику можно применить теорему Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Формулы для решения задач

  • Если мы знаем величину одного катета А и гипотенузы С, то второй катет B мы вычислим при помощи теоремы Пифагора.
  • Угол А мы может определись с помощью формулы синуса:

  • Так как сумма всех углов геометрической фигуры всегда равна 180 градусов, то другой острый угол можно вычислить по формуле:

Примеры решения задач

Задача №1:

В треугольнике АВС с ∠А=90 градусов, ∠С=60 градусов и катетом АВ=5 см. Найти длину катета АС.

В прямоугольном треугольнике АВС найдем угол В:

∠В=90 о — ∠С=90 о — 60 о = 30 о

Поскольку ∠В=30 о , то катет АВ равен половине гипотенузы ВС, а значит,

Длину катета АС найдем с помощью теоремы Пифагора:

Задача №2:

В равнобедренном и прямоугольном треугольнике АВС гипотенуза больше катета на 2 см. Найти длину сторон треугольника.

В треугольной фигуре АВС обозначим катеты АВ=АС=х, тогда ВС=2+х. Запишем теорему Пифагора для данного треугольника:

ВС 2 = АВ 2 + АС 2 => (х+2) 2 = х 2 + х 2 или х 2 – 4х – 4 = 0

Решая это уравнение и учитывая условия задачи, получим

т.е. АВ = АС = (2+2) см, ВС = (4+2) см

Ответ: АВ = АС = (2+2) см, ВС = (4+2) см

Как видите, процесс решения геометрических задач по нахождению катета в прямоугольном треугольнике не особо сложный. Нужно просто приложить усилия, посидеть и вникнуть в суть задачи. Когда начнете писать формулы, решение придет к вам само. Удачи в решении задачек по геометрии, теперь вы знаете, как найти катет прямоугольного треугольника.

источники:

http://nauka.club/matematika/katet-v-pryamougolnom-treugolnike.html

http://dobriy-sovet.ru/kak-najti-katet-pryamougolnogo-treugolnika/

Это смотря какие данные нам даны для решения.

Например есть теорема Пифагора:

по ней, если катеты a и b, а гипотенуза c, то:

a²+b²=c²

Отсюда можно найти катет, зная длину гипотенузы и второго катета:

a²=c²-b²

a=√(c²-b²)

Также находим и b:

b=√(c²-a²)

Ещё можно найти катет через тригонометрические функции, то есть зная угол через синусы, косинусы, тангенсы, котангенсы и т.д.

Если представить треугольник как вписанный в круг, то зная угол и размер гипотенузы можно найти катеты.

В рассматриваемом треугольнике, вписанном в круг, гипотенуза будет радиусом круга и приравнивается к 1 (к единице). А катеты — это синус и косинус, они меньше единицы.

Допустим зная угол α можно вычислить sin(α) и cos(α).

Синус соответствует вертикальному катету, а косинус горизонтальному.

Теперь, чтобы найти длины этих катетов, нужно перевести их из коэффициентов, которые меньше единицы, в реальные длины. Для этого их нужно домножить на длину гипотенузы:

Если:

Y — вертикальный катет, а X — горизонтальный катет (см. картинку) a Z — гипотенуза, то:

Y=Z*sin(α)

X=Z*cos(α)

Можно найти катет и зная лишь длину второго катета, а также угол.

Допустим знаем Y и угол α.

Тогда запросто находим гипотенузу, выражая её из предыдущей формулы:

Z=sin(α)/Y

А затем уже находим второй катет: X=Z*cos(α)

Если же наоборот знаем только X катет (горизонтальный, относительно приведённого рисунка), то находим гипотенузу так:

Z=X/cos(α)

А затем уже находим катет Y: Y=Z*sin(α)

Синус, косинус и гипотенуза в треугольнике как катеты

Понравилась статья? Поделить с друзьями:
  • Как найти мелких поставщиков
  • Неверный вид объявления авито как исправить об автомобиле
  • Как найти вещь если забил
  • Как найти массу дефекта бериллий
  • Как найти крутую татуировку