Как найти кинетическую энергию если известна температура

Кинетическая энергия вещества


Кинетическая энергия вещества

4.4

Средняя оценка: 4.4

Всего получено оценок: 268.

4.4

Средняя оценка: 4.4

Всего получено оценок: 268.

Любое физическое тело представляет собой набор веществ (одного или нескольких), которые состоят из молекул и атомов. Если тело как целое находится в состоянии покоя, то это не значит, что молекулы вещества “замерли” и не двигаются. Такая ситуация возможна только, если температура тела станет равна абсолютному нулю, то есть Tтела = 00К, а при любой температуре, больше нуля, частицы вещества непрерывно, хаотически двигаются с различными скоростями, поэтому полная кинетическая энергия вещества равна сумме кинетических энергий всех частиц.

Чему равна энергия движущейся частицы

В разделе механики была получена формула для кинетической энергии Ек движущегося со скоростью v тела массой m. Эта формула универсальна и справедлива не только для тел макроскопических размеров, но и для микрочастиц (молекул, атомов, электронов и т.п.):

$ Ек = {m * v^2over 2} $ (1),

Для того чтобы узнать полную кинетическую энергию вещества Епк, необходимо сложить энергии всех частиц:

$ Е^п_к = Е_1+ Е_2 + Е_3 +…. Е_N $ (2),

где N — полное число частиц в веществе.

Кинетическая энергии движущейся частицы или тела:

Рис. 1. Кинетическая энергии движущейся частицы или тела.

Понятно, что для вычисления кинетической энергии всего вещества по формуле (2) необходимо знать скорости всех частиц, их массы и общее количество. Но это в принципе нереально хотя бы потому, что в одном моле вещества находится гигантское количество молекул — 6,023*1023 !

Эксперименты показывали, что чем сильнее нагрето вещество, тем быстрее (“энергичнее”) двигаются частицы. Например, исследователи могли это видеть, наблюдая броуновское движение в микроскоп. После изобретения итальянским ученым Галилео Галилеем (1564-1642 г.г.) термометра у физиков появилась возможность проводить измерения величины, названной температурой, которая показывала степень теплового состояния вещества.

Общая кинетическая энергия непрерывного хаотического движения всех частиц входит в состав внутренней энергии вещества, которая кроме кинетической включает в себя:

  • Потенциальную энергию частиц, вызванную силами межмолекулярного взаимодействия;
  • Энергию электронов в атомах;
  • Ядерную энергию.

Внутренняя энергия вещества: кинетическая, потенциальная, электронная, ядерная

Рис. 2. Внутренняя энергия вещества: кинетическая, потенциальная, электронная, ядерная.

Что же такое температура?

В молекулярно-кинетической теории теплота рассматривается как одна из форм энергии, а именно — кинетическая энергия атомов и молекул. Чем “горячее” тело, тем с большей скоростью двигаются молекулы вещества и, значит, больше становится их кинетическая энергия. Эта величина, будучи усредненной по всему числу беспорядочно движущихся частиц, и есть температура тела (вещества).

Вместо того, чтобы пытаться вычислить энергию по формуле (2), физиками были получены математические формулы, связавшие кинетическую энергию Епк вещества и температуру T. Использование понятия температуры, которое распространяется на все вещества — газообразные, жидкие и твердые, позволило решить задачу по определению энергии Епк.

Как перейти от температуры к энергии

Для измерения энергии в Международной системе СИ используется единица измерения джоуль (Дж), а температура, как известно, измеряется в градусах. Как количественно связаны эти величины? На примере одноатомного идеального газа попробуем получить формулу, связывающую эти величины.

Напомним, что температура в системе СИ измеряется в градусах Кельвина. Связь температуры в градусах Кельвина и температуры в единицах энергии (Дж) выражается формулой:

$ θ = k * T $ (3),

где: k =1,38*10-23 Дж/К — постоянная Больцмана.

Для идеального газа справедлив закон Клапейрона-Менделеева, выражаемый в виде уравнения состояния:

$ p * V = {mover μ} * R * T $ (4),

где:

p, m и V — давление, масса и объем газа, μ — молярная масса газа,T — температура в градусах по шкале Кельвина, R = 8,3157 джоуль/моль/градус — универсальная газовая постоянная.

В то же время газовая постоянная R равна:

$ R = k * N_a $ (5),

где: k — постоянная Больцмана, Na = 6,023*1023 — число Авогадро, количество молекул в одном моле вещества. Тогда, подставив в уравнение (4) R из уравнения (5), разделив обе части уравнения (4) на объем V и воспользовавшись тем, что:

$ {mover μ} * {Naover V } = n $ — концентрация молекул, получим из формулы (4) выражение для давления в виде:

$ p = n * k * T $ (6).

Для давления одноатомного идеального газа воспользуемся выражением:

$ p = {1over 3} * n * m * v^2_c $ (7),

где: v2c — средний квадрат скорости по всем группам молекул. Напомним, что молекулы в газе двигаются с разными скорости. Распределение по скоростям, то есть количество молекул с определенной скоростью, имеет колоколообразный вид, и впервые было получено английским физиком Максвеллом.

Рис. 3. Распределение Максвелла по скоростям для молекул идеального газа.

Из формул (6), (7) и выражения (1) для кинетической энергии Ек, получим:

$ Ек = { 3 over 2} * k * T $ (8).

Уравнение (8) устанавливает однозначную связь между средней кинетической энергией вещества и его абсолютной температурой.

Если газ будет не одноатомный, то часть энергии уйдет на колебания атомов внутри молекул и на вращение самих молекул. Колебания и вращения тоже обусловлены движением частицы, но выражения для этих составляющих энергии будут несколько иные. Формулы (1) и (7) получены в предположении, что одноатомные частицы двигаются только поступательно.

Заключение

Что мы узнали?

Итак, мы узнали что кинетическая энергия веществ, представляет собой сумму кинетических энергий всех частиц вещества. Кинетическая энергия движения частиц, усредненная по их числу, определяет температуру вещества. Приведена формула, связывающая среднюю кинетическую энергию вещества с температурой.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.4

Средняя оценка: 4.4

Всего получено оценок: 268.


А какая ваша оценка?

В природе существует три агрегатных состояния вещества. Об этом мы уже знаем с прошлых шагов 🙃
Наиболее простым для изучения в термодинамике является газ. Его и рассмотрим на примере идеального газа.

Чтобы найти среднюю кинетическую энергию N молекул, находим среднее арифметическое их кинетических энергий.

🚀 Если смешать газы, находящиеся в двух сосудах, через какое-то время установится состояние теплового равновесия. При установлении теплового равновесия между двумя газами, происходит обмен энергией, и средние кинетические энергии частиц газов становятся равны. Но при этом будет равна и температура газов, так как она характеризует интенсивность движения частиц газа.

Можно сделать вывод, что температура является мерой средней кинетической энергии молекул.

Связь между температурой и кинетической энергией устанавливает формула на картинке 👇

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Одним из важнейших понятий в физике является энергия, то есть способность тела совершать ту или иную работу. Механическая энергия подразделяется на кинетическую и потенциальную. Рассмотрим первый ее вид.

Кинетическая энергия – понятие и определение

Определение

Кинетическая энергия – это способность движущегося тела совершать определенную работу.

Например, движущийся автомобиль способен снести находящееся перед ним препятствие, а падающий камень – оставить вмятину на металлической пластинке.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Кинетическая энергия зависит от скорости движения и массы тела. Она описывается формулой:

(E_k=frac{mnu^2}2)

Единицей измерения кинетической энергии является Джоуль (Дж).

Проведя простые преобразования, легко вывести формулы для вычисления массы тела и скорости движения:

(m=frac{2E_k}{nu^2})

(nu=sqrt{frac{2E_k}m})

Из основной формулы видно: во сколько раз изменяется масса тела, во столько раз изменяется и величина кинетической энергии. Например, если масса будет уменьшена или увеличена в 5 раз, то и величина кинетической энергии станет соответственно меньше или больше в 5 раз.

При увеличении скорости кинетическая энергия увеличивается в квадратичной зависимости. Допустим, скорость движения тела стала в 6 раз больше. Соответственно его кинетическая энергия возросла в 36 раз.

Формула кинетической энергии тела справедлива только для скоростей значительно меньших, чем скорость света. Если же скорость движения приближается к 300 000 км/с, то тут начинает действовать теория относительности, созданная Альбертом Эйнштейном.

Кинетическая энергия зависит от особенностей рассмотрения системы. Если тело принимают как макроскопический объект, то оно будет обладать внутренней энергией. В этом случае кинетическая энергия возникнет только в момент его движения.

Это же тело можно рассматривать и с микроскопической точки зрения. Тепловое движение атомов и молекул обуславливает внутреннюю энергию тела. В то же время средняя кинетическая энергия этого движения пропорциональна абсолютной температуре тела. Коэффициент этой пропорциональной зависимости называется постоянной Больцмана.

Кинетическая энергия атомов и молекул при рассмотрении тела на микроскопическом уровне описывается формулой:

(E_k=frac32kT)

где (k) – это постоянная Больцмана.

Теорема об изменении кинетической энергии

Рассмотрим наиболее простой пример движения, при котором скорость движения и сила, действующая на тело имеют одинаковое направление. Тело совершает перемещение (S), так как сила (F) совершает работу (A). Также она изменяет и скорость движения, придавая телу некоторое ускорение. Это свидетельствует о наличии связи между работой силы и изменением скорости движения.

В данном случае работа силы будет описываться формулой:

A=FS

Запишем второй закон Ньютона в стандартном виде:

F=ma

При условии, что движение является равноускоренным (сила не зависит от координат и времени), работу можно записать так:

A=maS

Вспомним формулу из курса кинематики, связывающую перемещение, ускорение, начальную и конечную скорости движения тела:

(S=frac{nu^2-nu_0^2}{2a})

Подставляем ее в формулу работы:

(A=frac{ma(v^2-v_0^2)}{2a}=frac{mv^2}2-frac{mv_0^2}2)

Полученное равенство показывает, что разность между кинетической энергией в конечной и начальный момент времени равна работе силы. Это позволяет сформулировать теорему об изменении кинетической энергии.

Изменение кинетической энергии тела равна равнодействующей всех сил или работе силы:

(A=E_{k2}-E_{k1})

Таким образом, сила будет совершать отрицательную работу, если она направлена в сторону, противоположную движению тела. В этом случае начальная кинетическая энергия будет больше, чем конечная:

(frac{mv_0^2}2>frac{mv^2}2)

Так как сила имеет противоположное скорости направление, то модуль скорости будет уменьшаться, что и становится причиной уменьшения величины кинетической энергии.

Если же сила будет направлена в сторону движения, то кинетическая энергия будет возрастать:

(frac{mv_0^2}2<frac{mv^2}2)

Фактически теорему об изменении кинетической энергии можно рассматривать как иную формулировку второго закона Ньютона. Поэтому ее использование возможно в различных случаях, например, при рассмотрении действия силы трения, тяжести или упругости.

Примеры решения задач, как найти кинетическую энергию

Рассмотрим примеры решения задач на нахождение кинетической энергии.

Задача 1

Тело, имеющее массу 2 кг движется поступательно со скоростью 36 км/ч. Найдите, какой кинетической энергией оно обладает.

Решение

Прежде чем приступить к вычислению необходимо перевести скорость тела в единицы СИ:

36 км/ч = 10 м/с

Подставим известные значения в формулу кинетической энергии и выполним расчет:

(E_k=frac{2times10^2}2=100;Дж\)

Ответ: кинетическая энергия тела составляет 100 Джоулей.

Задача 2

Груз массой 0,2 кг прикреплен к пружине, которая закреплена горизонтально. Максимальная скорость колебания 3 м/с. Вычислить максимальную кинетическую энергию тела.

Решение

Воспользуемся выражением определения кинетической энергии:

(E_{k_{max}}=frac{mv^2}2)

Выполним вычисление:

(E_{k_{max}}=frac{0.2times3^2}2=0.9;Дж)

Ответ: максимальная кинетическая энергия пружины и груза составляет 0,9 Дж.

Задача 3

Найдите среднюю кинетическую энергию поступательного движения молекулы водорода при температуре Т = 280 К.

Решение

Для решения задачи воспользуемся уравнением, связывающим температуру и энергию:

(E_k=frac32kT)

где k – это постоянная Больцмана

Проведем вычисление:

(E_k=frac{3times1,38times10^{-23}times280}2=579,6times10^{-23};Дж)

Ответ: средняя кинетическая скорость молекулы водорода составляет (579,6times10^{-23};Дж.)

Определение

Идеальный газ — газ, удовлетворяющий трем условиям:

  • Молекулы — материальные точки.
  • Потенциальная энергия взаимодействия молекул пренебрежительно мала.
  • Столкновения между молекулами являются абсолютно упругими.

Реальный газ с малой плотностью можно считать идеальным газом.

Измерение температуры

Температуру можно измерять по шкале Цельсия и шкале Кельвина. По шкале Цельсия за нуль принимается температура, при которой происходит плавление льда. По шкале Кельвина за нуль принимается абсолютный нуль — температура, при котором давление идеального газа равно нулю, и его объем тоже равен нулю.

Обозначение температуры

  1. По шкале Цельсия — t. Единица измерения — 1 градус Цельсия (1 oC).
  2. По шкале Кельвина — T. Единица измерения — 1 Кельвин (1 К).

Цена деления обеих шкал составляет 1 градус. Поэтому изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах:

∆t = ∆T

При решении задач в МКТ используют значения температуры по шкале Кельвина. Если в условиях задачи температура задается в градусах Цельсия, нужно их перевести в Кельвины. Это можно сделать по формуле:

T = t + 273

Если особо важна точность, следует использовать более точную формулу:

T = t + 273,15

Пример №1. Температура воды равна oC. Определить температуру воды в Кельвинах.

T = t + 273 = 2 + 273 = 275 (К)

Основное уравнение МКТ идеального газа

Давление идеального газа обусловлено беспорядочным движением молекул, которые сталкиваются друг с другом и со стенками сосуда. Основное уравнение МКТ идеального газа связывает давление и другие макропараметры (объем, температуру и массу) с микропараметрами (массой молекул, скоростью молекул и кинетической энергией).

Основное уравнение МКТ

Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

p=23nEk

p — давление идеального газа, n — концентрация молекул газа, Ek — средняя кинетическая энергия поступательного движения молекул.

Выражая физические величины друг через друга, можно получить следующие способы записи основного уравнения МКТ идеального газа:

p=13m0nv2

m0— масса одной молекулы газа;

n — концентрация молекул газа;

v2 — среднее значение квадрата скорости молекул газа.

Среднее значение квадрата скорости не следует путать со среднеквадратичной скоростью v, которая равна корню из среднего значения квадрата скорости:

v=v2

p=13ρv2

ρ — плотность газа

p=nkT

k — постоянная Больцмана (k = 1,38∙10–3 Дж/кг)

T — температура газа по шкале Кельвина

Пример №2. Во сколько раз уменьшится давление идеального одноатомного газа, если среднюю кинетическую энергию теплового движения молекул и концентрацию уменьшить в 2 раза?

Согласно основному уравнению МКТ идеального газа, давление прямо пропорционально произведению средней кинетической энергии теплового движения молекул и концентрации его молекул. Следовательно, если каждая из этих величин уменьшится в 2 раза, то давление уменьшится в 4 раза:

Следствия из основного уравнения МКТ идеального газа

Через основное уравнение МКТ идеального газа можно выразить скорость движения молекул (частиц газа):

v=3kTm0=3RTM

R — универсальная газовая постоянная, равная произведения постоянной Авогадро на постоянную Больцмана:

R=NAk=8,31 Дж/К·моль

Температура — мера кинетической энергии молекул идеального газа:

Ek=32kT

T=2Ek3k

Полная энергия поступательного движения молекул газа определяется формулой:

E=NEk

Пример №3. При уменьшении абсолютной температуры на 600 К средняя кинетическая энергия теплового движения молекул неона уменьшилась в 4 раза. Какова начальная температура газа?

Запишем формулу, связывающую температуру со средней кинетической энергией теплового движения молекул, для обоих случаев, с учетом что:

Следовательно:

Составим систему уравнений:

Отсюда:

Задание EF19012

На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.


Алгоритм решения

1.Указать, в каких координатах построен график.

2.На основании основного уравнения МКТ идеального газа и уравнения Менделеева — Клапейрона выяснить, как меняются указанные физические величины во время процессов 1–2 и 2–3.

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

T=2Ek3

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

pV=νRT

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

νR=p1V1T1=p2V2T2

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

Ответ:

 Участок 1–2 — изобарный процесс. Температура увеличивается, давление постоянно.

 Участок 2–3 — изотермический процесс. Температура постоянно, давление увеличивается.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17560

Первоначальное давление газа в сосуде равнялось р1. Увеличив объём сосуда, концентрацию молекул газа уменьшили в 3 раза, и одновременно в 2 раза увеличили среднюю энергию хаотичного движения молекул газа. В результате этого давление р2 газа в сосуде стало равным

Ответ:

а) 13p1

б) 2p1

в) 23p1

г) 43p1


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для состояний 1 и 2.

4.Выразить искомую величину.

Решение

Исходные данные:

 Начальное давление: p0.

 Начальная концентрация молекул: n1 = 3n.

 Конечная концентрация молекул: n2 = n.

 Начальная средняя энергия хаотичного движения молекул: Ek1 = Ek.

 Конечная средняя энергия хаотичного движения молекул: Ek2 = 2Ek.

Основное уравнение МКТ:

p=23nEk

Составим уравнения для начального и конечного состояний:

p1=23n1Ek1=233nEk=2nEk

p2=23n2Ek2=23n2Ek=43nEk

Отсюда:

nEk=p12=3p24

p2=4p16=23p1

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18416

Цилиндрический сосуд разделён неподвижной теплоизолирующей перегородкой. В одной части сосуда находится кислород, в другой – водород, концентрации газов одинаковы. Давление кислорода в 2 раза больше давления водорода. Чему равно отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода?


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для обоих газов.

4.Найти отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Концентрации кислорода и водорода в сосуде равны. Следовательно, n1 = n2 = n.

 Давление кислорода вдвое выше давления водорода. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23nEk

Применим его для обоих газов и получим:

p1=23n1Ek1 или 2p=23nEk1 

p2=23n2Ek2 или p=23nEk2 

Выразим среднюю кинетическую энергию молекул газа из каждого уравнения:

Ek1=3pn

Ek2=3p2n

Поделим уравнения друг на друга и получим:

Ek1Ek2=3pn·2n3p=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18824

В одном сосуде находится аргон, а в другом – неон. Средние кинетические энергии теплового движения молекул газов одинаковы. Давление аргона в 2 раза больше давления неона. Чему равно отношение концентрации молекул аргона к концентрации молекул неона?


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для обоих газов.

4.Найти отношение концентрации молекул аргона к концентрации молекул неона.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Средние кинетические энергии теплового движения молекул газов одинаковы. Следовательно, Ek1=Ek2=Ek.

 Давление аргона в 2 раза больше давления неона. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23nEk

Применим его для обоих газов и получим:

p1=23n1Ek1 или 2p=23n1Ek 

p2=23n2Ek2 или p=23n2Ek 

Выразим концентрации молекул газа из каждого уравнения:

n1=3pEk

n2=3p2Ek

Поделим уравнения друг на друга и получим:

n1n2=3pEk·2Ek3p=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10.9k

Повседневный опыт показывает, что недвижимые тела можно привести в движение, а движимые остановить. Мы с вами постоянно что-то делаем, мир вокруг суетится, светит солнце… Но откуда у человека, животных, да и у природы в целом берутся силы для выполнения этой работы? Исчезает ли механическое движение бесследно? Начнет ли двигаться одно тело без изменения движения другого? Обо всем этом мы расскажем в нашей статье.

Понятие энергии

Для работы двигателей, которые придают движение автомобилям, тракторам, тепловозам, самолетам, нужно топливо, которое является источником энергии. Электродвигатели придают движение станкам при помощи электроэнергии. За счет энергии воды, падающей с высоты, оборачиваются гидротурбины, соединенные с электрическими машинами, производящими электрический ток. Человеку для того, чтобы существовать и работать, также нужна энергия. Говорят, что для того, дабы выполнять какую-нибудь работу, необходима энергия. Что же такое энергия?

  • Наблюдение 1. Поднимем над землей мяч. Пока он пребывает в состоянии спокойствия, механическая работа не выполняется. Отпустим его. Под действием силы тяжести мяч падает на землю с определенной высоты. Во время падения мяча выполняется механическая работа.
  • Наблюдение 2. Сомкнем пружину, зафиксируем ее нитью и поставим на пружину гирьку. Подожжем нить, пружина распрямится и поднимет гирьку на некую высоту. Пружина выполнила механическую работу.
  • Наблюдение 3. На тележку закрепим стержень с блоком в конце. Через блок перекинем нить, один конец которой намотан на ось тележки, а на другом висит грузик. Отпустим грузик. Под действием силы тяжести он будет опускаться книзу и придаст тележке движение. Грузик выполнил механическую работу.

как найти кинетическую энергию

После анализа всех вышеперечисленных наблюдений можно сделать вывод, что если тело или несколько тел во время взаимодействия выполняют механическую работу, то говорят, что они имеют механическую энергию, либо энергию.

Понятие энергии

Энергия (от греч. слова энергия — деятельность) — это физическая величина, которая характеризирует способность тел выполнять работу. Единицей энергии, а также и работы в системе СИ является один Джоуль (1 Дж). На письме энергия обозначается буквой Е. Из вышеуказанных экспериментов видно, что тело выполняет работу тогда, когда переходит из одного состояния в другое. Энергия тела при этом меняется (уменьшается), а выполненная телом механическая работа равна результату изменения ее механической энергии.

Виды механической энергии. Понятие потенциальной энергии

формула кинетической энергии поступательного движения

Различают 2 вида механической энергии: потенциальную и кинетическую. Сейчас подробнее рассмотрим потенциальную энергию.

Потенциальная энергия (ПЭ) — это энергия, определяющаяся взаимным положением тел, которые взаимодействуют, либо частями того самого тела. Поскольку любое тело и земля притягивают друг друга, то есть взаимодействуют, ПЭ тела, поднятого над землей, будет зависеть от высоты поднятия h. Чем выше поднято тело, тем больше его ПЭ. Экспериментально установлено, что ПЭ зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела были подняты на одинаковую высоту, то тело, имеющее большую массу, будет иметь и большую ПЭ. Формула данной энергии выглядит следующим образом: Eп = mgh, где Eп — это потенциальна энергия, m — масса тела, g = 9,81 Н/кг, h — высота.

Потенциальная энергия пружины

Потенциальной энергией упруго деформированного тела называют физическую величину Eп, которая при изменении скорости поступательного движения под действием сил упругости уменьшается ровно на столько, на сколько растет кинетическая энергия. Пружины (как и другие упруго деформированные тела) имеют такую ПЭ, которая равна половине произведения их жесткости k на квадрат деформации: x = kx2: 2.

Энергия кинетическая: формула и определение

Иногда значение механической работы можно рассматривать без употребления понятий силы и перемещения, акцентировав внимание на том, что работа характеризует изменение энергии тела. Все, что нам может потребоваться, — это масса некоего тела и его начальная и конечная скорости, что приведет нас к кинетической энергии. Кинетическая энергия (КЭ) — это энергия, принадлежащая телу вследствие собственного движения.

кинетическая энергия пружины

Кинетическую энергию имеет ветер, ее используют для придания движения ветряным двигателям. Движимые массы воздуха оказывают давление на наклонные плоскости крыльев ветряных двигателей и заставляют их оборачиваться. Вращательное движение при помощи систем передач передается механизмам, выполняющим определенную работу. Движимая вода, оборачивающая турбины электростанции, теряет часть своей КЭ, выполняя работу. Летящий высоко в небе самолет, помимо ПЭ, имеет КЭ. Если тело пребывает в состоянии покоя, то есть его скорость относительно Земли равна нулю, то и его КЭ относительно Земли равна нулю. Экспериментально установлено, что чем больше масса тела и скорость, с которой оно движется, тем больше его КЭ. Формула кинетической энергии поступательного движения в математическом выражении следующая:

энергия кинетическая формула

Где К — кинетическая энергия, m — масса тела, v — скорость.

Изменение кинетической энергии

Поскольку скорость движения тела является величиной, зависящей от выбора системы отсчета, значение КЭ тела также зависит от ее выбора. Изменение кинетической энергии (ИКЭ) тела происходит вследствие действия на тело внешней силы F. Физическую величину А, которая равна ИКЭ ΔЕк тела вследствие действия на него силы F, называют работой: А = ΔЕк. Если на тело, которое движется со скоростью v1, действует сила F, совпадающая с направлением, то скорость движения тела вырастет за промежуток времени t к некоторому значению v2. При этом ИКЭ равно:

кинетическая энергия молекул

Где m — масса тела; d — пройденный путь тела; Vf1 = (V2 — V1); Vf2 = (V2 + V1); a = F : m. Именно по этой формуле высчитывается, на сколько изменяется энергия кинетическая. Формула также может иметь следующую интерпретацию: ΔЕк = Flcos, где cosά является углом между векторами силы F и скорости V.

Средняя кинетическая энергия

Кинетическая энергия представляет собой энергию, определяемую скоростью движения разных точек, которые принадлежат этой системе. Однако следует помнить, что необходимо различать 2 энергии, характеризующие разные виды движения: поступательное и вращательное. Средняя кинетическая энергия (СКЭ) при этом является средней разностью между совокупностью энергий всей системы и ее энергией спокойствия, то есть, по сути, ее величина — это средняя величина потенциальной энергии. Формула средней кинетической энергии следующая:

кинетическая энергия молекул газа

где k — это константа Больцмана; Т — температура. Именно это уравнение является основой молекулярно-кинетической теории.

Средняя кинетическая энергия молекул газа

средняя кинетическая энергия молекул формула

Многочисленными опытами было установлено, что средняя кинетическая энергия молекул газа в поступательном движении при заданной температуре одна и та же, и не зависит от рода газа. Кроме того, было установлено также, что при нагревании газа на 1 оС СКЭ увеличивается на одно и то же самое значение. Сказать точнее, это значение равно: ΔЕк = 2,07 х 10-23Дж/оС. Для того чтобы вычислить, чему равна средняя кинетическая энергия молекул газа в поступательном движении, необходимо, помимо этой относительной величины, знать еще хотя бы одно абсолютное значение энергии поступательного движения. В физике достаточно точно определены эти значения для широкого спектра температур. К примеру, при температуре t = 500 оС кинетическая энергия поступательного движения молекулы Ек = 1600 х 10-23Дж. Зная 2 величины (ΔЕк и Ек), мы можем как вычислить энергию поступательного движения молекул при заданной температуре, так и решить обратную задачу — определить температуру по заданным значениям энергии.

Напоследок можно сделать вывод, что средняя кинетическая энергия молекул, формула которой приведена выше, зависит только от абсолютной температуры (причем для любого агрегатного состояния веществ).

Закон сохранения полной механической энергии

Изучение движения тел под действием силы тяжести и сил упругости показало, что существует некая физическая величина, которую называют потенциальной энергией Еп; она зависит от координат тела, а ее изменение приравнивается ИКЭ, которая взята с противоположным знаком: ΔЕп = ΔЕк. Итак, сумма изменений КЭ и ПЭ тела, которые взаимодействуют с гравитационными силами и силами упругости, равна 0: ΔЕп + ΔЕк = 0. Силы, которые зависят только от координат тела, называют консервативными. Силы притяжения и упругости являются консервативными силами. Сумма кинетической и потенциальной энергий тела является полной механической энергией: Еп + Ек = Е.

кинетическая энергия поступательного движения

Этот факт, который был доказан наиболее точными экспериментами,
называют законом сохранения механической энергии. Если тела взаимодействуют силами, которые зависят от скорости относительного движения, механическая энергия в системе взаимодействующих тел не сохраняется. Примером сил такого типа, которые называются неконсервативными, являются силы трения. Если на тело действуют силы трения, то для их преодоления необходимо затратить энергию, то есть ее часть используется на выполнение работы против сил трения. Однако нарушение закона сохранения энергии здесь только мнимое, потому что он является отдельным случаем общего закона сохранения и преобразования энергии. Энергия тел никогда не исчезает и не появляется вновь: она лишь преобразуется из одного вида в другой. Этот закон природы очень важен, он выполняется повсюду. Его еще иногда называют общим законом сохранения и преобразования энергии.

Связь между внутренней энергией тела, кинетической и потенциальной энергиями

Внутренняя энергия (U) тела — это его полная энергия тела за вычетом КЭ тела как целого и его ПЭ во внешнем поле сил. Из этого можно сделать вывод, что внутренняя энергия состоит из КЭ хаотического движения молекул, ПЭ взаимодействия между ними и внутремолекулярной энергии. Внутренняя энергия — это однозначная функция состояния системы, что говорит о следующем: если система находится в данном состоянии, ее внутренняя энергия принимает присущие ему значения, независимо от того, что происходило ранее.

Релятивизм

Когда скорость тела близка к скорости света, кинетическую энергию находят по следующей формуле:

кинетическая энергия тела формула

Кинетическая энергия тела, формула которой была написана выше, может также рассчитываться по такому принципу:

формула средней кинетической энергии

Примеры задач по нахождению кинетической энергии

1. Сравните кинетическую энергию шарика массой 9 г, летящего со скоростью 300 м/с, и человека массой 60 кг, бегущего со скоростью 18 км/час.

Итак, что нам дано: m1 = 0,009 кг; V1 = 300 м/с; m2 = 60 кг, V2 = 5 м/с.

Решение:

  • Энергия кинетическая (формула): Ек = mv2 : 2.
  • Имеем все данные для расчета, а поэтому найдем Ек и для человека, и для шарика.
  • Ек1 = (0,009 кг х (300 м/с)2) : 2 = 405 Дж;
  • Ек2 = (60 кг х (5 м/с)2) : 2= 750 Дж.
  • Ек1 < Ек2.

Ответ: кинетическая энергия шарика меньше, чем человека.

2. Тело с массой 10 кг было поднято на высоту 10 м, после чего его отпустили. Какую КЭ оно будет иметь на высоте 5 м? Сопротивлением воздуха разрешается пренебречь.

Итак, что нам дано: m = 10 кг; h = 10 м; h1 = 5 м; g = 9,81 Н/кг. Ек1 — ?

Решение:

  • Тело определенной массы, поднятое на некую высоту, имеет потенциальную энергию: Eп = mgh. Если тело падает, то оно на некоторой высоте h1 будет иметь пот. энергию Eп = mgh1 и кин. энергию Ек1. Чтобы была правильно найдена энергия кинетическая, формула, которая была приведена выше, не поможет, а поэтому решим задачу по нижеследующему алгоритму.
  • В этом шаге используем закон сохранения энергии и запишем: Еп1 + Ек1 = Еп.
  • Тогда Ек1 = ЕпЕп1 = mgh — mgh1 = mg(h-h1).
  • Подставив наши значения в формулу, получим: Ек1 = 10 х 9,81(10-5) = 490,5 Дж.

Ответ: Ек1 = 490,5 Дж.

3. Маховик, имеющий массу m и радиус R, оборачивается вокруг оси, проходящей через его центр. Угловая скорость оборачивания маховика — ω. Дабы остановить маховик, к его ободу прижимают тормозную колодку, действующей на него с силой Fтрения. Сколько оборотов сделает маховик до полной остановки? Учесть, что масса маховика сосредоточена по ободу.

Итак, что нам дано: m; R; ω; Fтрения. N — ?

Решение:

  • При решении задачи будем считать обороты маховика подобными оборотам тонкого однородного обруча с радиусом R и массой m, который оборачивается с угловой скоростью ω.
  • Кинетическая энергия такого тела равна: Ек = (Jω2) : 2, где J = mR2.
  • Маховик остановится при условии, что вся его КЭ истратится на работу по преодолению силы трения Fтрения, возникающей между тормозной колодкой и ободом: Ек = Fтрения*s, где s — это тормозной путь, который равен 2πRN.
  • Следовательно, Fтрения*2πRN = (mR2ω2) : 2, откуда N = (mω2R) : (4πFтр).

Ответ: N = (mω2R) : (4πFтр).

В заключение

Энергия — это важнейшая составляющая во всех аспектах жизни, ведь без нее никакие тела не смогли бы выполнять работу, в том числе и человек. Думаем, статья вам внятно дала понять, что собой представляет энергия, а развернутое изложение всех аспектов одной из ее составляющих — кинетической энергии — поможет вам осознать многие процессы, происходящих на нашей планете. А уж о том, как найти кинетическую энергию, вы можете узнать из приведенных выше формул и примеров решения задач.

Понравилась статья? Поделить с друзьями:
  • Дырка на скатерти как исправить
  • Как найти сумму степеней двойки
  • Сгорела вата в испарителе как исправить
  • Служба аудио не отвечает windows 10 как исправить
  • Как найти среднюю численность постоянного населения