Как найти кинетическую энергию математического маятника

Формулы математического маятника в физике

Формулы математического маятника

Определение и формулы математического маятника

Определение

Математический маятник — это колебательная система, являющаяся частным случаем физического маятника, вся масса которого
сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

Формулы математического маятника, рисунок 1

Уравнение движения математического маятника

Математический маятник — классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

[ddot{varphi }+{omega }^2_0varphi =0 left(1right),]

где $varphi $ — угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $varphi (t):$

[varphi (t)={varphi }_0{cos left({omega }_0t+alpha right)left(2right), }]

где $alpha $ — начальная фаза колебаний; ${varphi }_0$ — амплитуда колебаний; ${omega }_0$ — циклическая частота.

Колебания гармонического осциллятора — это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса:

[ {omega }_0=sqrt{frac{g}{l}}left(3right).]

Период колебаний математического маятника ($T$) в этом случае равен:

[T=frac{2pi }{{omega }_0}=2pi sqrt{frac{l}{g}}left(4right).]

Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

[E=E_k+E_p=frac{mv^2}{2}+mgh=frac{mv^2}{2}+frac{mgx^2}{2l}=constleft(5right),]

где $E_k$ — кинетическая энергия маятника; $E_p$ — потенциальная энергия маятника; $v$ — скорость движения маятника; $x$ — линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол — смещение связан с $x$ как:

[varphi =frac{x}{l}left(6right).]

Максимальное значение потенциальной энергии математического маятника равно:

[E_{pmax}=mgh_m=frac{mg{x^2}_m}{2l}left(7right);;]

Максимальная величина кинетической энергии:

[E_{kmax}=frac{mv^2_m}{2}=frac{m{omega }^2_0{x^2}_m}{2l}=E_{pmax}left(8right),]

где $h_m$ — максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m={omega }_0x_m$ — максимальная скорость.

Примеры задач с решением

Пример 1

Задание. Какова максимальная высота подъема шарика математического маятника, если его скорость движения при прохождении положения равновесия составляла $v$?

Решение. Сделаем рисунок.

Формулы математического маятника, пример 1

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

[frac{mv^2}{2}=mgh left(1.1right).]

Из уравнения (1.1) найдем искомую высоту:

[h=frac{v^2}{2g}.]

Ответ. $h=frac{v^2}{2g}$

Пример 2

Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1 м$, совершает колебания с периодом равным $T=2 с$? Считайте колебания математического маятника малыми.textit{}

Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

[T=2pi sqrt{frac{l}{g}}left(2.1right).]

Выразим из нее ускорение:

[g=frac{4{pi }^2l}{T^2} .]

Проведем вычисления ускорения силы тяжести:

[g=frac{4{pi }^2cdot 1}{2^2}={pi }^2approx 9,87 left(frac{м}{с^2}right).]

Ответ. $g=9,87 frac{м}{с^2}$

Читать дальше: формулы пружинного маятника.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Рассмотрим превращения энергии при колебаниях математического маятника.

Выберем систему отсчёта таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

маятник2.svg

Рис. (1). Схема колебательного движения математического маятника

При колебаниях математического маятника (рис. (1)) изменяется высота (h) грузика относительно положения равновесия и изменяется его скорость (υ).

Причём при максимальных смещениях высота достигает максимального значения

hmax

, а скорость становится равной нулю, в положении равновесия — наоборот: высота тела равна нулю, а скорость достигает максимального значения

vmax

.

Так как высота тела определяет его потенциальную энергию

а скорость — кинетическую энергию

то вместе с изменением высоты и скорости будут изменяться и энергии.

Когда маятник находится в точке, где его смещение от положения равновесия максимально (крайняя левая или крайняя правая точка траектории его движения — точка (A)), то кинетическая энергия маятника равна минимально возможному значению — нулю:

а потенциальная энергия максимальна и равна:

Таким образом, полная механическая энергия маятника в крайних левой и правой точках равна:

Когда маятник находится в какой-либо промежуточной точке между крайней левой или правой точками (точками, где смещение маятника от положения равновесия максимально) и положением равновесия (точка (B)), то его полная механическая энергия (E) равна:

При этом потенциальная и кинетическая энергии принимают некоторые промежуточные значения, большие (0) и меньшие максимального значения:

Когда маятник проходит положение равновесия (точка (O)), то его кинетическая энергия максимальна и равна

а потенциальная энергия принимает нулевое значение

Тогда полная механическая энергия в точке равновесия равна:

Таким образом, можно составить цепочку превращений одного вида энергии в другой при движении математического маятника от крайней левой точки до положения равновесия:

точка (A)

 точка (B)

 точка (O),

При движении математического маятника от положения равновесия до крайней правой точки происходит обратное превращение энергии: кинетическая энергия уменьшается от своего максимального значения до нуля, а потенциальная увеличивается от нуля до своего максимального значения.

Обрати внимание!

Полная механическая энергия математического маятника в любой точке траектории его движения постоянна.

Источники:

Рис. 1. Схема колебательного движения математического маятника. . © ЯКласс.

Математический маят­ник — это материальная точка, подвешенная на невесомой и нерас­тяжимой нити, находящейся в поле тяжести Земли. Математический маятник — это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный ма­ятник можно считать математическим, если длина нити  много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.

Колебательную систему в данном случае образуют нить, присо­единенное к ней тело и Земля, без которой эта система не могла бы служить маятником. , где ахускорение, g– ускорение свободного падения, х – смещение, l – длина нити маятника.

Это уравнение называется урав­нением свободных колебаний математического маятника.  Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

1)  будем считать, что силы трения, действующие на тело, пре­небрежимо малы и потому, их можно не учитывать; 2)   рассматриваются лишь малые колебания маятника с небольшим углом размаха.

Свободные колебания любых систем во всех слу­чаях описываются аналогичными уравнениями. Причинами свободных колебаний математическо­го маятника являются:

1.  Действие на маятник силы натяжения и силы тяжести, пре­пятствующей его смещению из положения равновесия и заставляю­щей его снова опускаться. 2. Инертность маятника, благодаря которой он, сохраняя свою скорость, не останавливается в положении равновесия, а проходит через него дальше.

None Период свободных колебаний математического маятника не за­висит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник.

Превращение энергии при гармонических колебаниях

При гармонических колебаниях пружинного маятника проис­ходят превращения потенциальной энергии упруго деформированного телав его кинетическую энергию, гдеkкоэффициент упругости,х – модуль смещения маятника из поло­жения равновесия,m– масса маятника,v– его скорость. В соот­ветствии с уравнением гармонических колебаний:

,.

Полная энергия пружинного маятника: .

длина дуги приблизительно равна смещению

Полная энергия для математического маятника:

В случае математического маятника Превращения энергии при колебаниях пружинного маятника происходи в соответствии с законом сохранения механической энергии (). При движении маятника вниз или вверх от положения равновесия его потенциальная энергия увеличивается, а кинетическая – уменьшается. Когда маятник проходит положение равно­весия (х = 0), его потенциальная энергия равна нулю и кинетическая энергия маятника имеет наибольшее значение, равное его полной энергии.

Таким образом, в процессе свободных колебаний маятника его потенциальная энергия превращается в кинетическую, кинетическая в потенциальную, потенциальная затем снова в кинетическую и т. д. Но полная механическая энергия при этом остается неизменной.

закон сохранения энергии

Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внеш­ней периодической силы, называются вынужден­ными колебаниями. Внешняя периодическая си­ла, называемая вынуждающей, сообщает колеба­тельной системе дополнительную энергию, которая идет на восполнение энергетических потерь, проис­ходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармониче­скими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из со­стояния равновесия), в случае вынужден­ных колебаний система поглощает эту энергию от источника внешней периоди­ческой силы непрерывно. Эта энергия восполняет потери, расходуемые на пре­одоление трения, и потому полная энергия колебательной системы no-прежнему ос­тается неизменной.

Частота вынужденных колебаний равна часто­те вынуждающей силы. В случае, когда частота вынуждающей силы υсовпадает с собственной ча­стотой колебательной системы υ,происходит рез­кое возрастание амплитуды вынужденных колеба­ний — резонансРезонанс возникает из-за того, что при υ =υвнешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает по­ложительную работу: энергия колеблющегося те­ла увеличивается, и амплитуда его колебаний ста­новится большой. График зависимости амплитуды вынужденных колебаний Атот частоты вынужда­ющей силы υпредставлен на рисунке, этот график называется резонансной кривой:

Явление резонанса играет большую роль в ря­де природных, научных и производственных про­цессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Онлайн калькуляторыНа нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

СправочникОсновные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решениеНе можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Рис.1. Математический маятник Математический маятник – это модель системы, совершающей гармонические колебания. Свободные колебания математического маятника при малых углах отклонения описываются уравнением гармонических колебаний.

В положении равновесия сила тяжести и сила упругости нити уравновешивают друг друга, и материальная точка находится в покое. При отклонении материальной точки от положения равновесия на малый угол на тело будет действовать возвращающая сила , которая является тангенциальной составляющей силы тяжести:

Эта сила сообщает материальной точке тангенциальное ускорение, направленное по касательной к траектории, и материальная точка начинает двигаться к положению равновесия с возрастающей скоростью. По мере приближения к положению равновесия возвращающая сила, а следовательно, и тангенциальное ускорение точки, уменьшаются. В момент прохождения положения равновесия угол отклонения , тангенциальное ускорение также равно нулю, а скорость материальной точки максимальна. Далее материальная точка проходит по инерции положение равновесия и, двигаясь в направлении, противоположном силе , сбавляет скорость. В крайнем положении материальная точка останавливается, и затем начинает двигаться в обратном направлении.

[custom_ads_shortcode1]

Период колебаний математического маятника

Период колебаний математического маятника не зависит от массы груза и амплитуды колебаний.

[custom_ads_shortcode2]

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Механическая система, которая состоит из материальной точки (тела), висящей на нерастяжимой невесомой нити (ее масса ничтожно мала по сравнению с весом тела) в однородном поле тяжести, называется математическим маятником (другое название – осциллятор). Бывают и другие виды этого устройства. Вместо нити может быть использован невесомый стержень.

Математический маятник может наглядно раскрыть суть многих интересных явлений. При малой амплитуде колебания его движение называется гармоническим.

[custom_ads_shortcode3]

Общие сведения о механической системе

Формула периода колебания этого маятника была выведена голландским ученым Гюйгенсом (1629-1695 гг. ). Этот современник И.

Ньютона очень увлекался данной механической системой. В 1656 г. он создал первые часы с маятниковым механизмом.

Они измеряли время с исключительной для тех времен точностью. Это изобретение стало важнейшим этапом в развитии физических экспериментов и практической деятельности.

Если маятник находится в положении равновесия (висит отвесно), то сила тяжести будет уравновешиваться силой натяжения нити. Плоский маятник на нерастяжимой нити является системой с двумя степенями свободы со связью. При смене всего одного компонента меняются характеристики всех ее частей.

Так, если нитку заменить на стержень, то у данной механической системы будет всего 1 степень свободы. Какими же свойствами обладает математический маятник? В этой простейшей системе под воздействием периодического возмущения возникает хаос.

В том случае, когда точка подвеса не двигается, а совершает колебания, у маятника появляется новое положение равновесия. При быстрых колебаниях вверх-вниз эта механическая система приобретает устойчивое положение «вверх тормашками». У нее есть и свое название.

Математический маятник имеет очень интересные свойства. Все они подтверждаются известными физическими законами. Период колебаний любого другого маятника зависит от разных обстоятельств, таких как размер и форма тела, расстояние между точкой подвеса и центром тяжести, распределение массы относительно данной точки.

Именно поэтому определение периода висящего тела является довольно сложной задачей. Намного легче вычисляется период математического маятника, формула которого будет приведена ниже. В результате наблюдений над подобными механическими системами можно установить такие закономерности:

• Если, сохраняя одинаковую длину маятника, подвешивать различные грузы, то период их колебаний получится одинаковым, хотя их массы будут сильно различаться. Следовательно, период такого маятника не зависит от массы груза.

• Если при запуске системы отклонять маятник на не слишком большие, но разные углы, то он станет колебаться с одинаковым периодом, но по разным амплитудам. Пока отклонения от центра равновесия не слишком велики, колебания по своей форме будут достаточно близки гармоническим. Период такого маятника никак не зависит от колебательной амплитуды. Это свойство данной механической системы называется изохронизмом (в переводе с греческого «хронос» – время, «изос» – равный).

None T = 2π√L/gПериод малых собственных колебаний ни в какой мере не зависит от массы маятника и амплитуды колебаний. В этом случае маятник двигается как математический с приведенной длиной.

[custom_ads_shortcode1]

Колебания математического маятника

[custom_ads_shortcode2]

Математический маятник совершает колебания, которые можно описать простым дифференциальным уравнением:

x + ω2 sin x = 0,где х (t) – неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); ω – положительная константа, которая определяется из параметров маятника (ω = √g/L, где g – это ускорение свободного падения, а L – длина математического маятника (подвес).

Уравнение малых колебаний вблизи положення равновесия (гармоническое уравнение) выглядит так: x + ω2 sin x = 0.

[custom_ads_shortcode3]

Колебательные движения маятника

Математический маятник, который совершает малые колебания, двигается по синусоиде. Дифференциальное уравнение второго порядка отвечает всем требованиям и параметрам такого движения. Для определения траектории необходимо задать скорость и координату, из которых потом определяются независимые константы:

x = A sin (θ + ωt),где θ0 – начальная фаза, A – амплитуда колебания, ω – циклическая частота, определяемая из уравнения движения.

[custom_ads_shortcode1]

Математический маятник (формулы для больших амплитуд)

Данная механическая система, совершающая свои колебания со значительной амплитудой, подчиняется более сложным законам движения. Для такого маятника они рассчитываются по формуле: sin x/2 = u * sn(ωt/u),где sn – синус Якоби, который для u < 1 является периодической функцией, а при малых u он совпадает с простым тригонометрическим синусом. Значение u определяют следующим выражением:

Будем рассматривать движение маятника при условии, что угол отклонения мал, тогда, если измерять угол в радианах

None Определение периода колебания нелинейного маятника осуществляется по формуле:

T = 2π/Ω,где Ω = π/2 * ω/2K(u), K – эллиптический интеграл, π3,14.

[custom_ads_shortcode2]

[custom_ads_shortcode3]

Движение маятника по сепаратрисе

Сепаратрисой называют траекторию динамической системы, у которой двумерное фазовое пространство. Математический маятник движется по ней непериодически. В бесконечно дальнем моменте времени он падает из крайнего верхнего положения в сторону с нулевой скоростью, затем постепенно набирает ее. В конечном итоге он останавливается, вернувшись в исходное положение.

Если амплитуда колебаний маятника приближается к числу π, это говорит о том, что движение на фазовой плоскости приближается к сепаратрисе. В этом случае под действием малой вынуждающей периодической силы механическая система проявляет хаотическое поведение.

При отклонении математического маятника от положения равновесия с некоторым углом φ возникает касательная силы тяжести Fτ = –mg sin φ. Знак «минус» означает, что эта касательная составляющая направляется в противоположную от отклонения маятника сторону. При обозначении через x смещения маятника по дуге окружности с радиусом L его угловое смещение равняется φ = x/L. Второй закон Исаака Ньютона, предназначенный для проекций вектора ускорения и силы, даст искомое значение:

mg τ = Fτ = –mg sin x/LИсходя из этого соотношения, видно, что этот маятник представляет собой нелинейную систему, поскольку сила, которая стремится вернуть его в положение равновесия, всегда пропорциональна не смещению x, а sin x/L.

Только тогда, когда математический маятник осуществляет малые колебания, он является гармоническим осциллятором. Иными словами, он становится механической системой, способной выполнять гармонические колебания. Такое приближение практически справедливо для углов в 15–20°. Колебания маятника с большими амплитудами не является гармоническим.

[custom_ads_shortcode1]

Закон Ньютона для малых колебаний маятника

Если данная механическая система выполняет малые колебания, 2-й закон Ньютона будет выглядеть таким образом: mg τ = Fτ = –m* g/L* x.

Исходя из этого, можно заключить, что тангенциальное ускорение математического маятника пропорционально его смещению со знаком «минус». Это и является условием, благодаря которому система становится гармоническим осциллятором. Модуль коэффициента пропорциональности между смещением и ускорением равняется квадрату круговой частоты:

ω02 = g/L; ω0 = √ g/L. Эта формула отражает собственную частоту малых колебаний этого вида маятника. Исходя из этого,T = 2π/ ω0 = 2π√ g/L.

[custom_ads_shortcode2]

Вычисления на основе закона сохранения энергии

None E = mg∆h = mgL(1 – cos α) = mgL2sin2 α/2Полная механическая энергия равняется кинетической или максимальной потенциальной: Epmax = Ekmsx = EПосле того как будет записан закон сохранения энергии, берут производную от правой и левой частей уравнения:

None Ep’ = (mg/L*x2/2)’ = mg/2L*2x*x’ = mg/L*v + Ek’ = (mv2/2) = m/2(v2)’ = m/2*2v*v’ = mv* α,следовательно:

Mg/L*xv + mva = v (mg/L*x + m α) = 0. Исходя из последней формулы находим: α = – g/L*x.

[custom_ads_shortcode3]

Практическое применение математического маятника

Ускорение свободного падения изменяется с географической широтой, поскольку плотность земной коры по всей планете не одинакова. Там, где залегают породы с большей плотностью, оно будет несколько выше. Ускорение математического маятника нередко применяют для геологоразведки. В его помощью ищут различные полезные ископаемые. Просто подсчитав количество колебаний маятника, можно обнаружить в недрах Земли каменный уголь или руду. Это связано с тем, что такие ископаемые имеют плотность и массу больше, чем лежащие под ними рыхлые горные породы.

Математическим маятником пользовались такие выдающиеся ученые, как Сократ, Аристотель, Платон, Плутарх, Архимед. Многие из них верили в то, что эта механическая система может влиять на судьбу и жизнь человека. Архимед использовал математический маятник при своих вычислениях. В наше время многие оккультисты и экстрасенсы пользуются этой механической системой для осуществления своих пророчеств или поиска пропавших людей.

Известный французский астроном и естествоиспытатель К. Фламмарион для своих исследований также использовал математический маятник. Он утверждал, что с его помощью ему удалось предсказать открытие новой планеты, появление Тунгусского метеорита и другие важные события.

Во время Второй мировой войны в Германии (г. Берлин) работал специализированный Институт маятника. В наши дни подобными исследованиями занят Мюнхенский институт парапсихологии.

ОпределениеМатематический маятник – это колебательная система, являющаяся частным случаем физического маятника, вся масса которого сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

[custom_ads_shortcode1]

Уравнение движения математического маятника

Математический маятник – классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением: [ddot{varphi }+{omega }^2_0varphi =0 left(1right),] где $varphi $ – угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $varphi (t):$ [varphi (t)={varphi }_0{cos left({omega }_0t+alpha right)left(2right), }] где $alpha $ – начальная фаза колебаний; ${varphi }_0$ – амплитуда колебаний; ${omega }_0$ – циклическая частота.

Колебания гармонического осциллятора – это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

[custom_ads_shortcode2]

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса: [ {omega }_0=sqrt{frac{g}{l}}left(3right).] Период колебаний математического маятника ($T$) в этом случае равен:

[T=frac{2pi }{{omega }_0}=2pi sqrt{frac{l}{g}}left(4right).] Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

[custom_ads_shortcode3]

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

[E=E_k+E_p=frac{mv^2}{2}+mgh=frac{mv^2}{2}+frac{mgx^2}{2l}=constleft(5right),] где $E_k$ – кинетическая энергия маятника; $E_p$ – потенциальная энергия маятника; $v$ – скорость движения маятника; $x$ – линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол – смещение связан с $x$ как:

None [E_{pmax}=mgh_m=frac{mg{x^2}_m}{2l}left(7right);;] Максимальная величина кинетической энергии:

[E_{kmax}=frac{mv^2_m}{2}=frac{m{omega }^2_0{x^2}_m}{2l}=E_{pmax}left(8right),] где $h_m$ – максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m={omega }_0x_m$ – максимальная скорость.

[custom_ads_shortcode1]

Примеры задач с решением

None Решение. Сделаем рисунок.

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

[frac{mv^2}{2}=mgh left(1.1right).] Из уравнения (1.1) найдем искомую высоту:

[h=frac{v^2}{2g}.] Ответ. $h=frac{v^2}{2g}$Пример 2Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1 м$, совершает колебания с периодом равным $T=2 с$? Считайте колебания математического маятника малыми.textit{}Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

None [g=frac{4{pi }^2l}{T^2} .] Проведем вычисления ускорения силы тяжести:

[g=frac{4{pi }^2cdot 1}{2^2}={pi }^2approx 9,87 left(frac{м}{с^2}right).] Ответ. $g=9,87 frac{м}{с^2}$Читать дальше: формулы пружинного маятника.

Источники:

  • studfiles.net
  • ru.solverbook.com
  • fb.ru
  • www.webmath.ru

Математический маят­ник — это материальная точка, подвешенная на невесомой и нерас­тяжимой нити, находящейся в поле тяжести Земли. Математический маятник — это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный ма­ятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.

Колебательную систему в данном случае образуют нить, присо­единенное к ней тело и Земля, без которой эта система не могла бы служить маятником.

,

где ах ускорение, g – ускорение свободного падения, х — смещение, l – длина нити маятника.

Это уравнение называется урав­нением свободных колебаний математического маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

1) будем считать, что силы трения, действующие на тело, пре­небрежимо малы и потому, их можно не учитывать;

2) рассматриваются лишь малые колебания маятника с небольшим углом размаха.

Свободные колебания любых систем во всех слу­чаях описываются аналогичными уравнениями.

Причинами свободных колебаний математическо­го маятника являются:

1. Действие на маятник силы натяжения и силы тяжести, пре­пятствующей его смещению из положения равновесия и заставляю­щей его снова опускаться.

2. Инертность маятника, благодаря которой он, сохраняя свою скорость, не останавливается в положении равновесия, а проходит через него дальше.

Период свободных колебаний математического ма­ятника

.

Период свободных колебаний математического маятника не за­висит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник.

Превращение энергии при гармонических колебаниях

При гармонических колебаниях пружинного маятника проис­ходят превращения потенциальной энергии упруго деформированного телав его кинетическую энергию , гдеk коэффициент упругости,х — модуль смещения маятника из поло­жения равновесия,m— масса маятника,v— его скорость. В соот­ветствии с уравнением гармонических колебаний:

, .

Полная энергия пружинного маятника:

.

Полная энергия для математического маятника:

В случае математического маятника

Превращения энергии при колебаниях пружинного маятника происходи в соответствии с законом сохранения механической энергии (). При движении маятника вниз или вверх от положения равновесия его потенциальная энергия увеличивается, а кинетическая — уменьшается. Когда маятник проходит положение равно­весия (х = 0), его потенциальная энергия равна нулю и кинетическая энергия маятника имеет наибольшее значение, равное его полной энергии.

Таким образом, в процессе свободных колебаний маятника его потенциальная энергия превращается в кинетическую, кинетическая в потенциальную, потенциальная затем снова в кинетическую и т. д. Но полная механическая энергия при этом остается неизменной.

Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внеш­ней периодической силы, называются вынужден­ными колебаниями. Внешняя периодическая си­ла, называемая вынуждающей, сообщает колеба­тельной системе дополнительную энергию, которая идет на восполнение энергетических потерь, проис­ходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармониче­скими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из со­стояния равновесия), в случае вынужден­ных колебаний система поглощает эту энергию от источника внешней периоди­ческой силы непрерывно. Эта энергия восполняет потери, расходуемые на пре­одоление трения, и потому полная энергия колебательной системы no-прежнему ос­тается неизменной.

Частота вынужденных колебаний равна часто­те вынуждающей силы. В случае, когда частота вынуждающей силы υ совпадает с собственной ча­стотой колебательной системы υ, происходит рез­кое возрастание амплитуды вынужденных колеба­ний — резонанс. Резонанс возникает из-за того, что при υ = υ внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает по­ложительную работу: энергия колеблющегося те­ла увеличивается, и амплитуда его колебаний ста­новится большой. График зависимости амплитуды вынужденных колебаний Ат от частоты вынужда­ющей силы υ представлен на рисунке, этот график называется резонансной кривой:

Явление резонанса играет большую роль в ря­де природных, научных и производственных про­цессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине (см. §2.2):

Для малых колебаний математического маятника (см. §2.3):

Здесь m – максимальная высота подъема маятника в поле тяготения Земли, m и m = m – максимальные значения отклонения маятника от положения равновесия и его скорости.

Превращения энергии при свободных механических колебаниях в отсутствие трения можно проиллюстрировать графически. Рассмотрим в качестве примера колебания груза массой на пружине жесткости . Пусть смещение груза из положения равновесия и его скорость изменяются со временем по законам:

Следовательно,

На рис. 2.4.1 изображены графики функций p(t) и k(t) . Потенциальная и кинетическая энергии за период колебаний два раза достигают максимальных значений. Сумма остается неизменной.

Рисунок 2.4.1.

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 2.4.2).

Рисунок 2.4.2.

Скорость затухания колебаний зависит от величины сил трения. Интервал времени , в течении которого амплитуда колебаний уменьшается в раз, называется временем затухания .

Частота свободных колебаний зависит от скорости их затухания. При возрастании сил трения собственная частота уменьшается. Однако, изменение собственной частоты становится заметным лишь при достаточно больших силах трения, когда собственные колебания затухают быстро.

Важной характеристикой колебательной системы, совершающей свободные затухающие колебания, является добротность . Этот параметр определяется как число полных колебаний, совершаемых системой за время затухания , умноженное на :

Чем медленнее происходит затухание свободных колебаний, тем выше добротность колебательной системы. Добротность колебательной системы, определенная по затуханию колебаний на рис. 2.4.2, приблизительно равна .

Добротности механических колебательных систем могут быть очень высокими – порядка нескольких сотен и даже тысяч.

Понятие добротности имеет глубокий энергетический смысл. Можно определить добротность колебательной системы следующим энергетическим соотношением:

Таким образом, добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.

Примерами гармонических колебаний служат колебания пружинного и математического маятников.

Пружинный маятник — тело массой т, колеблющееся на упругой пружине (рис. 5.5) и совершающее гармонические колебания под воздействием упругой силы:

где к — жесткость пружины.

Закон движения пружинного маятника:

где а — угол отклонения маятника от положения равновесия; а — амплитуда колебаний (максимальное значение угла отклонения).

При последовательном соединении пружин (рис. 5.5, б) общий коэффициент жесткости

При параллельном соединении пружин общий коэффициент жесткости (рис. 5.5, в)

Круговая (циклическая) частота:

Кинетическая энергия пружинного маятника:

Потенциальная энергия пружинного маятника:

Полная энергия пружинного маятника:

На рис. 5.6, а представлен график зависимости потенциальной энергии Еп пружинного маятника от деформации х, где Е — полная энергия (прямая горизонтальная линия), кинетическая Ек и потенциальная Еп энергии заданы соответствующими отрезками ординат. Из рисунка следует, что с возрастанием деформации х потенциальная энергия маятника возрастает, кинетическая — уменьшается (и наоборот). В отсутствие трения полная энергия тела сохраняется (Е = Ек + Еи) при любых значениях х

Графические зависимости кинетической Ек, потенциальной Еп и полной энергий Е упругой деформации тел от времени t показаны на рис. 5.6, б.

Математический маятник — материальная точка массой т, подвешенная на невесомой нерастяжимой нити длиной I и колеблющаяся под действием силы тяжести (рис. 5.7).

Круговая (циклическая) частота:

Период и частота колебания математического маятника:

Если маятник движется вниз с ускорением а (или вверх с замедлением а), его период

Если маятник движется вверх с ускорением а (или вниз с замедлением а), его период

Если маятник движется с ускорением а в горизонтальном направлении, его период

Кинетическая энергия математического маятника:

Потенциальная энергия математического маятника:

Превращение энергии при гармонических колебаниях происходит в соответствии с законом сохранения энергии в консервативной системе:

При движении пружинного маятника от положения равновесия его потенциальная энергия увеличивается, а кинетическая уменьшается (см. рис. 5.6, а). Когда маятник проходит положение равновесия (? = 0), его потенциальная энергия равна нулю, а кинетическая энергия маятника максимальна и равна полной энергии. В состоянии максимального отклонения от положения равновесия скорость маятника равна нулю, следовательно, равна нулю и кинетическая энергия, а потенциальная — максимальна и равна полной энергии. Следовательно, в момент максимального отклонения и когда маятник проходит положение равновесия имеет место:

Приведенные сведения об энергии колебаний пружинного маятника имеют общее значение и справедливы для свободных гармонических незатухающих колебаний в любой колебательной системе.

Вынужденные колебания — колебания, происходящие под действием внешней, периодически действующей силы.

Вынужденные колебания совершают, например, игла швейной машины, нож электробритвы, поршень в цилиндре двигателя внутреннего сгорания и др.

Вынуждающая сила — сила, вызывающая вынужденные колебания.

Если вынуждающая сила меняется гармонически по закону F = Fmaxcos(ot (Fmax — амплитуда вынуждающей силы, со — ее циклическая частота), то в колебательной системе, на которую действует эта сила, через определенное время (соответствует переходному режиму) устанавливаются гармонические вынужденные колебания с частотой, равной частоте со вынуждающей силы (рис. 5.8).

Уравнение вынужденных колебаний:

где А — амплитуда вынужденных колебаний; ю — циклическая частота свободных незатухающих колебаний системы; ср — разность фаз между смещением х и вынуждающей силой F. Амплитуда установившихся вынужденных колебаний:

где Fmax — амплитуда вынуждающей силы; т — масса колеблющейся системы; со — циклическая частота внешней силы; г —

коэффициент сопротивления; (3 =—коэффициент затуха-

Для вынужденных колебаний характерно явление резонанса.

Разность фаз между смещением и вынуждающей силой:

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте ш колебаний системы. Соответственно величина а>рсз называется резонансной циклической частотой, а кривые зависимости А от оз — резонансными кривыми (рис. 5.9).

Резонансная циклическая частота и резонансная амплитуда:

Возрастание амплитуды вынужденных колебаний при резонансе выражено тем отчетливее, чем меньше трение в системе (Р —*? 0). На практике амплитуда А в точке со конечна за счет сопротивления среды (р| > р2 > Ро), поэтому с ростом резонансная частота сдвигается в сторону меньших частот, а резонансная амплитуда — понижается (Арез1

Математический маятник

Математический маят­ник
— это материальная точка, подвешенная
на невесомой и нерас­тяжимой нити,
находящейся в поле тяжести Земли.
Математический маятник — это
идеализированная модель, правильно
описывающая реальный маятник лишь при
определенных условиях. Реальный
ма­ятник можно считать математическим,
если длина нити  много больше размеров
подвешенного на ней тела, масса нити
ничтожна мала по сравнению с массой
тела, а деформации нити настолько малы,
что ими вообще можно пренебречь.

Колебательную
систему в данном случае образуют нить,
присо­единенное к ней тело и Земля,
без которой эта система не могла бы
служить маятником.

,

где ах
ускорение, g
– ускорение свободного
падения, х
смещение, l
– длина нити маятника.

Это уравнение называется
урав­нением свободных
колебаний математического маятника. 
Оно правильно описывает
рассматриваемые колебания лишь тогда,
когда выполнены следующие предположения:

1)  будем считать, что силы трения,
действующие на тело, пре­небрежимо
малы и потому, их можно не учитывать;

2)   рассматриваются лишь малые
колебания маятника с небольшим углом
размаха.

Свободные колебания любых систем во
всех слу­чаях описываются аналогичными
уравнениями.

Причинами
свободных колебаний математическо­го
маятника являются:

1.  Действие на маятник силы натяжения
и силы тяжести, пре­пятствующей его
смещению из положения равновесия и
заставляю­щей его снова опускаться.

2. Инертность маятника, благодаря которой
он, сохраняя свою скорость, не
останавливается в положении равновесия,
а проходит через него дальше.

Период свободных колебаний математического
ма­ятника

.

Период свободных колебаний математического
маятника не за­висит от его массы, а
определяется лишь длиной нити и ускорением
свободного падения в том месте, где
находится маятник.

Превращение энергии при гармонических колебаниях

При гармонических
колебаниях пружинного маятника
проис­ходят превращения потенциальной
энергии упруго деформированного телав его кинетическую энергию
,
гдеkкоэффициент
упругости,х — модуль смещения
маятника из поло­жения равновесия,m— масса маятника,v
его скорость. В соот­ветствии с
уравнением гармонических колебаний:

,
.

Полная энергия
пружинного маятника:

.

Полная энергия для математического
маятника:

В случае математического
маятника

Превращения энергии при
колебаниях пружинного маятника происходи
в соответствии с законом сохранения
механической энергии ().
При движении маятника вниз или вверх
от положения равновесия его потенциальная
энергия увеличивается, а кинетическая
— уменьшается. Когда маятник проходит
положение равно­весия (х
= 0), его потенциальная
энергия равна нулю и кинетическая
энергия маятника имеет наибольшее
значение, равное его полной энергии.

Таким
образом, в процессе свободных колебаний
маятника его потенциальная энергия
превращается в кинетическую, кинетическая
в потенциальную, потенциальная затем
снова в кинетическую и т. д. Но полная
механическая энергия при этом остается
неизменной.

Вынужденные
колебания. Резонанс.

Колебания, происходящие
под действием внеш­ней периодической
силы, называются вынужден­ными
колебаниями
. Внешняя
периодическая си­ла, называемая
вынуждающей, сообщает колеба­тельной
системе дополнительную энергию, которая
идет на восполнение энергетических
потерь, проис­ходящих из-за трения.
Если вынуждающая сила изменяется во
времени по закону синуса или коси­нуса,
то вынужденные колебания будут
гармониче­скими и незатухающими.

В отличие от свободных
колебаний, когда система получает
энергию лишь один раз (при выведении
системы из со­стояния равновесия), в
случае вынужден­ных колебаний система
поглощает эту энергию от источника
внешней периоди­ческой силы непрерывно.
Эта энергия восполняет потери, расходуемые
на пре­одоление трения, и потому полная
энергия колебательной системы no-прежнему
ос­тается неизменной.

Частота вынужденных
колебаний равна часто­те вынуждающей
силы
. В случае, когда
частота вынуждающей силы υ
совпадает с собственной
ча­стотой колебательной системы υ0,
происходит рез­кое
возрастание амплитуды вынужденных
колеба­ний — резонанс.
Резонанс возникает
из-за того, что при υ
= υ
внешняя сила,
действуя в такт со свободными колебаниями,
все время сонаправлена со скоростью
колеблющегося тела и совершает
по­ложительную работу: энергия
колеблющегося те­ла увеличивается,
и амплитуда его колебаний ста­новится
большой. График зависимости амплитуды
вынужденных колебаний Ат
от частоты вынужда­ющей
силы υ
 представлен
на рисунке, этот график называется
резонансной кривой:

Явление
резонанса играет большую роль в ря­де
природных, научных и производственных
про­цессов. Например, необходимо
учитывать явление резонанса при
проектировании мостов, зданий и других
сооружений, испытывающих вибрацию под
нагрузкой, в противном случае при
определенных условиях эти сооружения
могут быть разрушены.

Соседние файлы в папке Лабораторные

  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти свой аккаунт яндекс такси
  • Как исправить сладкий бульон
  • Как найти прибыль от реализованной продукции
  • Как составить свой блог в интернете
  • Как найти свой автомобиль если его угнали