Как найти кинетическую энергию свободно падающего тела

Определение

Энергия – одна из ключевых категорий механики. В повседневной жизни мы чаще всего сталкиваемся с механической энергией.

Кинетическая и потенциальная энергия тела

Энергия представляет собой физическую величину, характеризующую способность тела к выполнению работы.

Механическая энергия может быть потенциальной и кинетической. В данной статье мы расскажем о каждом из этих видов, разберем примеры кинетической и потенциальной энергии.

Сумма этих двух видов энергий является постоянной величиной, известной как полная механическая энергия системы, находящаяся в поле сил консервативного типа:

[E_{К}+E_{П}=E_{M}]

При этом максимум:

[E_{м}=E_{k max }=E_{text {пmax }}=4 text { Дж }]

Кинетическая энергия

Каждое движущееся тело, наделено кинетической энергией. Когда объект пребывает в состоянии покоя этот показатель равен нулю. На него влияет масса тела (m) и скорость (v) перемещения.

Формула 1

Для вычисления кинетической энергии применяют формулу:

[E_{k}=A=frac{m v^{2}}{2}]

Кинетическая энергия (Ек) находится в прямой пропорциональной зависимости от массы и квадрата скорости тела.

Пример

Скорость тела, движущегося под воздействием определенных сил, изменилась с [vec{v}_{1}]  на [vec{v}_{2}]. Это говорит о том, что этими силами была совершена конкретная работа  A.

Работа комплекса сил, оказывающих воздействие на тело, равна по значению той работе, которую совершает равнодействующая сила.

Кинетическая энергия

[vec{F}_{p}=vec{F}_{1}+vec{F}_{2}]

[A=F_{1} cdot s cdot cos cos alpha_{1}+F_{2} cdot s cdot cos cos alpha_{2}]

Определим взаимозависимость увеличения или уменьшения скорости тела и работы, совершаемой силами, воздействующими на объект.

Представим, что тело движется под воздействием одной силы [vec{F}], направленной вдоль определенной прямой. Сила действует на тело таким образом, что его движение становится равноускоренным и прямолинейным.

Таким образом направление векторов [vec{F}, vec{v}, vec{a}, vec{s}] является одинаковым. Следовательно, эти значения можно представить в качестве алгебраических величин.

[A=F S]

Перемещение тела можно выразить формулой:

[S=frac{v_{2}^{2}-v_{1}^{2}}{2 a}]

Исходя из этого:

[begin{gathered}
A=F s cdot frac{v_{2}^{2}-v_{1}^{2}}{2 a}=m a cdot frac{v_{2}^{2}-v_{1}^{2}}{2 a} \
A=frac{m v_{2}^{2}-m v_{1}^{2}}{2}=frac{m v_{2}^{2}}{2}-frac{m v_{1}^{2}}{2}
end{gathered}]

Это подтверждает предположение, что работа, совершенная под воздействием силы, прямо пропорциональна изменения значения квадрата скорости движения тела.

Теорема об изменении кинетической энергии

Опираясь на ранее приведенный пример, сформулируем теорему об изменении кинетической энергии тела, совершающего движение.

Теорема

Работа, произведенная в результате воздействия силы на определенное тело, эквивалентна изменениям его кинетической энергии. Это утверждение абсолютно применимо и к ситуации, когда на движущееся тело оказывается действие силы, с изменяющимся направлением и модулем.

[A=E_{k 2}-E_{k 1}]

Исходя из этого можно резюмировать, что показатель кинетической энергии тела с определенной массой(m), совершающего движение со скоростью [vec{v}], соответствует значению работы, которую сила производит для разгона тела до данной скорости.

[A=frac{m v^{2}}{2}=E_{k}]

Остановка тела потребует совершения работы:

[A=frac{m v^{2}}{2}=-E_{k}]

Потенциальная энергия

Помимо кинетической энергии, которая представляет собой энергию движения существует потенциальная энергия. Она присуща телам, обладающим потенциалом к совершению работы, взаимодействию друг с другом. Поднятое над Землей тело обладает потенциалом к взаимодействию с гравитационными силами. Чем больше оно отдаляется от поверхности, тем сильнее возрастает потенциальная энергия. Если кинетическая энергия зависит от скорости и массы, потенциальная энергия обусловлена взаимным расположением объектов или их частей.

Во время падения тела, сила тяготения совершает работу, на которую влияет только начальное и конечное положение движущегося объекта. Форма траектории значения не имеет. Если она замкнутая, значение работы потенциальной силы будет равным нулю. Среди потенциальных сил можно выделить силу тяготения, упругости и др. Еще их называют консервативными. При упругой деформации тело наделяется энергией взаимодействия между его разными частями.

При перемещении тела вверх, работа силы тяжести будет иметь отрицательное значение.

Примеры

Подробно разберем пример с вертикальным перемещением шара из точки высота, которой обозначена [h_{1}] на отметку с высотой с [h_{2}].

Потенциальная энергия

Работа, совершенная силой тяжести равна отрицательному значению [m g h]:

[A=-m gleft(h_{2}-h_{1}right)=-left(m g h_{2}-m g h_{1}right)]

В следующем примере происходит перемещение тела по наклонной поверхности. Во время движения вниз, на него действует сила тяжести F равная mg. Работа, совершаемая этой силой равна:

[A=m g s cos cos alpha=m g h]

В данной формуле, h служит для обозначения высоты наклонной плоскости, S – модуля перемещения, равного длине этой плоскости.

Перемещение тела по наклонной поверхности

В следующем примере рассмотрим перемещение объекта из точки B в точку C по траектории любой формы. Тело движется по фрагментам наклонной плоскости, с разными высотами [h^{prime}, h^{prime prime}, h^{prime prime prime}] и т.д. Работа A представлена в виде суммы работ, совершаемой силой тяжести на каждом из участков пути.

[begin{aligned}
&A=m g h^{prime}+m g h^{prime prime} ldots+m g h^{n}=m gleft(h^{prime}+h^{prime} ldots+h^{n}right) = m gleft(h_{1}-h_{2}right)
end{aligned}]

[h_{1}] и [h_{2}] являются высотами относительно земной поверхности, на которых находятся точки B и C.

Перемещение объекта любой формы

Равенство демонстрирует нам отсутствие влияния траектории пути, по которому движется тело, на работу силы тяжести. Если объект перемещается вниз, значение работы, выполняемой силой тяжести будет положительным, в противном случае – отрицательным. Тогда равенство будет выглядеть следующим образом:

[A=-left(m g h_{2}-m g h_{1}right)]

На какой высоте кинетическая энергия равна потенциальной

Тело подброшено вверх со скоростью 10м/с. На какой высоте кинетическая энергия предмета будет равна потенциальной?

Определим показатель высоты исходя из того, что:

[frac{m v^{2}}{2}=m g h]

Это значит:

[h=frac{v^{2}}{4 g}=frac{(10 м / c)^{2}}{4 cdot 10 м / c^{2}}=2,5 м]

Как изменяются потенциальная и кинетическая энергия тела при падении груза на землю

Для того, чтобы узнать как изменяется кинетическая и потенциальная энергия при падении груза на земную поверхность, рассмотрим свободно падающий камень с высоты h. За счет падения груз набирает скорость v.

Соотношение этих величин при равноускоренном движении:

[frac{v^{2}}{2}=g h]

Каждую из сторон равенства нужно умножить на массу движущегося груза m:

[frac{m v^{2}}{2}=m g h]

Значения кинетической и потенциальной энергии падающего камня взаимозависимы. Последняя уменьшается пропорционально росту первой. Согласно закону о сохранении и превращении энергии, при отсутствии сил сопротивления, механическая энергия, которая является суммой потенциальной и кинетической, остается неизменной. При падении груза происходит переход потенциальной энергии в кинетическую, а после соприкосновения с землей во внутреннюю энергию тела. Температура тела при этом увеличивается.

Нет времени решать самому?

Наши эксперты помогут!

Как влияет скорость на кинетическую энергию и высота на потенциальную энергию

Если скорость движения вырастает вдвое, то кинетическая энергия увеличивается в 4 раза. График демонстрирует зависимость кинетической энергии от скорости. Потенциальная энергия увеличивается пропорционально росту высоты.

Потенциальная энергия пружины

Тело, деформированное в рамках упругой деформации, возвращается к исходному состоянию после удаления силы воздействия. В этот момент объект совершает работу. Упругим телом может служить пружина или резиновый жгут.

Упруго растянутая пружина обладает прямо пропорциональной энергией по отношению к коэффициенту ее жесткости (k) и квадрату значения ее абсолютной деформации [Delta chi].

Формула 2

Для определения потенциальной энергии пружины с упругим растяжением применяется формула:

[E_{п}=frac{k cdot Delta x^{2}}{2}]

От степени жесткости пружины зависит величина ее потенциальной энергии при равном растяжении. Значение [E_{text {п}}] возрастает в 2 раза, когда используется пружина или резинка с увеличенным вдвое коэффициентом жесткости. Сила растяжения влияет на рост потенциальной энергии вне зависимости от жесткости деформируемого объекта. При растяжении пружины в 2 раза энергия увеличивается в 4 раза.

Мысленно представим, две пружины. Одну удлинили на значение x. Вторую вначале растянули на [2 x], после чего сжали на x. И в первом и во втором случаях пружину удлинили на x, но к итоговому результату шли разными путями. Значение работы силы упругости при деформировании пружины 1 и 2 способом оказалось одинаковым:

[A_{упр}=-A=-frac{k x^{2}}{2}]

Потенциальная энергия сжатой пружины: [E_{y п p}=-frac{k x^{2}}{2}]

[E_{mathrm{ynp}}=-frac{k x^{2}}{2}] равна значению работы, совершаемой силой упругости во время перехода пружины из сжатого состояния к первоначальному виду.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,662
  • гуманитарные
    33,654
  • юридические
    17,917
  • школьный раздел
    611,978
  • разное
    16,905

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Главная >> Фейнмановские лекции по физике >> Том 1 >> Глава 13. Работа и потенциальная энергия (I)

Работа падающего тела

В гл. 4 мы разобрали вопрос о сохранении энергии. При этом законами Ньютона мы не пользовались. Интересно теперь посмотреть, как возникает сохранение энергии из-за того, что действуют эти законы. Для ясности мы начнем с самых простых примеров и постепенно будем их усложнять.

Простейший пример сохранения энергии — это тело, падающее вниз, т. е. тело, движущееся только в вертикальном направлении. Если оно меняет свою высоту под влиянием только тяжести, то из-за движения оно обладает кинетической энергией Т (или к. э.) Кроме того, у него есть потенциальная энергия mgh (сокращенно U, или п. э.). Их сумма постоянна:

Маленькое изображение

 

Мы хотим показать, что это утверждение правильно. Что значит доказать его правильность? Второй закон Ньютона говорит, как движется тело, как со временем изменяется его скорость (а именно, что в падении она растет пропорционально времени, а высота падения меняется как квадрат времени). Если поэтому отмерять высоту от нулевой точки (где тело покоилось), то не будет ничего странного в том, что она окажется равной квадрату скорости, умноженному на какие-то постоянные. Однако все же рассмотрим это повнимательней.

Попробуем вычислить прямо из второго закона Ньютона, как обязана меняться кинетическая энергия; мы продифференцируем кинетическую энергию по времени и потом применим закон Ньютона. Дифференцируя 1/2 mv2 по времени, получаем

Маленькое изображение

 

потому что m считается постоянной. Но по второму закону Ньютона m(dv/dt)=F, так что

Маленькое изображение

 

В общем случае получается F*v, но для нашего одномерного случая лучше оставить просто произведение силы на скорость.

Сила в нашем простом примере постоянна, равна —mg и направлена вниз (знак минус именно это и показывает), а скорость есть степень изменения положения по вертикали (высоты h) со временем. Поэтому степень изменения кинетической энергии равна —mg(dh/dt). Взгляните: что за чудо! Перед нами снова чья-то скорость изменения — скорость изменения со временем величины mgh! Поэтому выходит, что с течением времени изменения в кинетической энергии и в величине mgh остаются равными и противоположными, так что их сумма остается неизменной. Что и требовалось доказать.

Маленькое изображениеМы только что показали, пользуясь Вторым законом Ньютона, что для постоянных сил энергия сохраняется, если только прибавлять потенциальную энергию mgh к кинетической 1/2mv2. Исследуем этот вопрос дальше; посмотрим, можно ли его обобщить, можно ли еще продвинуться в его понимании. Действует ли этот закон только для свободно падающих тел или является более общим? Из того, что мы знаем о сохранении энергии, можно ожидать, что он будет верен для тела, движущегося из одной точки в другую по кривой без трения и под действием одной лишь тяжести (фиг. 13.1). Когда тело, начав двигаться с высоты Н, достигает высоты h, то опять должна быть верной та же формула, хотя бы скорость уже не была направлена по вертикали. Нам надо понять, почему она все еще правильна. Проведем тот же анализ; отыщем скорость изменения кинетической энергии во времени. Опять будет получаться mv(dv/dt) — скорость изменения величины импульса, т. е. сила в направлении движения — касательная сила Ft. Итак,

Маленькое изображение

 

Скорость — это скорость изменения расстояния вдоль кривой ds/dt, а касательная сила Ft теперь оказывается меньше mg в отношении, равном отношению расстояния ds вдоль пути к вертикальному расстоянию dh. Иными словами,

Маленькое изображение

 

(ds выпадает). И опять, как прежде, мы получили величину -mg(dh/dt), равную скорости изменения mgh.

Чтобы точно уяснить себе, как вообще соблюдается сохранение энергии в механике, рассмотрим сейчас некоторые полезные понятия.

Во-первых, рассмотрим скорость изменения кинетической энергии в общем трехмерном случае. Кинетическая энергия, когда движение имеет три измерения, равна
T = 1/2*m(v2x + v2y + v2z).

Дифференцируя ее по времени, получаем три устрашающих члена:

Маленькое изображение

 

Но ведь m(dvx/dt) — это сила Fх, действующая на тело в направлении х. Значит, в правой части формулы (13.4) стоит Fxvx + Fyvy + Fzvz. Призвав на помощь векторный анализ, вспоминаем, что это F·v. Итак,

Маленькое изображение

 

А можно это вывести и быстрей: если а и b — два вектора, зависящих от времени, то производная от а*Ь равна

Маленькое изображение

 

Подставим сюда a = b = v:

Маленькое изображение

 

Так как понятие кинетической энергии и вообще энергии очень важно, то различным величинам в этих уравнениях присвоены разные имена: 1/2mv2 называется, как известно, кинетической энергией; F*v называется мощностью: сила, действующая на тело, умноженная («скалярно») на скорость тела,— это мощность, сообщаемая телу этой силой. Получается великолепная теорема: скорость изменения кинетической энергии тела равна мощности, затраченной силами, действующими на тело. Но для изучения сохранения энергии анализ следует продолжить. Давайте оценим изменение кинетической энергии за очень короткое время dt. Умножив обе части уравнения (13.7) на dt, найдем, что изменение кинетической энергии равно силе, скалярно умноженной на дифференциал пройденного расстояния

Маленькое изображение

 

А интегрируя, получаем

Маленькое изображение

 

Что это значит? Это значит, что, как бы и по какой бы кривой траектории ни двигалось тело под действием силы, все равно изменение в к. э. при переходе от одной точки кривой к другой равно интегралу от компоненты силы вдоль кривой, умноженной на дифференциал смещения ds (интегрирование от первой точки до второй). И у этого интеграла есть имя: его называют работой, совершенной силой над телом. Немедленно мы обнаруживаем, что мощность — это работа за секунду. И еще мы замечаем, что работу производит только составляющая силы вдоль направления движения. В нашем первом простом примере участвовали только вертикальные силы с одной-единственной составляющей Fz, равной —mg. В этих обстоятельствах совершенно неважно, как тело движется, прямо вниз или по параболе, все равно от F*ds (которое можно написать как Fxdx+Fydy+Fzdz) остается только Fzdz = —mgdz, потому что прочие составляющие силы — нули. Значит, в этом случае

Маленькое изображение

 

так что в потенциальную энергию входит только высота, с которой тело падает.

Несколько слов о единицах. Так как сила измеряется в ньютонах, а для получения работы ее умножают на расстояние, то работу измеряют в единицах ньютон метр, но большинство людей этого названия не любит, предпочитая название джоуль (дж). Это только другое слово, а единица та же. Итак, работу измеряют в джоулях. Мощность же — в джоулях в секунду; эту единицу называют ватт(вт). Если умножить ватты на время, то получим произведенную работу. Работу, которую местная энергосистема производит в наших квартирах (в техническом смысле), оценивается в ваттах, умноженных на время. Например, киловатт-час — это 1000 вт х ЗбОО сек, т. е. 3,6 106 дж.

Приведем еще несколько примеров работы и сохранения энергии. Рассмотрим тело, которое вначале имеет кинетическую энергию и быстро двигается, скользя по полу с трением. Оно останавливается. В начале кинетическая энергия не равна нулю, а в конце она равна нулю; существует работа, произведенная силами, потому что раз есть трение, то есть и составляющая силы в направлении, противоположном направлению движения, и энергия постепенно теряется. Теперь рассмотрим массу на конце маятника, который качается в вертикальной плоскости в поле тяжести без трения. Здесь наблюдается нечто другое, потому что, когда масса опускается, сила направлена тоже вниз, а когда подымается, сила направлена в обратную сторону, так что у F*ds на спуске и на подъеме разные знаки. В соответствующих точках спуска и подъема значения F*ds равны по величине, но противоположны по знаку, так что в итоге интеграл есть чистый нуль. Поэтому кинетическая энергия в конце спуска в точности такая же, какой она была в начале подъема; это и есть принцип сохранения энергии. (Заметьте, что в присутствии сил трения сохранение энергии на первый взгляд не выполняется. Значит, нужно искать другую форму энергии. И действительно, оказывается, что когда два тела трутся друг о друга, то возникает тепло, мы же сейчас делаем вид, что об этом не знаем.)

СМОТРИТЕ ТАКЖЕ:

Социальные комментарии Cackle

А почему-бы и нет? У нас уже были задачи на свободное падение, законы Ньютона, силу трения и проч. и проч. Сегодня решаем задачи на кинетическую и потенциальную энергию.

А вообще, помните, что мы занимаемся далеко не только решением задач. Наш телеграм – это полезная информация для студентов всех специальностей, новости, лайфхаки, акции и скидки.

Задачи на кинетическую и потенциальную энергию

Приведем примеры задач на нахождение кинетической и потенциальной энергии с решением. Прежде чем приступать к практике, почитайте теорию по теме, повторите общую памятку по решению задач по физике и на всякий случай держите под рукой полезные формулы.

Задача №1 на кинетическую энергию

Условие

Максимальная высота, на которую поднимается тело массой 1 кг, подброшенное вертикально вверх, составляет 20 м. Найдите, чему была равна кинетическая энергия сразу же после броска.

Решение

Потенциальная энергия тела над поверхностью Земли составляет:

Задача №1 на кинетическую энергию

Здесь m – масса тела, g – ускорение свободного падения, h – высота. Согласно закону сохранения энергии, потенциальная энергия тела в наивысшей точке должна равняться кинетической энергии тела в начальный момент, то есть:

Задача №1 на кинетическую энергию

Принимая ускорение свободного падения равным 10 м/с2, находим кинетическую энергию тела сразу же после броска:

Задача №1 на кинетическую энергию

Ответ: 200 Дж.

Задача №2 на потенциальную энергию

Условие

Чему равна потенциальная энергия трех кубических дециметров воды на высоте 10 м?

Решение

По определению, потенциальная энергия равна в поле силы тяжести равна:

Задача №2 на потенциальную энергию

Масса трех кубических дециметров воды (трех литров) легко находится из формулы для плотности воды:

Задача №2 на потенциальную энергию

Осталось вычислить потенциальную энергию:

Задача №2 на потенциальную энергию

Ответ: 300 Дж.

При решении задач не забывайте переводить все размерности величин в систему СИ.

Задача №3 на полную механическую энергию

Условие

Какова полная механическая энергия дирижабля массой 5 тонн, если он летит на высоте 2 км со скоростью 60 км/ч?

Решение

Полная механическая энергия состоит из кинетической и потенциальной энергий:

Задача №3 на полную механическую энергию

Вычислим:

Задача №3 на полную механическую энергию

Ответ: 100,7 МДж.

Задача №4 на кинетическую и потенциальную энергию

Условие

Шарик массой 200 г падает с высоты 20 м с начальной скоростью, равной нулю. Какова его кинетическая энергия в момент перед ударом о землю, если потеря энергии за счет сопротивления воздуха составила 4 Дж? (Ответ дайте в джоулях.) Ускорение свободного падения принять равным 10 м/с2.

Решение

Перед началом падения потенциальная энергия шарика составляет:

Задача №4 на кинетическую и потенциальную энергию

По закону сохранения энергии, эта энергия должна перейти в кинетическую энергию Ек за вычетом потери за счет сопротивления воздуха дельта Е. Таким образом, можем найти кинетическую энергию:

Задача №4 на кинетическую и потенциальную энергию

Ответ: 36 Дж.

Задача №5 кинетическую и потенциальную энергию

Условие

Шарик висит на нити. В нем застревает пуля, летящая горизонтально, в результате чего нить отклоняется на некоторый угол. Как изменятся при увеличении массы шарика следующие величины: импульс, полученный шариком в результате попадания в него пули; скорость, которая будет у шарика тотчас после удара; угол отклонения нити?

Решение

Согласно закону сохранения импульса, скорость шарика с застрявшей в нем пулей равна

Задача №5 кинетическую и потенциальную энергию

Здесь M и m – массы шарика и пули соответственно, v – скорость пули перед ударом. Таким образом, при увеличении массы шарика его скорость после удара уменьшится.

Найдем импульс, переданный шарику при попадании пули:

Задача №5 кинетическую и потенциальную энергию

Следовательно, с увеличением массы шарика переданный ему импульс увеличивается.

Согласно закону сохранения энергии, кинетическая энергия пули перейдет в потенциальную энергию шарика с пулей:

Задача №5 кинетическую и потенциальную энергию

Таким образом, при увеличении массы шарика угол отклонения нити уменьшится, поскольку уменьшится скорость u.

Ответ: см решение выше.

Вопросы на потенциальную и кинетическую энергию

Вопрос 1. Что такое энергия? Что такое механическая энергия?

Ответ. Для энергии существует множество определений. В наиболее общем смысле:

Энергия – мера способности тела совершать работу.

Механическая энергия – это энергия, связанная с движением тела или его положением в пространстве. Механическая энергия в механике описывается суммой кинетической и потенциальной энергии.

Вопрос 2. Сформулируйте закон сохранения энергии

Ответ. Закон сохранения энергии является фундаментальным физическим принципом. Для каждого вида энергии он имеет свою формулировку. Для механической энергии:

Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается неизменной.

Вопрос 3. Какие силы называются консервативными?

Ответ. Консервативные, или потенциальные силы – это силы, работа которых не зависит от формы траектории. В качестве примера такой силы можно привести силу тяжести.

Вопрос 4. Какую энергию называют кинетической?

Ответ. Кинетическая энергия является энергией движения. Ею обладают только движущиеся тела, она зависит от массы тела и его скорости.

Вопрос 5. Какую энергию называют потенциальной?

Ответ. Потенциальная энергия является энергией взаимодействия в поле консервативных сил. Она зависит от положения тела и выбора системы отсчета. Например, потенциальная энергия тела в поле силы тяжести зависит от массы тела, ускорения свободного падения и высоты над нулевым уровнем.

Не знаете, как решать задачи на кинетическую или потенциальную энергию? Проблемы с выполнением любых других студенческих работ? Обращайтесь в профессиональный сервис для учащихся за помощью и консультациями.

Понравилась статья? Поделить с друзьями:
  • Как найти фср для системы уравнений
  • Как составить равенство образец
  • Как найти размах вариации в экселе
  • Как найти промежуточную частоту
  • Как найти людей с которыми учился