Как найти кислоту вещества

ЕГЭ по химии

Классификация кислот

Материал по химии

  • Определение кислот
  • Классификация кислот по составу
  • Классификация кислот по основности
  • Сильные и слабые кислоты
  • Тривиальные названия некоторых кислот
  • «Протон» или «катион»?
  • Кислоты и индикаторы

Определение кислот

Кислоты ‒ это вещества, способные в растворах отдавать катион (протон) водорода.

Примеры диссоциации кислот:

HCl ↔ H+ + Cl

H2SO4 ↔ 2H+ + SO42‒

Если пока понятие диссоциации неизвестно, легче ориентироваться по общим формулам кислот:

Состав кислот

Важен не только состав, но и последовательность. На первом месте должен стоять водород, за ним – элемент, если в составе есть кислород, то он должен стоять последним. Например, HCl – кислота (соответствует формуле HЭ), H2S – тоже кислота (на первом месте водород, на втором — сера), а вот NH3 несмотря на то, что состоит из водорода и элемента, не является кислотой, это легко определить по последовательности: в этой формуле сначала стоит элемент, а за ним – водород (иногда, чтобы запутать сдающего, составитель может написать не NH3, а H3N, Вы должны помнить, что NH3 (аммиак), PH3(фосфин), AsH3 (арсин), CH4 (метан) – не являются кислотами, так как в воде либо не диссоциируют, либо диссоциируют без образования протона водорода. H2SO4 – является кислотой, так как формула имеет порядок элементов «водород → элемент → кислород», а NaOH, тоже состоящая из элемента, кислорода и водорода – кислотой не является, так как тут последовательность будет такова: «элемент → кислород → водород».

Не все соединения водорода с другими элементами являются кислотами

Классификация кислот по составу

Кислоты можно разделить на кислородсодержащие и бескислородные. Не трудно догадаться, что бескислородные не содержат атомов кислорода, а кислородсодержащие — содержат. Кислородсодержащие кислоты образованы соответствующими оксидами, а бескислородные образованы прямым взаимодействием простых веществ.

Классификация кислот по наличию кислорода в них

Таб. Примеры бескислородных и кислородсодержащих кислот, образованных одним и тем же неметаллом

Бескислородные

Кислородсодержащие

HCl

HClO4

H2S

H2SO3

HBr

HBrO

HI

HIO2

Классификация кислот по основности

Кислоты могут отдать столько водорода, сколько имеется в их составе (в большинстве случаев, есть исключения). Если может отдать максимум один водород – то кислота относится к одноосновным, если может отдать максимум два протона водорода – то двухосновная и так далее.

Например:

HCl ↔ H+ + Cl (одноосновная)

H2SO4 ↔ 2H+ + SO42‒ (двухосновная)

H3PO4 ↔ 3H+ + PO43- (трехосновная/многоосновная)

Классификация кисло по количеству протонов, образующихся при диссоциации

Таб. Примеры кислот с разной основностью

Одноосновные

(один водород)

Двухосновные

(два водорода)

Многоосновные

(три и более протона водорода)

               HNO3                       

H2S

H3PO4

                 HF                

H2SiO3

H3BO3

HBrO

H2CO3

H4P2O7

Сильные и слабые кислоты

От чего зависит сила кислот? В первую очередь от скорости отдачи протона водорода при диссоциации (чем быстрее кислота отдает протон водорода, тем она считается сильнее). Как определить скорость «на глаз», не имея под рукой никаких справочных материалов, кроме таблицы Менделеева?

  1. Если кислота бескислородная, то скорость диссоциации можно определить по радиусу атома, образующего эту кислоту элемента. Напомним, что радиус увеличивается в ПС (периодической системе) сверху-вниз и справа-налево. Так, в ряду кислот HF → HCl → HBr → HI радиус увеличивается от фтора к йоду, так как йод стоит в ПС значительно ниже, чем фтор. Радиус фтора небольшой, поэтому протон водорода прочно связан со фтором, скорость диссоциации будет низкой, значит, кислота слабая. У йода пять электронных оболочек, между йодом и водородом большее расстояние, чем между фтором и водородом, поэтому молекула йодоводорода будет диссоциировать значительно быстрее, значит, кислота сильная. Аналогичную закономерность можно наблюдать в ряду кислот, образованных халькогенами (неметаллами VIА-группы): чем ниже халькоген, тем сильнее образуемая им кислота, поэтому H2S слабее H2Se, а H2Se слабее, чем H2Te.

Кислотные свойства бинарных водородных соединений увеличивается в ПС направо и вниз

  1. Если кислота кислородсодержащая, то её сила зависит от количества кислорода, не входящего в гидроксо-группы. Чем больше кислорода вне -OH группы, тем сильнее кислота. Так, дихромовая кислота сильнее хромовой, потому как дихромовая кислота имеет четыре кислорода вне гидроксо-группы, а хромовая – два кислорода вне гидроксогруппы.

Чем больше кислорода, не связанного с водородом, тем сильнее кислота

В ряду хлорсодержащих кислот наблюдается такая же закономерность:

Хлорная кислота – одна из самых сильных кислот

Список сильных кислот: HI, HCl, HBr, HNO3, HClO4, HClO3, HBrO3, H2SO4, HMnO4, H2Cr2O7.

Список слабых кислот: H2S, HF, HNO2, H2SO3, H2CO3, HClO, карбоновые кислоты.

В действительности классификация кислот по их силе несколько богаче, и те кислоты, которые в школе записывают в слабые (например, ортофосфорную и фтороводородную) на самом деле относят к кислотам средней силы. Помимо классификации важно знать и названия кислот, а также их остатки. Остатками кислот называют отрицательно-заряженные ионы (анионы), которые образуются при диссоциации кислоты в воде. То есть остаток кислоты – это частица, которая остаётся, если отнять у кислоты весь водород. Вот несколько таблиц, в которых кислоты сгруппированы по силе, с указанием соответствующих кислотных остатков и примерами солей:

Таб. Самые сильные кислоты и их остатки

Формула

Название

Кислотный остаток

Пример соли

HI

йодоводородная

I

NaI -йодид натрия

HBr

Бромоводородная

Br

KBr – бромид калия

HCl

Хлороводородная, соляная

Cl

CaCl2 – хлорид кальция

HClO4

Хлорная

ClO4

NaClO4 – перхлорат натрия

H2SO4

Серная

SO42

K2SO4 – сульфат калия

HMnO4

Марганцовая

MnO4

NaMnO4 – перманганат натрия

Таб. Сильные кислоты и их остатки

Формула

Название

Кислотный остаток

Пример соли

HClO3

Хлорноватая

ClO3

KClO3 – хлорат калия

HBrO3

Бромноватая

BrO3

Ba(BrO3)2 – бромат бария

H2Cr2O7

Дихромовая

Cr2O72

(NH4)2Cr2O7 – дихромат аммония

Таб. Кислоты средней силы и их остатки (в ОГЭ и ЕГЭ считаем слабыми)

Формула

Название

Кислотный остаток

Пример соли

HNO2

Азотистая

NO2

NaNO2 – нитрит натрия

H3PO4

Фосфорная (ортофосфорная)

PO43‒

(NH4)3PO4 – фосфат аммония

HF

Фтороводородная (плавиковая)

F

CaF2 – фторид кальция

HClO2

Хлористая

ClO2

KClO2 – хлорит калия

Таб. Слабые кислоты и их остатки

Формула

Название

Кислотный остаток

Пример соли

H2S

Сероводородная

S2‒

MgS – сульфид магния

HCN

Циановодородная

CN

KCN – цианид калия

H2CO3

Угольная

CO32‒

CaCO3 – карбонат кальция

H2SO3

Сернистая

SO32‒

BaSO3 – сульфит бария

HClO

Хлорноватистая

ClO

NaClO – гипохлорит натрия

H2SiO3

Кремниевая

SiO32‒

K2SiO3 – силикат калия

CH3COOH

Уксусная

CH3COO*

CH3COONa – ацетат натрия

*В органических кислотах водород пишется не в начале молекулы, а в конце, например:

CH3COOH – уксусная кислота, диссоциирует следующим образом:

CH3COOH ↔ CH3COO + H+

C2H5COOH – пропионовая кислота

CH3CH2COOH ↔ CH3CH2COO + H+

C3H7COOH –  масляная кислота.

C3H7COOH ↔ C3H7COO + H+

Задание в формате ЕГЭ с ответом:

Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. H2SO2
  2. HCl
  3. HNO3
  1. кислородсодержащая сильная
  2. кислородсодержащая слабая
  3. бескислородная сильная
  4. бескислородная слабая

Пример задания из КИМ ЕГЭ:

Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. HNO2
  2. HBr
  3. H3PO4
  1. одноосновная сильная
  2. одноосновная слабая
  3. многоосновная сильная
  4. многоосновная слабая

Задание по образцу ФИПИ:

Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. HF
  2. H2CO3
  3. H2SiO3
  1. кислородсодержащая сильная
  2. кислородсодержащая слабая
  3. бескислородная сильная
  4. бескислородна слабая

Тривиальные названия некоторых кислот

Многие кислоты имеют альтернативное историческое название, например, хлороводородную кислоту еще называют соляной кислотой, потому что она образует самую популярную соль – NaCl (поваренная соль, используемая в быту). Фтороводородную кислоту называют плавиковой, так как она плавит стекло (поэтому данную кислоту не хранят в стеклянной таре). Муравьиную и щавелевую кислоты назвали так по источнику получения.

«Протон» или «катион»?

Для всех положительно заряженных частиц характерен термин «катион», однако, по отношению к водороду принято говорить «протон». А дело всё в том, что другие элементы при потере внешних электронов, все равно обладают электронами внутренних слоёв, тогда как водород, содержащий всего один электрон, потеряв его, становится протоном (нейтронов в ядре тоже нет).

Образование протона водорода

Поэтому принято говорить, что кислота отдает не катион водорода, а протон водорода.

Кислоты и индикаторы

Для определения кислот в растворах можно использовать стандартные индикаторы (вещества, меняющие цвет в определенной среде): лакмус и метиловый оранжевый, фенолфталеин кислотами не окрашивается. Лакмус в кислых растворах (рН < 7) становится красным, а метиловый оранжевый – красным или розовым.

Как определить кислоту

Чаще всего кислота – это прозрачная жидкость, не обладающая запахом. Как же определить, какая кислота стоит перед нами? Ответ на этот вопрос нам поможет найти аналитическая химия. В качестве примера рассмотрим, как же распознать наиболее часто встречающиеся кислоты: азотную, серную и соляную.

Как определить кислоту

Вам понадобится

  • Для определения кислоты нам в первую очередь необходима таблица растворимости кислот, а также реактивы.

Инструкция

Итак, перед нами стоят три одинаковые пробирки с кислотами. Чтобы понять, в какой пробирке какая кислота находится, обратимся к таблице растворимости и подберем реакции, сопровождаемые выпадением осадка, изменением цвета раствора, либо выделением газа, характерные только для одной исследуемой кислоты.

Мы видим, что серная кислота выпадает в осадок при взаимодействии с ионами бария, а остальные две кислоты – нет. Отливаем по несколько миллилитров исследуемых кислот в чистые пробирки. Добавляем к ним несколько миллилитров основания бария Ba(OH)2. В одной из пробирок выпадает белый мутный осадок. Отлично, мы определили, где находится серная кислота!

Изучаем таблицу дальше. Как мы видим, хлорид серебра дает осадок, а нитрат — нет. Отливаем еще несколько миллилитров исследуемых кислот в чистые пробирки. В каждую пробирку добавляем немного AgNO3. В пробирке, где находилась соляная кислота, начинает образовываться осадок белого цвета, в дальнейшем застывая в виде полупрозрачного налета, называемого роговым серебром. В пробирке с азотной кислотой не происходит никаких изменений.

Видео по теме

Полезный совет

Таким образом, пользуясь таблицей растворимости кислот, можно придумать способ, как определить любую кислоту.

Источники:

  • хлорид серебра

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Кислоты и основания

После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое
pH раствора, какими общими свойствами обладают кислоты и основания.

Простым языком, кислота — это всё что с H, а основание — c OH. НО! Не всегда. Что бы отличать кислоту от основания
необходимо… запомнить их! Сожалею. Что бы хоть как то облегчить жизнь, три наших друга, Аррениус и Бренстед с
Лоури, придумали две теории, которые зовутся их именем.

Как металлы и неметаллы, кислоты и основания — это разделение веществ по схожим свойствам. Первая теория кислот
и оснований принадлежала швецкому учёному Аррениусу. Кислота по Аррениусу — это класс веществ, которые
в реакции с водой диссоциируют (распадаются), образовывая катион водорода H+. Основания Аррениуса в водном растворе образуют
анионы OH. Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури
определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания,
соответственно, — это вещества, способные принять протон в реакции. Актуальная на данный момент теория — теория Льюиса.
Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя
аддукты Льюиса (аддукт — это соединение, образующееся соединением двух реагентов без образования побочных продуктов).

В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать
протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила
справедливы для кислот и оснований.

Диссоциация

Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты — это распад
HCl на H+ и Cl.

Свойства кислот и оснований

Кислоты, содержащие водород, в водном растворе выделяют катионы водорода. Основания, содержащие гидроксид-ион,
в водном растворе выделяют анион OH.

Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.

При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется
газ.

Часто используемые кислоты:

H2O, H3O+, CH3CO2H, H2SO4,
HSO4, HCl, CH3OH, NH3

Часто используемые основания:
OH, H2O, CH3CO2,
HSO4, SO42−, Cl

Сильные и слабые кислоты и основания

Сильные кислоты

Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H+ и анионы.
Пример сильной кислоты — соляная кислота HCl:

HCl(р-р) + H2O(ж) → H3O+(р-р) + Cl(р-р)

Примеры сильных кислот: HCl, HBr, HF, HNO3, H2SO4, HClO4

Список сильных кислот

  • HCl — соляная кислота
  • HBr — бромоводород
  • HI — йодоводород
  • HNO3 — азотная кислота
  • HClO4 — хлорная кислота
  • H2SO4 — серная кислота

Слабые кислоты

Растворяются в воде только частично, например, HF:

HF(р-р) + H2O(ж) → H3O+(р-р) + F(р-р)
в такой реакции более 90% кислоты не диссоциирует:
[H3O+]=[F] < 0,01M для вещества 0,1М

Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов,
чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.

Список слабых кислот

  • HF фтороводородная
  • H3PO4 фосфорная
  • H2SO3 сернистая
  • H2S сероводородная
  • H2CO3 угольная
  • H2SiO3 кремниевая

Сильные основания

Сильные основания полностью диссоциируют в воде:

NaOH(р-р) + H2O ↔ NH4

К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены,
щёлочноземельные металлы) группы.

Список сильных оснований

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH)2 гидроксид бария
  • Ca(OH)2 гидроксид кальция (гашеная известь)

Слабые основания

В обратимой реакции в присутствии воды образует ионы OH:

NH3 (р-р) + H2O ↔ NH+4 (р-р) + OH(р-р)

Большинство слабых оснований — это анионы:

F(р-р) + H2O ↔ HF(р-р) + OH(р-р)

Список слабых оснований

  • Mg(OH)2 гидроксид магния
  • Fe(OH)2 гидроксид железа (II)
  • Zn(OH)2 гидроксид цинка
  • NH4OH гидроксид аммония
  • Fe(OH)3 гидроксид железа (III)

Реакции кислот и оснований

Сильная кислота и сильное основание

Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и
основания, результирующий раствор будет нейтральным.

Пример:
H3O+ + OH ↔ 2H2O

Слабое основание и слабая кислота

Общий вид реакции:
Слабое основание(р-р) + H2O ↔ Слабая кислота(р-р) + OH(р-р)

Сильное основание и слабая кислота

Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства
основания:

HX(р-р) + OH(р-р) ↔ H2O + X(р-р)

Сильная кислота и слабое основание

Кислота полностью диссоциирует, основание диссоциирует не полностью:

NH3 (р-р) + H+ ↔ NH4

Диссоциация воды

Диссоциация — это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от
равновесия, которое присутствует в воде:

H2O + H2O ↔ H3O+(р-р) + OH(р-р)

Kc = [H3O+][OH]/[H2O]2

Константа равновесия воды при t=25°: Kc = 1.83⋅10-6, также имеет место следующее
равенство: [H3O+][OH] = 10-14, что называется константой
диссоциации воды. Для чистой воды [H3O+] = [OH] = 10-7,
откуда -lg[H3O] = 7.0.

Данная величина (-lg[h3O]) называется pH — потенциал водорода. Если pH < 7, то вещество
имеет кислотные свойства, если pH > 7, то вещество имеет основные свойства.

Способы определения pH

Инструментальный метод

Специальный прибор pH-метр — устройство, трансформирующее концентрацию протонов в растворе в электрический
сигнал.

Индикаторы

Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора,
используя несколько индикаторов можно добиться достаточно точного результата.

Соль

Соль — это ионное соединение образованное катионом отличным от H+ и анионом отличным от O2-.
В слабом водном растворе соли полностью диссоциируют.

Что бы определить кислотно-щелочные свойства раствора соли, необходимо определить, какие ионы присутствуют
в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH:
не отдают ионы ни H+, ни OH в воде. Например, Cl, NO3,
SO2-4, Li+, Na+, K+.

Анионы, образованные из слабых кислот, проявляют щелочные свойства (F, CH3COO,
CO2-3), катионов с щелочными свойствами не существует.

Все катионы кроме металлов первой и второй группы имеют кислотные свойства.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного
основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание
с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора — количество сильной кислоты или сильного основания, которые можно добавить не повлияв
    на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Тест:

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Кислоты  сложные вещества, которые при взаимодействии с водой образуют в качестве катионов только ионы Н+ (или Н3О+).

По растворимости в воде кислоты можно поделить на растворимые и нерастворимые. Некоторые кислоты самопроизвольно разлагаются и в водном растворе практически не существуют (неустойчивые). Подробно про классификацию кислот можно прочитать здесь.

Получение кислот

1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота. 

кислотный оксид + вода = кислота

Например, оксид серы (VI) реагирует с водой с образованием серной кислоты:

SO3  +  H2O  →  H2SO4

При этом оксид кремния (IV)  с водой не реагирует:

SiO2  +  H2O ≠

2. Взаимодействие неметаллов с водородом. Таким образом получают только бескислородные кислоты.

Неметалл + водород = бескислородная кислота

Например, хлор реагирует с водородом:

H20 + Cl20 → 2H+Cl

3. Электролиз растворов солей. Как правило, для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих  кислот. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз раствора сульфата меди (II):

2CuSO4 + 2H2O  →  2Cu + 2H2SO4  +  O2

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную.

Например: карбонат кальция CaCO3  (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

CaCO3 + H2SO4  →  CaSO4 + H2O + CO2

5. Кислоты можно получить окислением оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Например, концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

P  + 5HNO3  →  H3PO4  + 5NO2  + H2O

Химические свойства кислот

1. В водных растворах кислоты диссоциируют на катионы водорода Н+ и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Например, соляная кислота диссоциирует почти полностью:

HCl  →  H +  Cl

Если говорить точнее, происходит протолиз воды, и в растворе образуются ионы гидроксония:

HCl  + H2O  →  H3O +  Cl

Многоосновные кислоты диссоциируют cтупенчато.

Например, сернистая кислота диссоциирует в две ступени:

H2SO3  ↔ H+ + HSO3

HSO3– ↔ H+ + SO32–

2. Кислоты изменяют окраску индикатора. Водный раствор кислот окрашивает лакмус в красный цвет, метилоранж в красный цвет. Фенолфталеин не изменяет окраску в присутствии кислот.

3. Кислоты реагируют с основаниями и основными оксидами.

С нерастворимыми основаниями и соответствующими им оксидами взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода

основный оксид + растворимая кислота = соль + вода

Например, гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой:

 Cu(OH)2 + 2HBr  →  CuBr2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой.

Cu(OH)2 + H2SiO3

С сильными основаниями (щелочами) и соответствующими им оксидами реагируют любые кислотами.

Щёлочи взаимодействуют с любыми кислотами — и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH  +  H3PO4  →   NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты:

2NaOH  +  H3PO4  →  Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH  +  H3PO4  →  Na3PO4 + 3H2O

4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид  = соль + вода

Растворимая кислота + амфотерный гидроксид  = соль + вода

Например, уксусная кислота взаимодействует с гидроксидом алюминия:

3CH3COOH + Al(OH)3  →  (CH3COO)3Al + 3H2O

5. Некоторые кислоты являются сильными восстановителями. Восстановителями являются кислоты, образованные неметаллами в минимальной или промежуточной степени окисления, которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H2SO3  и др.).

Например, йодоводород можно окислить хлоридом меди (II):

4HI— + 2Cu+2 Cl2 → 4HCl  +  2Cu+I + I20

6. Кислоты взаимодействуют с солями.

Кислоты реагируют с растворимыми солями только при условии, что в продуктах реакции присутствует газ, вода, осадок или другой слабый электролит. Такие реакции протекают по механизму ионного обмена.

Кислота1 + растворимая соль1 = соль2 + кислота2/оксид + вода

Например, соляная кислота взаимодействует с нитратом серебра в растворе:

Ag+NO3 + H+Cl → Ag+Cl↓ + H+NO3

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты  вытесняют менее сильные кислоты из солей.

Напримеркарбонат кальция (соль угольной кислоты), реагирует с соляной кислотой (более сильной, чем угольная):

CaCO3 + 2HCl → CaCl+ H2O  + CO2

7. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей. Либо кислые соли реагируют с кислотами с образованием более кислых солей. 

кислая соль1 + кислота1 = средняя соль2 + кислота2/оксид + вода

Например, гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды:

KHCO3 + HCl →  KCl  +  CO2 + H2O

Ещё пример: гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия:

H3PO4 +  K2HPO4  →  2KH2PO4 

При взаимодействии основных солей с кислотами образуются средние соли. Более сильные кислоты также вытесняют менее сильные из солей.

Например, гидроксокарбонат меди (II) растворяется в серной кислоте:

2H2SO4 +  (CuOH)2CO3  →  2CuSO4  + 3H2O  +  CO2

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Например, гидроксохлорид алюминия взаимодействует с соляной кислотой:

Al(OH)Cl2 +  HCl  →  AlCl3  + H2

8. Кислоты взаимодействуют с металлами.

При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H2SO4, фосфорная кислота H3PO4, плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI и др.

Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода:

При взаимодействии минеральных кислот с металлами образуются соль и водород:

минеральная кислота + металл = соль + H2

Например, железо взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe + 2H+Cl  →  Fe+2Cl2 + H20

Кислоты-окислители (азотная кислота HNO3 любой концентрации и серная концентрированная кислота H2SO4(конц)) при взаимодействии с металлами водород не образуют, т.к. окислителем выступает не водород, а азот или сера. Продукты восстановления азотной или серной кислот бывают различными. Определять их лучше по специальным правилам. Эти правила подробно разобраны в статье Окислительно-восстановительные реакции. Я настоятельно рекомендую выучить их наизусть.

9. Некоторые кислоты разлагаются при нагревании.

Угольная H2CO3, сернистая H2SOи азотистая HNO2 кислоты разлагаются самопроизвольно, без нагревания:

H2CO3  →   H2O + CO2

H2SO3  →   H2O + SO2

2HNO2  →  NO + H2O + NO2

Кремниевая H2SiO3, йодоводородная HI кислоты разлагаются при нагревании:

H2SiO3  →   H2O + SiO2

2HI  →   H2  +  I2

Азотная кислота HNO3 разлагается при нагревании или на свету:

4HNO3  →  O2 + 2H2O + 4NO2

Понравилась статья? Поделить с друзьями:
  • Как найти термины в учебнике по биологии
  • Как в сбербанке найти заблокированную карту сбербанка
  • Как найти человека по нику аватария
  • Как составить рецензию к дипломной работе
  • Как найти медиану среднего набора чисел