Как найти классы эквивалентности в множествах

Отношение эквивалентности. Классы эквивалентности

Классы эквивалентных элементов и их свойства

Пусть %%R%% — отношение эквивалентности на множестве %%M%% и %%a%% — некоторый элемент из %%M%%. Рассмотрим множество всех элементов из %%M%%, находящихся в отношении %%R%% к элементу %%a%%.

Классом эквивалентности %%M_a%%

называется множество всех элементов %%M%%, находящихся в отношении %%R%% к элементу %%a%%, то есть множество

$$
M_a = {x in M : x~R~a}.
$$

Пример

Пусть %%M%% — множество всех жителей России и %%R%% — отношение эквивалентности «проживать в одном городе». Найти классы эквивалентных элементов %%M_a%% для %%a in M%%.

Класс элементов, эквивалентных элементу %%a%%, имеет вид:
$$
M_a = {x in M : x text{ проживает в одном городе с человеком } a}
$$

В зависимости от элемента %%a%% получаем несколько классов эквивалентности. Например, класс эквивалентности жителей Москвы или Санкт-Петербурга.

Свойства классов эквивалентности

Пусть %%R%% — отношение эквивалентности на множестве %%M%% и %%M_a, M_b, dotsc, M_z, dotsc%% — все классы эквивалентности для отношения %%R%%. Тогда эти классы имеют следующие свойства.

Свойство 1

Для любого элемента %%a in M%% выполняется условие
$$
a in M_a
$$

Действительно, по определению, класс %%M_a = {x in M : x~R~a}%%. Тогда для элемента %%a%% должно выполняться условие %%a in M_a leftrightarrow a~R~a%%, которое выполняется в связи с тем, что отношение %%R%% рефлексивно по определению отношения эквивалентности. Следовательно, %%a in M_a%%.

Как следствие этого свойства можно сказать, что всякий класс %%M_a%% является непустым множеством.

Свойство 2

Пусть %%M_a%% и %%M_b%% классы эквивалентности для отношения %%R%%. Классы %%M_a%% и %%M_b%% равны тогда и только тогда, когда элемент %%a%% находится в отношении %%R%% к элементу %%b%%.
$$
M_a = M_b leftrightarrow a~R~b.
$$

Свойство 3

Пусть %%M_a%% и %%M_b%% классы эквивалентности для отношения %%R%%. Тогда классы %%M_a%% и %%M_b%% не имеют общих элементов.
$$
M_a neq M_b rightarrow M_a cap M_b = varnothing
$$

Свойство 4

Объединение всех классов эквивалентности множества %%M%% равно множеству %%M%%.
$$
bigcup_{ain M}{M_a} = M.
$$

Разбиение множества

Совокупностью подмножеств %%M_i%%, где %%i in I%% (множеству индексов), множества %%M%% называется разбиением множества %%M%% если выполняются следующие условия:

  1. Каждое из подмножеств %%M_i%% непусто.
  2. Объединение всех подмножеств %%M_i%% равно множеству %%M%%.
  3. Два различных подмножества %%M_i%% и %%M_j%%, где %%i neq j%%, не имеют общих элементов.

Теорема. Пусть %%R%% — отношение эквивалентности на множестве %%M%%. Тогда совокупность классов эквивалентности множества %%M%% образует его разбиение.

Действительно, если в качестве подмножеств %%M_i%% взять классы эквивалентности %%M_a%%, то все три условия выполняются:

  1. Каждый класс эквивалентности является непустым множеством, согласно свойству 1.
  2. Объединение всех классов эквивалентности есть множество %%M%%, согласно свойству 4.
  3. Два различных класса эквивалентности не имеют общих элементов, согласно свойству 3.

Все условия определения разбиения выполнены. Следовательно классы эквивалентности есть разбиение множества %%M%%.

Примеры

Пусть дано множество %%M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }%%, тогда разбиением этого множества могут быть следующие совокупности множеств:

  1. %%A_1 = {1, 2, 3}, A_2 = {4, 5, 6, 7}, A_3 = {8, 9, 0 }%%.
  2. %%B_1 = {0, 7, 2}, B_2 = {1, 3, 5 }, B_3 = {4, 6, 8, 9}%%.

Но следующие совокупности не являются разбиением:

  1. %%C_1 = {1, 2, 3}, C_2 = {4, 5, 6, 7}, C_3 = {8, 9, 0, 3}%%.
  2. %%D_1 = {0, 7, 2}, D_2 = {1, 3, 5 }, D_3 = {4, 6, 8, 9}, D_4 = varnothing%%.
  3. %%E_1 = {0, 1, 2}, E_2 = {3, 4, 5}, E_3 = {6, 7, 8}%%.

Совокупность множеств %%C_i%% не является разбиением, т.к. оно не удовлетворяет условию 3 разбиения множеств: множества %%C_1%% и %%C_3%% имеют общий элемент %%3%%.

Совокупность множеств %%D_i%% не является разбиением, т.к. оно не удовлетворяет условию 1 разбиения множеств: множество %%D_4%% пусто.

Совокупность множеств %%E_i%% не является разбиением, т.к. оно не удовлетворяет условию 2 разбиения множеств: объединение множеств %%E_1, E_2%% и %%E_3%% не образует множество %%M%%.

From Wikipedia, the free encyclopedia

This article is about the mathematical concept. For the patent doctrine, see Doctrine of equivalents.

«Equivalency» redirects here. For other uses, see Equivalence.

The 52 equivalence relations on a 5-element set depicted as 5times 5 logical matrices (colored fields, including those in light gray, stand for ones; white fields for zeros). The row and column indices of nonwhite cells are the related elements, while the different colors, other than light gray, indicate the equivalence classes (each light gray cell is its own equivalence class).

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.

Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class.

Notation[edit]

Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation {displaystyle R;} the most common are «asim b» and «ab«, which are used when R is implicit, and variations of «{displaystyle asim _{R}b}«, «aR b«, or «{displaystyle {amathop {R} b}}» to specify R explicitly. Non-equivalence may be written «ab» or «anot equiv b«.

Definition[edit]

A binary relation ,sim, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in {displaystyle X:}

X together with the relation ,sim, is called a setoid. The equivalence class of a under {displaystyle ,sim ,} denoted {displaystyle [a],} is defined as {displaystyle [a]={xin X:xsim a}.}[1][2]

Alternative definition using relational algebra[edit]

In relational algebra, if Rsubseteq Xtimes Y and Ssubseteq Ytimes Z are relations, then the composite relation {displaystyle SRsubseteq Xtimes Z} is defined so that {displaystyle x,SR,z} if and only if there is a yin Y such that {displaystyle x,R,y} and {displaystyle y,S,z}.[note 1] This definition is a generalisation of the definition of functional composition. The defining properties of an equivalence relation R on a set X can then be reformulated as follows:

Examples[edit]

Simple example[edit]

On the set {displaystyle X={a,b,c}}, the relation {displaystyle R={(a,a),(b,b),(c,c),(b,c),(c,b)}} is an equivalence relation. The following sets are equivalence classes of this relation:

{displaystyle [a]={a},~~~~[b]=[c]={b,c}.}

The set of all equivalence classes for R is {displaystyle {{a},{b,c}}.} This set is a partition of the set X with respect to R.

Equivalence relations[edit]

The following relations are all equivalence relations:

Relations that are not equivalences[edit]

  • The relation «≥» between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7.
  • The relation «has a common factor greater than 1 with» between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1.
  • The empty relation R (defined so that aRb is never true) on a set X is vacuously symmetric and transitive; however, it is not reflexive (unless X itself is empty).
  • The relation «is approximately equal to» between real numbers, even if more precisely defined, is not an equivalence relation, because although reflexive and symmetric, it is not transitive, since multiple small changes can accumulate to become a big change. However, if the approximation is defined asymptotically, for example by saying that two functions f and g are approximately equal near some point if the limit of f − g is 0 at that point, then this defines an equivalence relation.

Connections to other relations[edit]

  • A partial order is a relation that is reflexive, antisymmetric, and transitive.
  • Equality is both an equivalence relation and a partial order. Equality is also the only relation on a set that is reflexive, symmetric and antisymmetric. In algebraic expressions, equal variables may be substituted for one another, a facility that is not available for equivalence related variables. The equivalence classes of an equivalence relation can substitute for one another, but not individuals within a class.
  • A strict partial order is irreflexive, transitive, and asymmetric.
  • A partial equivalence relation is transitive and symmetric. Such a relation is reflexive if and only if it is total, that is, if for all a, there exists some {displaystyle b{text{ such that }}asim b.}[proof 1] Therefore, an equivalence relation may be alternatively defined as a symmetric, transitive, and total relation.
  • A ternary equivalence relation is a ternary analogue to the usual (binary) equivalence relation.
  • A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite.
  • A preorder is reflexive and transitive.
  • A congruence relation is an equivalence relation whose domain X is also the underlying set for an algebraic structure, and which respects the additional structure. In general, congruence relations play the role of kernels of homomorphisms, and the quotient of a structure by a congruence relation can be formed. In many important cases, congruence relations have an alternative representation as substructures of the structure on which they are defined (e.g., the congruence relations on groups correspond to the normal subgroups).
  • Any equivalence relation is the negation of an apartness relation, though the converse statement only holds in classical mathematics (as opposed to constructive mathematics), since it is equivalent to the law of excluded middle.
  • Each relation that is both reflexive and left (or right) Euclidean is also an equivalence relation.

Well-definedness under an equivalence relation[edit]

If ,sim, is an equivalence relation on X, and P(x) is a property of elements of X, such that whenever {displaystyle xsim y,} P(x) is true if P(y) is true, then the property P is said to be well-defined or a class invariant under the relation {displaystyle ,sim .}

A frequent particular case occurs when f is a function from X to another set {displaystyle Y;} if x_1 sim x_2 implies {displaystyle fleft(x_{1}right)=fleft(x_{2}right)} then f is said to be a morphism for {displaystyle ,sim ,} a class invariant under {displaystyle ,sim ,} or simply invariant under {displaystyle ,sim .} This occurs, e.g. in the character theory of finite groups. The latter case with the function f can be expressed by a commutative triangle. See also invariant. Some authors use «compatible with {displaystyle ,sim }» or just «respects {displaystyle ,sim }» instead of «invariant under {displaystyle ,sim }«.

More generally, a function may map equivalent arguments (under an equivalence relation {displaystyle ,sim _{A}}) to equivalent values (under an equivalence relation {displaystyle ,sim _{B}}). Such a function is known as a morphism from {displaystyle ,sim _{A}} to {displaystyle ,sim _{B}.}

[edit]

Let {displaystyle a,bin X}, and sim be an equivalence relation. Some key definitions and terminology follow:

Equivalence class[edit]

A subset Y of X such that asim b holds for all a and b in Y, and never for a in Y and b outside Y, is called an equivalence class of X by ~. Let {displaystyle [a]:={xin X:asim x}} denote the equivalence class to which a belongs. All elements of X equivalent to each other are also elements of the same equivalence class.

Quotient set[edit]

The set of all equivalence classes of X by ~, denoted {displaystyle X/{mathord {sim }}:={[x]:xin X},} is the quotient set of X by ~. If X is a topological space, there is a natural way of transforming {displaystyle X/sim } into a topological space; see quotient space for the details.

Projection[edit]

The projection of ,sim, is the function {displaystyle pi :Xto X/{mathord {sim }}} defined by pi (x)=[x] which maps elements of X into their respective equivalence classes by {displaystyle ,sim .}

Theorem on projections:[4] Let the function {displaystyle f:Xto B} be such that if asim b then {displaystyle f(a)=f(b).} Then there is a unique function {displaystyle g:X/sim to B} such that {displaystyle f=gpi .} If f is a surjection and {displaystyle asim b{text{ if and only if }}f(a)=f(b),} then g is a bijection.

Equivalence kernel[edit]

The equivalence kernel of a function f is the equivalence relation ~ defined by {displaystyle xsim y{text{ if and only if }}f(x)=f(y).} The equivalence kernel of an injection is the identity relation.

Partition[edit]

A partition of X is a set P of nonempty subsets of X, such that every element of X is an element of a single element of P. Each element of P is a cell of the partition. Moreover, the elements of P are pairwise disjoint and their union is X.

Counting partitions[edit]

Let X be a finite set with n elements. Since every equivalence relation over X corresponds to a partition of X, and vice versa, the number of equivalence relations on X equals the number of distinct partitions of X, which is the nth Bell number Bn:

{displaystyle B_{n}={frac {1}{e}}sum _{k=0}^{infty }{frac {k^{n}}{k!}}quad }

(Dobinski’s formula).

Fundamental theorem of equivalence relations[edit]

A key result links equivalence relations and partitions:[5][6][7]

  • An equivalence relation ~ on a set X partitions X.
  • Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X.

In both cases, the cells of the partition of X are the equivalence classes of X by ~. Since each element of X belongs to a unique cell of any partition of X, and since each cell of the partition is identical to an equivalence class of X by ~, each element of X belongs to a unique equivalence class of X by ~. Thus there is a natural bijection between the set of all equivalence relations on X and the set of all partitions of X.

Comparing equivalence relations[edit]

If sim and approx are two equivalence relations on the same set S, and asim b implies aapprox b for all {displaystyle a,bin S,} then approx is said to be a coarser relation than sim , and sim is a finer relation than approx . Equivalently,

The equality equivalence relation is the finest equivalence relation on any set, while the universal relation, which relates all pairs of elements, is the coarsest.

The relation «sim is finer than approx » on the collection of all equivalence relations on a fixed set is itself a partial order relation, which makes the collection a geometric lattice.[8]

Generating equivalence relations[edit]

asim b if there exists a natural number n and elements {displaystyle x_{0},ldots ,x_{n}in X} such that {displaystyle a=x_{0}}, {displaystyle b=x_{n}}, and {displaystyle x_{i-1}mathrel {R} x_{i}} or {displaystyle x_{i}mathrel {R} x_{i-1}}, for {displaystyle i=1,ldots ,n.}
The equivalence relation generated in this manner can be trivial. For instance, the equivalence relation generated by any total order on X has exactly one equivalence class, X itself.

Algebraic structure[edit]

Much of mathematics is grounded in the study of equivalences, and order relations. Lattice theory captures the mathematical structure of order relations. Even though equivalence relations are as ubiquitous in mathematics as order relations, the algebraic structure of equivalences is not as well known as that of orders. The former structure draws primarily on group theory and, to a lesser extent, on the theory of lattices, categories, and groupoids.

Group theory[edit]

Just as order relations are grounded in ordered sets, sets closed under pairwise supremum and infimum, equivalence relations are grounded in partitioned sets, which are sets closed under bijections that preserve partition structure. Since all such bijections map an equivalence class onto itself, such bijections are also known as permutations. Hence permutation groups (also known as transformation groups) and the related notion of orbit shed light on the mathematical structure of equivalence relations.

Let ‘~’ denote an equivalence relation over some nonempty set A, called the universe or underlying set. Let G denote the set of bijective functions over A that preserve the partition structure of A, meaning that for all xin A and {displaystyle gin G,g(x)in [x].} Then the following three connected theorems hold:[10]

  • ~ partitions A into equivalence classes. (This is the Fundamental Theorem of Equivalence Relations, mentioned above);
  • Given a partition of A, G is a transformation group under composition, whose orbits are the cells of the partition;[14]
  • Given a transformation group G over A, there exists an equivalence relation ~ over A, whose equivalence classes are the orbits of G.[15][16]

In sum, given an equivalence relation ~ over A, there exists a transformation group G over A whose orbits are the equivalence classes of A under ~.

This transformation group characterisation of equivalence relations differs fundamentally from the way lattices characterize order relations. The arguments of the lattice theory operations meet and join are elements of some universe A. Meanwhile, the arguments of the transformation group operations composition and inverse are elements of a set of bijections, AA.

Moving to groups in general, let H be a subgroup of some group G. Let ~ be an equivalence relation on G, such that {displaystyle asim b{text{ if and only if }}ab^{-1}in H.} The equivalence classes of ~—also called the orbits of the action of H on G—are the right cosets of H in G. Interchanging a and b yields the left cosets.

Related thinking can be found in Rosen (2008: chpt. 10).

Categories and groupoids[edit]

Let G be a set and let «~» denote an equivalence relation over G. Then we can form a groupoid representing this equivalence relation as follows. The objects are the elements of G, and for any two elements x and y of G, there exists a unique morphism from x to y if and only if {displaystyle xsim y.}

The advantages of regarding an equivalence relation as a special case of a groupoid include:

  • Whereas the notion of «free equivalence relation» does not exist, that of a free groupoid on a directed graph does. Thus it is meaningful to speak of a «presentation of an equivalence relation,» i.e., a presentation of the corresponding groupoid;
  • Bundles of groups, group actions, sets, and equivalence relations can be regarded as special cases of the notion of groupoid, a point of view that suggests a number of analogies;
  • In many contexts «quotienting,» and hence the appropriate equivalence relations often called congruences, are important. This leads to the notion of an internal groupoid in a category.[17]

Lattices[edit]

The equivalence relations on any set X, when ordered by set inclusion, form a complete lattice, called Con X by convention. The canonical map ker: X^XCon X, relates the monoid X^X of all functions on X and Con X. ker is surjective but not injective. Less formally, the equivalence relation ker on X, takes each function f: XX to its kernel ker f. Likewise, ker(ker) is an equivalence relation on X^X.

Equivalence relations and mathematical logic[edit]

Equivalence relations are a ready source of examples or counterexamples. For example, an equivalence relation with exactly two infinite equivalence classes is an easy example of a theory which is ω-categorical, but not categorical for any larger cardinal number.

An implication of model theory is that the properties defining a relation can be proved independent of each other (and hence necessary parts of the definition) if and only if, for each property, examples can be found of relations not satisfying the given property while satisfying all the other properties. Hence the three defining properties of equivalence relations can be proved mutually independent by the following three examples:

  • Reflexive and transitive: The relation ≤ on N. Or any preorder;
  • Symmetric and transitive: The relation R on N, defined as aRbab ≠ 0. Or any partial equivalence relation;
  • Reflexive and symmetric: The relation R on Z, defined as aRb ↔ «ab is divisible by at least one of 2 or 3.» Or any dependency relation.

Properties definable in first-order logic that an equivalence relation may or may not possess include:

  • The number of equivalence classes is finite or infinite;
  • The number of equivalence classes equals the (finite) natural number n;
  • All equivalence classes have infinite cardinality;
  • The number of elements in each equivalence class is the natural number n.

See also[edit]

  • Borel equivalence relation
  • Conjugacy class – In group theory, equivalence class under the relation of conjugation
  • Equipollence (geometry) – Property of parallel segments that have the same length and the same direction
  • Hyperfinite equivalence relation
  • Quotient by an equivalence relation
  • Topological conjugacy
  • Up to – Mathematical statement of uniqueness, except for an equivalent structure (equivalence relation)

Notes[edit]

  1. ^ Weisstein, Eric W. «Equivalence Class». mathworld.wolfram.com. Retrieved 2020-08-30.
  2. ^ a b c «7.3: Equivalence Classes». Mathematics LibreTexts. 2017-09-20. Retrieved 2020-08-30.
  3. ^ Halmos, Paul Richard (1914). Naive Set Theory. New York: Springer. p. 41. ISBN 978-0-387-90104-6.
  4. ^ Garrett Birkhoff and Saunders Mac Lane, 1999 (1967). Algebra, 3rd ed. p. 35, Th. 19. Chelsea.
  5. ^ Wallace, D. A. R., 1998. Groups, Rings and Fields. p. 31, Th. 8. Springer-Verlag.
  6. ^ Dummit, D. S., and Foote, R. M., 2004. Abstract Algebra, 3rd ed. p. 3, Prop. 2. John Wiley & Sons.
  7. ^ Karel Hrbacek & Thomas Jech (1999) Introduction to Set Theory, 3rd edition, pages 29–32, Marcel Dekker
  8. ^ Birkhoff, Garrett (1995), Lattice Theory, Colloquium Publications, vol. 25 (3rd ed.), American Mathematical Society, ISBN 9780821810255. Sect. IV.9, Theorem 12, page 95
  9. ^ Garrett Birkhoff and Saunders Mac Lane, 1999 (1967). Algebra, 3rd ed. p. 33, Th. 18. Chelsea.
  10. ^ Rosen (2008), pp. 243–45. Less clear is §10.3 of Bas van Fraassen, 1989. Laws and Symmetry. Oxford Univ. Press.
  11. ^ Bas van Fraassen, 1989. Laws and Symmetry. Oxford Univ. Press: 246.
  12. ^ Wallace, D. A. R., 1998. Groups, Rings and Fields. Springer-Verlag: 22, Th. 6.
  13. ^ Wallace, D. A. R., 1998. Groups, Rings and Fields. Springer-Verlag: 24, Th. 7.
  14. ^
    Proof.[11] Let function composition interpret group multiplication, and function inverse interpret group inverse. Then G is a group under composition, meaning that xin A and {displaystyle gin G,[g(x)]=[x],} because G satisfies the following four conditions:

    • G is closed under composition. The composition of any two elements of G exists, because the domain and codomain of any element of G is A. Moreover, the composition of bijections is bijective;[12]
    • Existence of identity function. The identity function, I(x) = x, is an obvious element of G;
    • Existence of inverse function. Every bijective function g has an inverse g−1, such that gg−1 = I;
    • Composition associates. f(gh) = (fg)h. This holds for all functions over all domains.[13]

    Let f and g be any two elements of G. By virtue of the definition of G, [g(f(x))] = [f(x)] and [f(x)] = [x], so that [g(f(x))] = [x]. Hence G is also a transformation group (and an automorphism group) because function composition preserves the partitioning of {displaystyle A.blacksquare }

  15. ^ Wallace, D. A. R., 1998. Groups, Rings and Fields. Springer-Verlag: 202, Th. 6.
  16. ^ Dummit, D. S., and Foote, R. M., 2004. Abstract Algebra, 3rd ed. John Wiley & Sons: 114, Prop. 2.
  17. ^ Borceux, F. and Janelidze, G., 2001. Galois theories, Cambridge University Press, ISBN 0-521-80309-8

References[edit]

  • Brown, Ronald, 2006. Topology and Groupoids. Booksurge LLC. ISBN 1-4196-2722-8.
  • Castellani, E., 2003, «Symmetry and equivalence» in Brading, Katherine, and E. Castellani, eds., Symmetries in Physics: Philosophical Reflections. Cambridge Univ. Press: 422–433.
  • Robert Dilworth and Crawley, Peter, 1973. Algebraic Theory of Lattices. Prentice Hall. Chpt. 12 discusses how equivalence relations arise in lattice theory.
  • Higgins, P.J., 1971. Categories and groupoids. Van Nostrand. Downloadable since 2005 as a TAC Reprint.
  • John Randolph Lucas, 1973. A Treatise on Time and Space. London: Methuen. Section 31.
  • Rosen, Joseph (2008) Symmetry Rules: How Science and Nature are Founded on Symmetry. Springer-Verlag. Mostly chapters. 9,10.
  • Raymond Wilder (1965) Introduction to the Foundations of Mathematics 2nd edition, Chapter 2-8: Axioms defining equivalence, pp 48–50, John Wiley & Sons.

External links[edit]

  • «Equivalence relation», Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Bogomolny, A., «Equivalence Relationship» cut-the-knot. Accessed 1 September 2009
  • Equivalence relation at PlanetMath
  • OEIS sequence A231428 (Binary matrices representing equivalence relations)

Прочие статьи цикла

Отношения. Часть I
Отношения. Часть II
Количественные характеристики отношений

Формальная теория моделирования использует алгебраические отношения, включая их в сигнатуры моделей алгебраических структур, которыми описывает реальные физические, технические объекты и процессы их функционирования. Эта публикация является продолжением предшествующей, прочтение которой желательно, так как многие понятия и термины, используемые здесь, описываются там.

Предлагается изложение не в традиционном (стрелочном) стиле, а так, как мне самому пришлось всю эту кухню представлять и осваивать и по учебникам/пособиям, и по журнальным статьям. Особенно полезной вещью считаю созданный мной каталог, он позволяет выделить практически любое пространство и представить его элементы в удобном виде: матрицей, графом и др. Сразу видишь с чем имеешь дело и свойства (они уже выписаны) проверять часто не требуется.

Понятие отношения

Думаю, что термин отношение знаком каждому читателю, но просьба дать определение поставит большинство в тупик. Причин для этого много. Они чаще всего в преподавателях, которые, если и использовали отношения в процессе преподавания, внимания на этом термине не заостряли, запоминающихся примеров не приводили. Некоторые комментаторы статьи отнесли замечания на свой счет и насыпали минусов. Но шила в мешке не утаишь. Серьезных публикаций как не было, так и нет. Задайте себе вопрос, работали ли Вы с каким-либо пространством отношений? И честно себе ответьте. Что об этом пространстве можете миру поведать, для начала хотя-бы перечислить его элементы и указать свойства. Даже на СУБД Вы смотрите глазами их создателей, а они ведь тоже не все видят, или не все показывают, как, например, в микросхемах.

Здесь сделаю небольшой повтор. Начинать следует с абстрактного множества А ={a1,a2,a3,…, an}. О нем почитать можно здесь. Для лучшего понимания сократим множество до 3 элементов, т.е. А ={a1, a2, a3}. Теперь выполним декартово умножение А×А =А2 и явно перечислим все элементы декартова квадрата
А×А={(a1, a1),(a1, а2),(a1, a3),(a2, а1),(a2, a2),(a2, a3),(a3, a1),(a3, a2),(a3, a3)}.
Получили 9 упорядоченных пар элементов из А×А, в паре первый элемент из первого сомножителя, второй — из второго. Теперь попробуем получить все подмножества из декартова квадрата А×А. Подмножества будут содержать разное количество пар: одну, две, три и так до всех 9 пар, включаем в этот список и пустое множество ∅. Сколько же получилось подмножеств? Много, а именно 29 = 512 элементов.

Определение. Подмножество декартова квадрата множества называется бинарным отношением. Если декартов квадрат из двух сомножителей отношение бинарное, если из 3-х -тернарное, из 4-х — тетрарное, из n — n-арное. Арность — число мест в элементе отношения.
Определение. Множество всех подмножеств множества А называется булеаном. Булеан состоит из 2|A| элементов, здесь |A| — мощность множества.

Отношения можно задавать в разном представлении:

  • перечислением элементов; R1 ={(a2,a2),(a2,a3),(a3,a1)}; R2 ={(a3,a3)}
  • двоичным вектором; <000011100>; <000000001>
  • матрицей;
  • графом и др. способами.

Далее переходим к рассмотрению пространств отношений, считая, что понятие, свойства отношений и операции с ними, читателю знакомы хотя бы в объеме нашей публикации в ссылке.

Пространства бинарных отношений

Предварительно уточним, что отношения могут быть строгими (это все антирефлексивные отношения) или нестрогими (все остальные). Внимание сосредоточим на отношениях безразличия и предпочтения, последние подразделяются на слабые предпочтения и строгие предпочтения (почему-то не сильные). Вообще в науке с терминологией нет порядка и скорее всего не будет. В криптографии, например, снятие шифра с криптограммы при наличии ключа -расшифрование, а без ключа — дешифрование. Казалось бы, дешифратор — дешифрует, но нет.

Пространством бинарных отношений с множеством-носителем называется произвольное подмножество множества бинарных отношений заданных на. Рассмотрим основные пространства для отношений предпочтений (рис. 2.15).

Р – пространство всех отношений слабого предпочтения, удовлетворяют условию рефлексивности и полноты.
QT – слабые предпочтения, удовлетворяющие условию квазитранзитивности.
QO – пространство линейных квазипорядков, т. е. отношения из QT, которые являются транзитивными.
ТО – пространство всех совершенных порядков, т. е. отношения из QO, которые являются антисимметричными.
SP – пространство всех отношений строгого предпочтения, удовлетворяют свойствам антирефлексивности и антисимметричности.
РО – отношения строгого частичного порядка, или транзитивные строгие предпочтения. Так как отношения строгого частичного порядка транзитивны, естественно пользоваться, для их представления сокращенными графами, то есть такими, в которых опущены дуги, реализующие транзитивность. Такие сокращенные графы называются диаграммами Хассе.
QS – пространство квазисерий, т. е. строгие частичные порядки, для которых отношение I=¬(PUP-1) – эквивалентность.
TSO – пространство строгих линейных порядков, т. е. тех частичных порядков, для которых выполняется свойство полноты.
Необходимо отметить, всего таких отношений n!.. Например, для n = 3, число совершенных отношений равно 6 и все они приведены на рис. 2.13.
Т – пространство всех отношений толерантности (безразличия), они обладают свойствами симметричности и рефлексивности.
ТОТ – пространство транзитивно ориентируемых отношений толерантности, т. е. такие отношения, что дополнение к I представляется в виде объединения взаимно обратных транзитивных отношений, т. е.
¬I =R∩R-1.
I – пространство всех отношений эквивалентности, т. е. симметричных, рефлексивных и транзитивных отношений.
Е – пространство отношений равенства, состоит из одного отношения представленного диагональной матрицей. Между пространствами R, P и I имеется взаимно-однозначная связь, определяемая отображением отношений предпочтения.

Рисунок 2.15 Схема пространств бинарных отношений

Выявленные связи между пространствами используются для переноса задач принятия решений (ЗПР) из одних пространств в другие, где они могут быть решены более простым путем, а затем полученное решение возвращают в исходное пространство, где была сформулирована ЗПР.
Эти отношения представлены диаграммой на рис. 2.14. Пространства бинарных отношений (типы отношений) представлены рис. 2.15.

Отношения эквивалентности

Определение. Бинарное отношение σ ⊆ А×А, обладающее тремя свойствами рефлексивности, симметричности, транзитивности, называется, бинарным отношением эквивалентности (БОЭ). Обозначается отношение эквивалентности σ(х, у), (х, у)∊σ, хσу, х≈у. Удобно использовать матричное (табличное) представление отношения. Ниже на рис 2.24 приведено как раз матричное представление. Над множеством из 4-х элементов существует 15 БОЭ, которые все изображены.

Представление и анализ структуры отношений эквивалентности (n = 4)
Эквивалентность из бинарных отношений, пожалуй, самое распространенное БО. Редкая наука обходится без этого понятия, но даже тогда, когда эквивалентности используются в изложении каких-либо вопросов, бывает трудно понять, что в виду имел автор. Даже при корректном определении и перечислении свойств, присущих этому бинарному отношению – трудности восприятия остаются.

Начнем с примера об эквивалентностях, который иллюстрирует ограниченность их количества.

Пример 1. Пусть имеется три кубика. Составим список свойств, которыми наделены кубики и практическое использование которых (свойств кубиков) делает их как бы взаимозаменяемыми. Кубикам присвоим номера, а их свойства представим таблицей 1.

По каждому из свойств возникает БОЭ и классы эквивалентности. Продолжая список свойств, мы новых отношений эквивалентности не получим. Будут только повторы уже построенных, но для других признаков. Покажем связь БОЭ с множествами.

Рассмотрим множество из трех элементов А ={1,2,3} и получим для него все возможные разбиения на все части. ①1|2|3; ②12|3; ③13|2; ④ 1|23; ⑤123. Последнее разбиения на одну часть. Номера разбиений и БО в кружках.

Определение. Разбиением множества А называют семейство Аi, i = 1(1)I, непустых попарно непересекающихся подмножеств из А, объединение которых образует все исходное множество А=UАi, Аi∩Аj =∅, ∀ i ≠ j. Под-множества Аi называют классами эквивалентности разбиения исходного множества.

Это все разбиения множества (5 штук). Анализ БО показывает, что различных отношений эквивалентности тоже только 5 штук. Случайно ли это совпадение? Мы можем каждому разбиению сопоставить матрицу из девяти ячеек (3×3 = 9), в каждой из которых либо размещается упорядоченная пара элементов из множества А, либо ячейка остается пустой, если для соответствующей пары нет объекта. Строки и столбцы матрицы размечаются элементами множества А, а пересечению строка – столбец соответствует упорядоченная пара (i, j). В ячейку матрицы вписывается не пара, а просто единица или нуль, впрочем, нуль часто не пишут совсем.

Нет, совпадение не случайное. Оказывается, каждому разбиению множества взаимно однозначно соответствует БОЭ, при этом мощность множества может быть любой |A| = n.

Это отношение едва ли не самое частое по использованию в научном обороте, но совокупность свойств, реализуемых в этом отношении, сильно ограничивает его распространенность.
Так среди всех абстрактных бинарных отношений над множеством из трех элементов (всего их 29 = 512 отношений) только пять являются эквивалентностями — носителями требуемых свойств, менее одного процента.

Для |A| = 4 отношений существует 216 = 65536, но эквивалентностей лишь 15 штук. Это весьма редкий тип отношений. С другой стороны, отношения эквивалентности широко распространены в прикладных задачах. Везде, где имеются и рассматриваются множества самых различных объектов и различные разбиения таких множеств (не чисел) на части возникают отношения эквивалентности. Их можно назвать математическими (алгебраическими) моделями таких разбиений, классифицирующими множества объектов по различным признакам.

Минимальное разбиение множества А, образованное из одноэлементных подмножеств А= U{a} и разбиение А, состоящее из самого множества {А}, называются тривиальными (несобственными) разбиениями.

Решетка Р(4): все разбиения множества А = {a1,a2,a3,a4} = {1,2,3,4}

Минимальному разбиению соответствует отношение эквивалентности П15, которое называется равенством или единичным отношением. В каждом классе эквивалентности — единственный элемент. Разбиению множества А, включающему лишь само множество А, соответствует отношение эквивалентности, содержащее все элементы декартова квадрата А×А.

Ближайший тип к отношениям эквивалентности – отношения толерантности. Множество отношений толерантности содержит в себе все отношения эквивалентности. Для носителя А из трех элементов толерантностей 8. Все они обладают свойствами рефлексивности и симметричности.

При выполнении свойства транзитивности пять из восьми толерантностей преобразует в эквивалентности (рис. 2.24 и 2.25).

Определение. Совокупность классов [a]σ эквивалентности элементов множества А называется фактор-множеством (обозначается А/σ) множества А по эквивалентности σ.

Определение. Естественным (каноническим) отображением f: A→ А/σ называется такое отображение f, при котором f(а) = [a]σ.

Отношения толерантности и их анализ

Об этих БО ранее уже упоминалось, а здесь рассмотрим их подробнее. Всем известны понятия сходство, похожесть, одинаковость, неразличимость, взаимозаменяемость объектов. Они кажутся близкими по содержанию, но при этом не одно и то же. Когда для объектов указано только сходство, то невозможно разбить их на четкие классы так, что внутри класса объекты похожи, а между объектами разных классов сходства нет. В случае сходства возникает размытая ситуация без четких границ. С другой стороны, накапливание несущественных различий у сходных объектов может привести к совершенно непохожим объектам.

В предыдущей части мы обсудили содержательный смысл отношения одинаковости (эквивалентности) объектов. Не менее важной является ситуация, когда приходится устанавливать сходство объектов.

Пусть изучается форма геометрических тел. Если одинаковость формы объектов, например, кубиков, означает их полную взаимозаменяемость в определенной ситуации обучения, то сходство – это частичная взаимозаменяемость, (когда среди кубиков встречаются очень похожие на них параллелепипеды) т. е. возможность взаимной замены с некоторыми (допустимыми в данной ситуации) потерями.

Наибольшая мера для сходства – неразличимость, а вовсе не одинаковость, как может показаться на первый взгляд. Одинаковость – свойство качественно иное. Одинаковость можно рассматривать только как частный случай неразличимости и сходства.

Все дело в том, что неразличимые объекты (так же, как и сходные, похожие) не удается разбить на классы так, чтобы в каждом классе элементы не различались, а элементы разных классов заведомо различались.

В самом деле, будем рассматривать множество точек (х, у) на плоскости. Пусть величина d имеет значение меньшее порога разрешимости глаза, т. е. d – такое расстояние, при котором две точки, находящиеся на этом расстоянии, сливаются в одну, т.е. визуально неразличимы (при выбранном удалении плоскости от наблюдателя). Рассмотрим теперь n точек, лежащих на одной прямой и отстоящих (каждая от соседних) на расстоянии d. Каждая пара
соседних точек неразличима, но, если n достаточно велико, первая и последняя точки будут отстоять друг от друга на большое расстояние и заведомо будут различимы.

Традиционный подход к изучению сходства или неразличимости состоит в том, чтобы сначала определить меру сходства, а затем исследовать взаимное расположение сходных объектов. Английский математик Зиман, изучая модели зрительного аппарата, предложил аксиоматическое определение сходства. Тем самым свойства сходства стало возможным изучать независимо от того, как конкретно оно задано в той или иной ситуации: расстоянием между объектами, совпадением каких-то признаков или субъективным мнением наблюдателя.
Введем экспликацию понятия сходства или неразличимости.

Определение. Отношение Т на множестве M называется отношением толерантности или толерантностью, если оно рефлексивно и симметрично.

Корректность такого определения видна из того, что объект заведомо неразличим сам с собой и, конечно, похож на себя (это задает рефлексивность отношения). Порядок рассмотрения двух объектов не влияет на окончательный вывод об их сходстве или несходстве (симметричность).
Из примера со зрительной неразличимостью точек плоскости видим, что транзитивность толерантности выполняется не для всех пар объектов.

Ясно также, что поскольку одинаковость есть частный случай сходства, то эквивалентность должна быть частным случаем толерантности. Сравнивая определения эквивалентности и толерантности, убеждаемся, что так оно и есть. Философский принцип: «частное богаче общего» наглядно подтверждается. Дополнительное свойство – транзитивности делает часть отношений толерантности эквивалентностями. Двое близнецов бывают настолько одинаковыми, что без риска могут сдавать экзамены друг за друга. Однако если два студента только похожи, то такая проделка, хотя и осуществима, но рискованна.

Каждый элемент множества несет определенную информацию о похожих на него элементах. Но не всю информацию, как в случае одинаковых элементов. Здесь возможны разные степени информации, которую один элемент содержит относительно другого.

Рассмотрим примеры, где толерантность задается разными способами.

Пример 2. Множество M состоит из четырехбуквенных русских слов — нарицательных существительных в именительном падеже. Будем называть такие слова сходными, если они отличаются не более чем на одну букву. Известная задача «Превращение мухи в слона» в точных терминах формулируется так. Найти последовательность слов, начинающуюся словом «муха» и кончающуюся словом «слон», любые два соседних слова в которой сходны в смысле только что данного определения. Решение этой задачи:

муха — мура — тура — тара — кара — каре — кафе — кафр — каюр — каюк — крюк — крок — срок — сток — стон — слон.

Пример 3. Пусть p — натуральное число. Обозначим через Sp совокупность всех непустых подмножеств множества М = {1, 2, …, p}. Отношение «иметь хотя бы один общий элемент» на множестве Sp – это отношение толерантности. Тогда два таких подмножества назовем толерантными, если у них есть хотя бы один общий элемент. Легко видеть, что рефлексивность и симметричность отношения выполнены.

Множество Sp называется (p –1) -мерным симплексом. Это понятие обобщает понятие отрезка, треугольника и тетраэдра на многомерный случай. Числа 1, 2, 3, …, p интерпретируются как вершины симплекса. Двухэлементные подмножества – как ребра, трехэлементные – как плоские (двумерные) грани, прочие k-элементные подмножества – как (k –1)-мерные грани. Число всех элементов (подмножеств) из Sp равно 2р −1.

Толерантность подмножеств (граней) означает наличие у них общих вершин.

Определение. Множество M с заданным на нем отношением толерантности τ называется пространством толерантности. Таким образом, пространство толерантности есть пара (M, τ).

Пример 4. Пространство толерантности Sp допускает обобщение на бесконечный случай. Пусть H — произвольное множество. Если SH – совокупность всех непустых подмножеств множества H, то отношение толерантности Т на SH задается условием: X Т Y, если X∩Y ≠ ∅. Симметричность и рефлексивность этого отношения очевидны. Пространство SH обозначается <Н, Т> и называется «универсальным» пространством толерантности.

Пример 5. Пусть p — натуральное число. Обозначим Bp множество всех точек p-мерного пространства, координаты которых равны 0 или 1. Толерантность в Bp задается правилом: xτy, если x и y содержат хотя бы одну совпадающую компоненту (координату). Общее количество элементов в Bp равно 2р. Для каждого элемента x = (a1, a2, …,ap) из множества Bp существует только один не толерантный ему элемент y = (1−a1, 1−a2, …, 1−ap ).
Очевидно, что Bp состоит из всех вершин p-мерного куба.

Пример 6. Рассмотрим пространство толерантности, компоненты которого принимают любые действительные значения.

В частности, это множество всех точек x = (a1, a2) декартовой плоскости. Толерантность двух точек означает совпадение у них хотя бы одной координаты. Значит, две толерантные точки находятся либо на общей вертикали, либо на общей горизонтали.

При других значениях p пространство можно интерпретировать как множество точек p-мерного пространства. В частности, каждый элемент x можно считать числовой функцией, заданной на множестве натуральных чисел {1, 2, 3, …}, которая каждому натуральному числу i: 1 ≤ i ≤ p сопоставляет действительное число ai (конечная числовая последовательность). Тогда толерантность двух функций x и y означает, что они хотя бы в одной точке равны.

Отношения частичного порядка и их анализ

Упорядоченные множества – это множества с введенным на нем отношением порядка. Определение. Множество А и бинарное отношение порядка R на нем (≤) называется частично упорядоченным, если для отношения выполнены (как и в БОЭ) три условия (одно условие другое):

  • рефлексивность ∀ х ∊ А (хRx); (антирефлексивность ∀ х ∊ А ¬(хRx));
  • антисимметричность ∀ х, y ∊ А (хRy yRx→x = y);
  • транзитивность ∀ х, у, z ∊ А (хRy& yRz →xRz).

При антирефлексивном отношении возникает строгий частичный порядок. Множество В(А) всех подмножеств множества А, упорядоченное по включению элементов является частично упорядоченным множеством (ЧУМ). Частично упорядоченное множество (В(А), ⊆) часто называют булеаном.

Элемент х∊А ЧУМ А покрывает элемент у∊А, если х > y и не существует z∊А такого, что х > z > y. Пара элементов х, у∊А называется сравнимой, если х ≥ у или х ≤ у.

Если в ЧУМ А всякая пара его элементов является сравнимой, то А называют линейно упорядоченным множеством или цепью.

Если же некоторое ЧУМ В состоит лишь из несравнимых друг с другом элементов, то множество В называют антицепью. Цепь в ЧУМ А называется насыщенной, если она не может быть вложена ни в какую другую цепь, отличную от себя.

Аналогично определяется насыщенная антицепь. Максимальной цепью (антицепью) называется цепь (антицепь), содержащая максимальное количество элементов.

Элемент m ЧУМ А называется минимальным, если в А нет элемента х∊А, отличного от m и такого, что х≤m. Элемент M ЧУМ А называется максимальным, если в А нет элемента х «большего», чем M, отличного от M и такого, что х ≥ M.

Элемент у∊А ЧУМ А называется наибольшим, если ∀ х∊ А х ≤ у. Элемент у∊ А ЧУМ А называется наименьшим, если ∀ х∊А х ≥ у. Для наибольшего и наименьшего элементов принято использовать обозначения 1 и 0 соответственно. Их называют универсальными границами. Всякое ЧУМ А имеет не более одного наименьшего и не более одного наибольшего элементов. В ЧУМ А допустимо несколько минимальных и несколько максимальных элементов
Изображать конечное ЧУМ А удобно диаграммой Хассе, которая представляет собой ориентированный граф, его вершины распределены по уровням диаграммы и соответствуют элементам из А, а каждая дуга направляется вниз и рисуется тогда и только тогда, когда элемент х∊А покрывает элемент у∊А.

Транзитивные дуги не изображаются. Уровни диаграммы Хассе содержат элементы одинакового ранга, т.е. связанные с минимальными элементами ЧУМ путями равной длины (по числу дуг).
Пусть В непустое подмножество ЧУМ А, тогда элемент х∊А называется точной верхней гранью (обозначается supAB) множества В, если х ≥ у для всех у∊В и, если из истинности соотношения z ≥ у для всех у∊В вытекает, что z ≥ х.

Точной нижней гранью (обозначается infAB) множества В называется элемент х∊А, если х ≤ у для всех у∊В и, если из условия z ≤ у для всех у∊ В вытекает, что z ≤ х.

Пример 7. Заданы два конечных числовых множества
А = {0,1,2,…,21} и B = {6,7,10,11}.

ЧУМ (А, ≤) представлено рис. 2.26.

Совокупность ВΔ всех верхних граней для В называется верхним конусом для множества В. Совокупность В всех нижних граней для В называется нижним конусом для В.

Всякое подмножество ЧУМ также является ЧУМ относительно наследованного порядка. Если в множестве существуют наибольший и/или наименьший элементы, то они являются максимальным (минимальным соответственно). Обратное неверно. Булеан обладает единственным наименьшим (Ø) и единственным наибольшим элементами.

В приведенном множестве наименьший элемент нуль (0) и он совпадает с единственным минимальным элементом, а наибольшего элемента не существует. Максимальными элементами являются {19, 20, 21}. Точная верхняя грань для B = {6,7,10,11} есть элемент 21 (это наименьший элемент в верхнем конусе).

Общая ситуация. Пусть задано множество, мощность которого*******. Из всех бинарных отношений, возможных на этом множестве, выделим бинарные отношения предпочтения и связанные с ними отношения строгих частичных порядков.

Частичные порядки отличаются от строгих частичных порядков только тем, что содержат в своем составе дополнительные элементы (в матричном представлении – диагональные) (аi, ai ) = 1, i = 1(1)n, а число тех и других порядков в полном множестве отношений одинаково. До настоящего времени не найдены зависимости (формула, алгоритм), которые позволяли бы подсчитывать и перечислять при любом n число частичных порядков.

Разными авторами непосредственным подсчетом определены и опубликованы следующие результаты (табл. 2.12).

Вычислительные эксперименты автора позволили получить не только число, но и вид (представление) частичных порядков при разных мощностях множителя-носителя отношений. Принтер задыхался печатая такие огромные списки, но не только красота требует жертв, наука тоже не отказывается от них.

В таблице 2.12 показаны: n = |A| – мощность множества-носителя; вторая строка – количество всех бинарных отношений на множестве А; и далее

|Ин(n)| – количество классов неизоморфных отношений;
|Г(n)| – количество отношений частичного порядка;
|Гн(n)| – количество классов неизоморфны отношений частичного порядка;
|Гл(n)| = n! – количество отношений линейного порядка.

Как видим, в таблице для небольших n, например, Г(n=4) имеется всего 219, приводятся данные, значения которых с увеличением n очень быстро растут, что существенно усложняет их количественный (и качественный) непосредственный анализ даже с помощью ЭВМ.

Таблица ниже иллюстрирует возможность порождения Г(n=4) всех частичных порядков из пересечения каждого с каждым линейных частичных порядков. Но в этой ситуации возникают избыточные (повторяющиеся), которые при малых n можно отсечь вручную (пересчитать). Получаются 300 матриц, но ЧУМ среди них лишь 219. Общие формулы так и не были получены. На мировом уровне ситуация аналогичная, хотя мне не довелось видеть публикаций о перечислениях ЧУМ западных авторов. Наши алгоритмы вполне оригинальны и пионерские.

Приведу возможную схему решения задачи перечисления элементов пространства частичных порядков (n=4).

Множество строгих частичных порядков при лексикографическом упорядочении линейных порядков (n=4) порождается при их взаимном пересечении.

Несколько важных определений математики, для встречающихся часто в текстах понятий.

Определение. Замкнутый интервал – это множество вида {x: a ≤ x ≤ b}; открытый интервал не замкнут, и полуоткрытый интервал, т. е. множество вида {x: a < x ≤ b}, где а < b, или вида {x: a ≤ x < b} не открыт и не замкнут.

Определение. Граница произвольного интервала вещественной прямой в обычной топологии вещественных чисел состоит лишь из концов этого интервала, независимо от того, открыт этот интервал, замкнут или полуоткрыт. Границей множества рациональных чисел, так же, как и границей множества всех иррациональных чисел, служит все множество вещественных чисел.

Определение. Каждое линейно упорядоченное множество, в любом непустом подмножестве которого есть наименьший элемент, называется вполне упорядоченным.

Определение. Семейство R называется цепью (иногда башней, гнездом) тогда и только тогда, когда для любых его элементов А и В либо А ⊂ В, либо В ⊂ А. Это условие равносильно утверждению, что семейство R линейно упорядочено по включению или – в принятой терминологии – что семейство R вместе с отношением включения является цепью.

П р и н ц и п м а к с и м а л ь н о с т и Х а у с д о р ф а. Для любого семейства множеств A и любого гнезда R, образованного элементами семейства A существует максимальное гнездо M в A, содержащее R.

Важная теорема о множествах и их семействах (Дж.Л.Kелли «Общая топология» стр.55).
Теорема. (а) П р и н ц и п м а к с и м а л ь н о г о э л е м е н т а. Максимальный элемент в семействе A множества существует, если для каждого гнезда, лежащего в A, в A найдется элемент, который содержит произвольный элемент этого гнезда.

(б) П р и н ц и п    м и н и м а л ь н о г о   э л е м е н т а. Минимальный элемент в семействе A существует, если для каждого гнезда, лежащего в A, в A найдется элемент, содержащийся в каждом элементе этого гнезда.

(в) Л е м м а    Т ь ю к и. В каждом семействе множеств конечного характера есть максимальный элемент.

(г) Л е м м а    К у р а т о в с к о г о. Каждая цепь в (частично) упорядоченном множестве содержится в некоторой максимальной цепи.

(д) Л е м м а   Ц о р н а. Если каждая цепь некоторого частично упорядоченного множества ограничена сверху, то в этом множестве есть максимальный элемент.

(е) А к с и о м а    в ы б о р а. Пусть Хα – непустое множество для каждого элемента а из множества индексов А. Тогда на А существует функция с такая, что с(а)∊ Хα для каждого а из А.

(ж) П о с т у л а т    Ц е р м е л о. Для любого семейства A непересекающихся непустых множеств существует такое множество С, что АUС для каждого А из A состоит ровно из одной точки.

(з) П р и н ц и п    в п о л н е    у п о р я д о ч е н и я. Каждое множество можно вполне упорядочить.

Отношение эквивалентности — это обобщение понятия равенства. Эквивалентные элементы не различимы для теории в каком-то фиксированном смысле.

Определение

Пусть дано множество {displaystyle X,} и на нём задано бинарное отношение {displaystyle sim .}. Тогда {displaystyle sim } называется отношением эквивалентности, если оно

Классы эквивалентности

Подмножество элементов эквивалентных данному называется его классом эквивалентности. Пишут:

{displaystyle [a]={bin Xmid asim b}.}

Пусть {displaystyle a,bin X.} Тогда либо {displaystyle [a]cap [b]=emptyset ,} либо {displaystyle [a]=[b].} Таким образом отношение эквивалентности порождает разбиение множества на непересекающиеся классы эквивалентности. Семейство таких классов образует множество, называемое фактор-множеством и обозначаемое {displaystyle X/sim .}

Примеры

Отношение эквивалентности обозначают символом . Запись вида читают как » эквивалентно »

Содержание

  • 1 Примеры отношений эквивалентности
  • 2 Классы эквивалентности
  • 3 Примеры
  • 4 См. также
  • 5 Источники информации

Примеры отношений эквивалентности

  • Отношение равенства() является тривиальным примером отношения эквивалентности на любом множестве.
  • Отношение равенства по модулю : на множестве целых чисел.
  • Отношение параллельности прямых на плоскости.
  • Отношение подобия фигур на плоскости.
  • Отношение равносильности на множестве уравнений.
  • Отношение связности вершин в графе.
  • Отношение быть одного роста на множестве людей.

Следующие отношения не являются отношениями эквивалентности:

  • Отношения порядка, так как они не являются симметричными.
  • Отношение быть знакомым на множестве людей, так как оно не транзитивное.

Классы эквивалентности

Определение:
Система непустых подмножеств множества называется разбиением (англ. partition) данного множества, если:

  • при .

Множества называются классами данного разбиения.

Примерами разбиений являются:

  • Разбиение многоугольников на группы по числу вершин.
  • Разбиение треугольников по свойствам углов (остроугольные, прямоугольные, тупоугольные).
  • Разбиение учащихся школы по классам.
Теорема:

Если на множестве M задано отношение эквивалентности , то оно порождает разбиение этого множества на классы эквивалентности такое, что:

  • любые два элемента одного класса находятся в отношении
  • любые два элемента разных классов не находятся в отношении

Семейство всех классов эквивалентности множества образует множество, называемое фактор-множеством, или факторизацией множества по отношению , и обозначаемое .

Примеры

  • Равенство — классический пример отношения эквивалентности на любом множестве, в т. ч. вещественных чисел
  • Равенство по модулю:
  • В Евклидовой геометрии:
    • отношение подобия
    • отношение параллельности
    • отношение конгруэнтности
  • Разбиение многоугольников по количеству вершин
  • Отношение равносильности на множестве уравнений
  • Отношение равномощности множеств
  • Отношение принадлежать к одному виду на множестве животных
  • Отношение жить в одном городе на множестве людей

См. также

  • Определение отношения
  • Рефлексивное отношение
  • Симметричное отношение
  • Транзитивное отношение
  • Отношение порядка

Источники информации

  • Wikipedia | Отношение эквивалентности
  • Wikipedia | Equivalence relation
  • Бинарные отношения. Отношение эквивалентности

Понравилась статья? Поделить с друзьями:
  • Как найти плотность комнаты в комнате
  • Как найти адрес lpt порта
  • Как найти полицейские тачки
  • Как исправить чтобы не быть злой
  • Как найти наименьший положительный корень тригонометрического уравнения