Содержание:
Многочлен – это сумма одночленов, причем сам одночлен — это частный случай многочлена.
История многочелена:
Живший в 1050-1122 гг Омар Хаям известен в мире как мастер рубай. Однако имя Омара Хаяма также упоминается наряду с именами гениальных математиков. Именно Омар Хаям впервые представил общую формулу корней уравнения кубического многочлена
Многочлены от одной переменной и действия над ними
Определение многочленов от одной переменной и их тождественное равенство
Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например, от переменной
По определению одночлена числа и буквы (в нашем случае одна буква — ) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида , где — некоторое число. Поэтому одночлен от одной переменной — это выражение вида где — некоторое число, — целое неотрицательное число. Если то показатель степени переменной называется степенью одночлена. Например, — одночлен шестой степени, — одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку ).
По определению многочлен от одной переменной — это сумма одночленов от одной переменной . Поэтому
многочленом от одной переменной : называется выражение вида
(1)
где коэффициенты — некоторые числа.
Если , то этот многочлен называют многочленом степени от переменной . При этом член называют старшим членом многочлена , число — коэффициентом при старшем члене, а член — свободным членом. Например, — многочлен третьей степени, у которого свободный член равен 1, а коэффициент при старшем члене равен 5.
Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена записывают так:
где — некоторые числа.
Теорема 1. Одночлены где и где , тождественно равны тогда и только тогда, когда и Одночлен тождественно равен нулю тогда и только тогда, когда
Поскольку равенство одночленов
(2)
выполняется при всех значениях (по условию эти одночлены тождественно равны), то, подставляя в это равенство , получаем, что Сокращая обе части равенства (2) на (где по условию), получаем При из этого равенства имеем: Поскольку 2 то равенство возможно только тогда, когда Таким образом, из тождественного равенства получаем, что и Если известно, что для всех то при получаем Поэтому одночлен тождественно равен нулю при (тогда ).
Далее любой одночлен вида будем заменять на 0.
Теорема 2. Если многочлен тождественно равен нулю (то есть принимает нулевые значения при всех значениях ), то все его коэффициенты равны нулю.
Значком обозначено тождественное равенство многочленов.
Для доказательства используем метод математической индукции. Пусть
При имеем поэтому То есть в этом случае утверждение теоремы выполняется.
Предположим, что при это утверждение также выполняется: если многочлен то
Докажем, что данное утверждение выполняется и при Пусть (3)
Поскольку равенство (3) выполняется при всех значениях , то, подставляя в это равенство получаем, что Тогда равенство (3) обращается в следующее равенство: Вынесем в левой части этого равенства за скобки и получим
(4)
Равенство (4) должно выполняться при всех значениях . Для того чтобы оно выполнялось при должно выполняться тождество
В левой части этого тождества стоит многочлен со степенями переменной от до Тогда по предположению индукции все его коэффициенты равны нулю: Но мы также доказали, что поэтому наше утверждение выполняется и при Таким образом, утверждение теоремы справедливо для любого целого неотрицательного то есть для всех многочленов.
Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают или просто (поскольку ).
Теорема 3. Если два многочлена и тождественно равны, то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны).
Пусть многочлен , а многочлен Рассмотрим многочлен Поскольку многочлены и по условию тождественно равны, то многочлен тождественно равен 0. Таким образом, все его коэффициенты равны нулю.
Но Тогда Отсюда Как видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, больше ), то коэффициенты разности будут равны нулю. Поэтому начиная с (-го номера все коэффициенты также будут равны нулю. То есть действительно многочлены и
имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.
Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.
Пример:
Докажите, что выражение
является полным квадратом.
Решение:
► Данное выражение может быть записано в виде многочлена четвертой степени, поэтому оно может быть полным квадратом только многочлена второй степени вида Получаем тождество:
(5)
Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:
Из первого равенства получаем или
При из второго равенства имеем а из третьего — Как видим, при этих значениях и последние два равенства также выполняются. Следовательно, тождество (5) выполняется при (аналогично можно также получить ). Таким образом,
Действия над многочленами. Деление многочлена на многочлен с остатком
Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.
Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.
При сложении многочленов одной степени получаем многочлен этой же степени, хотя иногда можно получить многочлен меньшей степени. Например, При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей степени слагаемого.
Например, Деление многочлена на многочлен определяется аналогично делению целых чисел. Напомним, что целое число делится на целое число если существует такое целое число что
Определение: Многочлен делится на многочлен (где — не нулевой многочлен), если существует такой многочлен что
Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком. Говорят, что
многочлен делится на многочлен (где — не нулевой многочлен) с остатком, если существует такая пара многочленов и что причем степень остатка меньше степени делителя (в этом случае многочлен называют неполным частным.)
Например, поскольку то при делении многочлена на многочлен получаем неполное частное : и остаток 2.
Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом.
Пример №1
Разделим многочлен на многочлен
Решение:
Докажем, что полученный результат действительно является результатом деления на с остатком.
Если обозначить результат выполнения первого шага алгоритма через второго шага — через третьего — через то операцию деления, выполненную выше, можно записать в виде системы равенств:
(1)
(2)
(3)
Сложим почленно равенства (1), (2), (3) и получим
(4)
Учитывая, что степень многочлена меньше степени делителя обозначим (остаток), а (неполное частное). Тогда из равенства (4) имеем: то есть
а это и означает, что мы разделили на с остатком.
Очевидно, что приведенное обоснование можно провести для любой пары многочленов и в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого и делителя (где — не нулевой многочлен) найти неполное частное и остаток
Отметим, что в случае, когда степень делимого меньше степени делителя , считают, что неполное частное а остаток
Теорема Безу. Корни многочлена. Формулы Виета
Рассмотрим деление многочлена на двучлен Поскольку степень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Таким образом, если разделить многочлен на двучлен , то получим
Это равенство выполняется тождественно, то есть при любом значении При имеем Полученный результат называют теоремой Безу.
Теорема 1 (теорема Безу). Остаток от деления многочлена на двучлен равен (то есть значению многочлена при ).
Пример №2
Докажите, что делится на без остатка.
Решение:
► Подставив в вместо значение 1, получаем: . Таким образом, остаток от деления на равен 0, то есть делится на без остатка. <]
Определение: Число называют корнем многочлена если
Если многочлен делится на то — корень этого многочлена.
Безу Этьен (1730-1783) — французский математик, внесший значительный вклад в развитие теории алгебраических уравнений.
Действительно, если делится на то и поэтому Таким образом, — корень многочлена
Справедливо и обратное утверждение. Оно является следствием теоремы Безу.
Теорема 2. Если число является корнем многочлена то этот многочлен делится на двучлен без остатка.
По теореме Безу остаток от деления на равен Но по условию — корень таким образом,
Обобщением теоремы 2 является следующее утверждение.
Теорема 3. Если многочлен имеет попарно разные корни то он делится без остатка на произведение
Для доказательства используем метод математической индукции.
При утверждение доказано в теореме 2.
Допустим, что утверждение справедливо при То есть если попарно разные корни многочлена то он делится на произведение Тогда
(1)
Докажем, что утверждение теоремы справедливо и при Пусть — попарно разные корни многочлена Поскольку — корень то . Принимая во внимание равенство (1), которое выполняется согласно допущению индукции, получаем:
По условию все корни разные, поэтому ни одно из чисел не равно нулю. Тогда Таким образом, — корень многочлена Тогда по теореме 2 многочлен делится на то есть и из равенства (1) имеем
Это означает, что делится на произведение
то есть теорема доказана и при
Таким образом, теорема справедлива для любого натурального
Следствие. Многочлен степени имеет не больше разных корней.
Допустим, что многочлен степени имеет разных корней: Тогда делится на произведение многочлен степени но это невозможно. Поэтому многочлен степени не может иметь больше чем корней.
Пусть теперь многочлен степени имеет разных корней Тогда этот многочлен делится без остатка на произведение Это произведение является многочленом той же
степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,
(2)
Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что то есть
(3)
Сравнивая коэффициенты при одинаковых степенях в левой и правой частях тождества (3), получаем соотношения между коэффициентами уравнения и его корнями, которые называют формулами Виета:
(4)
Например, при имеем:
а при
(5)
Выполнение таких равенств является необходимым и достаточным
условием того, чтобы числа были корнями многочлена
Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена разные. Введем понятие кратного корня многочлена.
Если многочлен делится без остатка на но не делится без остатка на то говорят, что число является корнем кратности многочлена
Например, если произведение записать в виде многочлена, то для этого многочлена число является корнем кратности 3, число 1 — корнем кратности 2, а число — корнем кратности 1.
При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.
Пример №3
Проверьте справедливость формул Виета для многочлена
Решение:
►
Поэтому имеет корни: (поскольку — корень кратности 2).
Проверим справедливость формулы (5). В нашем случае: Тогда
Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.
Пример №4
Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения
Решение:
► Обозначим корни уравнения через и Тогда корнями искомого уравнения должны быть числа и Поэтому искомое уравнение имеет вид где
По формулам Виета имеем Отсюда находим, что а Таким образом, искомое уравнение имеет вид
Схема Горнера
Делить многочлен на двучлен иногда удобно с помощью
специальной схемы, которую называют схемой Горнера.
Пусть многочлен необходимо разделить на двучлен В результате деления многочлена степени на многочлен первой степени получим некоторый многочлен степени (то есть , где ) и остаток Тогда то есть
Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях
Найдем из этих равенств коэффициенты и остаток
Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент неполного частного, достаточно предыдущий найденный коэффициент умножить на и добавить коэффициент делимого. Эту процедуру целесообразно оформлять в виде специальной схемы-таблицы, которую называют схемой Горнера.
Пример №5
Разделите по схеме Горнера многочлен на двучлен
Решение:
► Запишем сначала все коэффициенты многочлена (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:
Таким образом,
Пример №6
Проверьте, является ли корнем многочлена
Решение:
► По теореме Безу остаток от деления многочлена на равен поэтому найдем с помощью схемы Горнера остаток от деления на
Поскольку то — корень многочлена
Нахождение рациональных корней многочлена с целыми коэффициентами
Теорема 4. Если многочлен с целыми коэффициентами имеет рациональный корень , то является делителем свободного члена a — делителем коэффициента при старшем члене
Если является корнем многочлена то Подставляем
вместо в и из последнего равенства имеем
(1)
Умножим обе части равенства (1) на Получаем
(2)
В равенстве (2) все слагаемые, кроме последнего, делятся на Поэтому делится на
Но когда мы записываем рациональное число в виде то эта дробь считается несократимой, то есть и не имеют общих делителей. Произведение может делиться на (если и — взаимно простые числа) только тогда, когда делится на Таким образом, — делитель свободного члена
Аналогично все слагаемые равенства (2), кроме первого, делятся на Тогда делится на Поскольку и взаимно простые числа, то делится на , следовательно, — делитель коэффициента при старшем члене.
Отметим два следствия из этой теоремы. Если взять то корнем многочлена будет целое число — делитель Таким образом, имеет место:
Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.
Если в заданном многочлене коэффициент то делителями могут быть только числа то есть и имеет место:
Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.
Пример №7
Найдите рациональные корни многочлена
Решение:
► Пусть несократимая дробь является корнем многочлена. Тогда необходимо искать среди делителей свободного члена, то есть среди чисел a — среди делителей старшего коэффициента:
Таким образом, рациональные корни многочлена необходимо искать среди чисел Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера.
При имеем следующую таблицу.
Кроме того, по схеме Горнера можно записать, что
Многочлен не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень
Пример №8
Разложите многочлен на множители.
Решение:
► Ищем целые корни многочлена среди делителей свободного члена:
Подходит 1. Делим на с помощью схемы Горнера.
Тогда
Ищем целые корни кубического многочлена среди делителей его свободного члена: Подходит Делим на
Имеем
Квадратный трехчлен не имеет действительных корней и на линейные множители не раскладывается.
Ответ:
Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен не имеет действительных корней). Таким образом, многочлен степени не всегда можно разложить на произведение линейных множителей. Но многочлен нечетной степени всегда можно разложить на произведение линейных и квадратных множителей, а многочлен четной степени — на произведение квадратных трехчленов.
Например, многочлен четвертой степени раскладывается на произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.
Пример №9
Разложите на множители многочлен
Решение:
► Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.
Попытаемся разложить этот многочлен на произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:
(3)
где и — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:
Получаем систему
(4)
Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что и могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.
Коэффициенты и в равенстве (3) равноправны, поэтому мы не рассматриваем случаи и или и и т. д.
Для каждой пары значений и из третьего равенства системы (4) найдем а из второго равенства имеем Зная и по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения подставим в четвертое равенство системы (4) чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:
Как видим, системе (4) удовлетворяет набор целых чисел Тогда равенство (3) имеет вид
(5)
Поскольку квадратные трехчлены и не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.
Деление многочлена на многочлен
Задача. Объём подарочных коробок, размеры которых даны в сантиметрах, можно смоделировать функцией — положительное целое число и . Если высоты коробок можно определить при помощи линейной функции , то как можно выразить другие размеры коробки в виде многочлена? Вы сможете решить эту задачу, изучив правило деления многочлена на многочлен.
Исследование. Изучите, как правило деления многозначных чисел столбиком можно применить при делении многочлена.
a) Для каждого из двух случаев укажите, какие числа и какие многочлены соответствуют понятиям делимое, делитель и частное.
b) Как был найден первый член при делении многочлена? Каковы сходные и отличительные черты данного деления и деления многозначных чисел?
c) Как вы убедились,что каждое из двух делений выполнено правильно?
Выражение вида называется многочленом степени от одной переменной. Здесь — переменная, — определенные числа и — старший член, — коэффициент при старшем члене, -свободный член. Многочлен можно разделить на многочлен аналогично правилу деления целых чисел столбиком.
Деление целого числа па целое число можно проверить равенством
Аналогичное правило справедливо и при делении многочлена на многочлен. Если многочлен -делимое, — делитель, — неполное частное, — остаток, то справедливо равенство
или .
Здесь, степень многочлена ниже степени многочлена Если делителем является двучлен , то остатком может являться определенное число
В этом случае:
Пример №10
а) Разделите многочлен на двучлен .
Ответ запишите в виде
b) Определите множество допустимых значений переменной.
c) Выполните проверку.
Решение:
b) При этом или , иначе возникает деление на нуль.
c) Должно выполняться тождество
Пример №11
Разделите на многочлен .
Решение:
запишем делимое в порядке убывания степеней. Введем в запись отсутствующие члены с коэффициентом равным 0.
Пример №12
1) Исследуйте деление столбиком многочлена на двучлен .
2) На каждом шаге деления делимое делится на старший член делителя, на и результат записывается в частное. Установите, как можно найти первый член при делении на каждом из следующих шагов.
Правило синтетического деления многочлена на двучлен (схема Горнера)
При делении многочлена на двучлен вида можно использовать метод, альтернативный делению столбиком — метод синтетического деления. При синтетическом делении, используя только коэффициенты, выполняется меньшее количество вычислений.
Пример №13
Разделите многочлен на двучлен методом синтетического деления.
Решение:
коэффициенты делимого записываются в порядке убывания степеней (отсутствующий член записывается с коэффициентом равным нулю). Если двучлен имеет вид , то его записывают в виде .
Запишем двучлен в виде .
Таким образом, для делимого и делителя частным будет , а остатком .
Деление можно записать в виде: В общем случае, правило синтетического деления (или схема Горнера) многочлена и-ой степени на двучлен х -т приведено в таблице ниже.
Теорема об остатке
Теорема об остатке (Теорема Безу)
Остаток от деления многочлена на двучлен равен значению многочлена в точке
Доказательство: В равенстве запишем . , тогда .
Пример №14
Найдите остаток от деления многочлена на двучлен , применив теорему об остатке.
Решение: запишем делитель в виде , тогда . По теореме об остатке получим, что остаток равен
.
Проверим решение.
Теорема о разложении многочлена на множители
Значения переменной , которые обращают многочлен в нуль (т.е. корни уравнения ), называются корнями (или нулями) многочлена.
Теорема. Если число является корнем многочлена , то двучлен является множителем многочлена .
Действительно, если , то из равенства имеем . Верно и обратное утверждение, т.е. если двучлен является множителем многочлена .
Пример №15
При помощи теоремы о разложении многочлена на множители определите, являются ли двучлены множителями многочлена .
Решение: вычислим значение многочлена при .
Значит, не является множителем, а является одним из множителей данного многочлена.
Пример №16
Зная, что , разложите многочлен на множители.
Решение: так как , то двучлен один из множителей многочлена . Другой множитель найдем, используя метод синтетического деления.
Учитывая, что получим: .
Отсюда получаем, что являются нулями многочлена.
Примечание: Если многочлен задан в виде (здесь ), то число является кратным корнем многочлена (повторяется раз). Например, если разложение многочлена на множители имеет вид , то число является корнем кратности 3.
Нахождение рациональных корней
Теорема о рациональных корнях
Если для многочлена с целыми коэффициентами существует рациональный корень, то этот корень имеет вид
Доказательство. Пусть несократимая дробь является корнем многочлена с целыми коэффициентами:
Умножим обе части равенства на
Так как в последнем равенстве каждый член, кроме члена , содержит множитель и каждый член, кроме члена , содержит множитель .то коэффициент должен делится на , а коэффициент должен делится на .
Пример №17
Найдите рациональные корни многочлена .
Решение: свободный член 6, старший коэффициент 2.
Для , запишем все возможные числа вида
, т.е. одним из множителей является двучлен . Другие множители найдем, используя синтетическое деление:
Так как, , получим, что являются корнями многочлена.
Следствие 1. Если старший коэффициент и многочлен имеет рациональный корень, то он является целым числом.
Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.
Пример №18
Найдите корни многочлена
Решение: по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.
Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.
Так как то, решив квадратное уравнение получим другие корни: Значит данный многочлен третьей степени имеет три корня:
Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми. Например, для нахождения корней многочлена
надо умножить все члены уравнения на 12, а затем решить полученное
уравнение
Для нахождения рациональных корней выполните следующие действия.
1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.
2. Из этих чисел выбирается число (обращающее значение многочлена в нуль), которое является корнем многочлена, т. е. определяется двучлен на который многочлен делится без остатка.
3. Для данного многочлена при помощи синтетического деления на двучлен определяется другой множитель.
4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.
5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена могут являться числа ±1.
Проверим: Значит, многочлен не имеет рациональных корней.
Основная теорема алгебры
Покажем на примере, что многочлен ой степени имеет корней.
Пример №19
Найдите все корни многочлена
Решение: рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:
Значит, является корнем данного многочлена Другие корни найдем синтетическим делением.
В выражении для множителя вновь применим теорему о рациональных корнях и синтетическое деление. Тогда Решим уравнение
( корень кратности 2);
Корни:
Во всех рассмотренных нами примерах уравнение ой степени всегда имеет корней, включая кратные корни (действительных или комплексных).
Теорема. Любой многочлен ненулевой степени имеет хотя бы один корень на множестве комплексных чисел.
Если является многочленом ненулевой степени с комплексными коэффициентами, то согласно основной теореме алгебры, у него есть хотя бы один корень По теореме о разложении многочлена на множители получим При этом многочлен имеет степень Если то если то согласно той же теореме, многочлен имеет хотя бы один корень. Обозначим его через тогда справедливо разложение где — многочлен степени Значит, можно записать Аналогично, если то при на основании той же теоремы, многочлен имеет хотя бы один корень. Обозначим его через получим т. е. можно записать
Продолжая процесс раз, получаем Тогда для многочлена можно записать следующее разложение:
здесь числа являются нулями многочлена Эти нули могут и не быть различными.
Следствие. Многочлен ой степени на множестве комплексных чисел имеет ровно корней, включая кратные корни.
Отметим, что если комплексное число является корнем многочлена с действительными коэффициентами, то сопряженное комплексное число гак же является корнем данного многочлена.
Любой многочлен с действительными коэффициентами можно представить в виде произведения двучленов вида соответствующих действительным корням, и трехчленов вида соответствующих сопряженным комплексным корням.
Отсюда можно сделать вывод, что многочлен нечетной степени с действительными коэффициентами всегда имеет действительные корни.
Пример №20
Запишите в виде произведения множителей многочлен наименьшей степени, если коэффициент при старшем члене равен 2, а корни равны 3 и
Решение: так как число является корнем многочлена, то сопряженное комплексное число также является корнем этого многочлена. Тогда искомый многочлен можно записать в виде
- Заказать решение задач по высшей математике
Пример №21
При движении скоростной карусели в Лунапарке изменение высоты (в метрах) кабины от нулевого уровня за первые 5 секунд можно смоделировать функцией В какие моменты в течении 5 секунд после начала движения кабина карусели находилась на нулевом уровне?
Решение: во всех случаях, кроме значений равных нулю, кабина карусели находится либо ниже, либо выше нулевого уровня. Значит, мы должны найти корни заданного многочлена. Применим правило нахождения рациональных корней.
1. Проверим, является ли число корнем.
2. Число является корнем, значит одним из множителей данного многочлена является Другие корни найдем при помощи синтетического деления.
Учитывая, что запишем многочлен в виде т. е. являются корнями уравнения. Значения принадлежат временному интервалу в 5 секунд, и в этих моментах кабина карусели находилась на нулевом уровне. То, что корни найдены верно показывает график многочлена, построенный при помощи графкалькулягора.
Функция-многочлен
График функции-многочлен
В стандартном виде функция — многочлен записывается как В частном случае, при получаем линейную функцию (график — прямая линия), при получаем квадратичную функцию (график- парабола). Любой многочлен определен на множестве действительных чисел и его графиком является непрерывная (сплошная) линия.
При возрастании значений аргумента по абсолютному значению многочлен ведет себя как функция старшего члена Ниже показаны примеры графиков функции — многочлен и их свойства.
Пример №22
Определите характер поведения функции — многочлен в зависимости от степени и коэффициента при старшем члене при возрастании аргумента по абсолютному значению.
a) б)
Решение: а) степень многочлена нечетная (равна 3). Коэффициент старшего члена равен По таблице видно, что в данном случае при а при
b) степень многочлена четная (равна 4). Коэффициент старшего члена равен 1. В данном случае при при
Пример №23
По графику определите как ведет себя функция — многочлен при неограниченном возрастании аргументов но абсолютному значению, четность или нечетность степени многочлена, знак коэффициента старшего члена.
Решение:
при
при
Многочлен нечетной степени
Решение:
при
при
Многочлен четной степени
Отметим, что если нечетно, то функция — многочлен имеет хотя бы один действительный нуль, если четно, то их вообще может и не быть.
Алгоритм построения эскиза графика функции — многочлен.
1. Находятся точки пересечения графика с осями координат (если они есть). Эти точки отмечаются на координатной плоскости.
2. Вычисляются значения функции в некоторых точках между действительными нулями. Соответствующие точки отмечаются на координатной плоскости.
3. Определяется поведение графика при больших значениях аргумента по абсолютному значению.
4. На основе полученных данных строят схематически график.
Пример №24
Постройте график функции
Решение:
1. Применим теорему о рациональных корнях. Разложим многочлен на множители и найдем нули функции.
По теореме возможные рациональные нули надо искать среди чисел, которые являются делителями числа
Проверим
Значит, двучлен является одним из множителей. Остальные множители найдем синтетическим делением.
Зная, что запишем все линейные множители многочлена:
Отсюда находим нули Т. е. график пересекает ось абсцисс в точках и Так как то точка является точкой пересечения с осью Отметим эти точки на координатной плоскости.
2. Найдем еще несколько значений функции в точках, не требующих сложных вычислений. Например, в точках и
Отметим точки
3. Определим, как меняется график при уменьшении или увеличении значений Степень при старшем члене равна 3, а коэффициент положителен, функция нечетная. Значит, при при
4. Соединим отмеченные точки и получим схематический график функции
Рациональная функция
Рациональной функцией называется функция, которою можно представить в виде отношения двух многочленов:
Самым простым примером рациональной функции является функция
График функции называется гиперболой.
При стремлении значений к нулю точки гиперболы стремятся к оси ординат, т е. к прямой при неограниченном увеличении но абсолютному значению точки гиперболы неограниченно приближаются к оси абсцисс, т. е. к прямой Прямая называется вертикальной асимптотой, а прямая называется горизонтальной асимптотой гиперболы При параллельном переносе гиперболы на вектор получается график функции . В этом случае начало координат преобразуется в точку и вертикальной асимптотой становится прямая а горизонтальной- прямая
Пример №25
Постройте график функции
Решение: точки пересечения с осью найдем из уравнения
При получим и график пересекает ось в точке Разделим почленно числитель функции на знаменатель и запишем ее в виде Прямая является вертикальной асимптотой, а прямая — горизонтальной асимптотой. Зададим таблицу значений для нескольких точек справа и слева от вертикальной асимптоты
Отметим на координатной плоскости точки, соответствующие парам значений из таблицы и, учитывая горизонтальную и вертикальную асимптоту, изобразим ветви гиперболы, которые пересекают координатные оси в точках и
В общем случае, для построения графика рациональной функции надо найти точки пересечения с осями координат (если они есть) и ее асимптоты. Если выражение, которое задает рациональную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке а числитель отличен от нуля, то данная функция имеет вертикальную асимптоту. Горизонтальные асимптоты для рациональной функции определяются в соответствии со степенью и данных многочленов и
Для т. е. если степень многочлена в числителе на 1 единицу больше степени многочлена в знаменателе, частное, полученное при делении, имеет вид и является линейной функцией. При возрастании по абсолютному значению график функции приближается к данной прямой. В этом случае говорят, что прямая является наклонной асимптотой.
Пример №26
Найдите асимптоты и схематично изобразите график функции
Решение: Точки пересечения с осью найдем из уравнения При получим и график пересекает ось в точке При знаменатель обращается в нуль, а числитель отличен от нуля. Значит, прямая является вертикальной асимптотой. Горизонтальной асимптоты у данной функции нет Разделив числитель на знаменатель, запишем функцию в виде:
Для больших, но модулю, значений дробь по абсолютному значению уменьшается и график заданной функции бесконечно приближается к прямой т. е. прямая является наклонной асимптотой данной функции. Составим таблицу значений для некоторых точек слева и справа от вертикальной оси.
Отметим точки, координаты которых соответствуют парам из таблицы. Учитывая вертикальную и наклонную асимптоту, схематично изобразим график функции.
Многочлены в линейной алгебре
Многочленом от переменной х степени n называется выражение вида:
, где — действительные или комплексные числа, называемые коэффициентами, n — натуральное число, х — переменная величина, принимающая произвольные числовые значения.
Если коэффициент примногочлена отличен от нуля, а коэффициенты при более высоких степенях равны нулю, то число n называется степенью многочлена, — старшим коэффициентом, а — старшим членом многочлена. Коэффициент называется свободным членом. Если все коэффициенты многочлена равны нулю, то многочлен называется нулевым и обозначается 0. Степень нулевого многочлена не определена.
Два многочлена называются равными, если они имеют одинаковую степень и коэффициенты при одинаковых степенях равны.
Суммой многочленов и называется многочлен
Произведением многочленов и называется многочлен:
Легко проверить, что сложение и умножение многочленов ассоциативно, коммутативно и связаны между собой законом дистрибутивности.
Многочлен называется делителем многочлена , если существует многочлен такой, что
Теорема о делении с остатком
Для любых многочленов существуют многочлены такие, что причем степень меньше степени g(x) или. Многочлены g(x) и r(x) определены однозначно.
Многочлены g(x) и r(x) называются соответственно частным и остатком. Если g(x) делит , то остаток .
Число с называется корнем многочлена , если .
Теорема Безу
Число с является корнем многочлена тогда и только тогда, когда делится на x — с.
Пусть с — корень многочлена , т.е.. Разделим на
где степень r(х) меньше степени (x-с) которая равна 1. Значит, степень г(х) равна 0, т.е. r(х) = const. Значит, . Так как , то из последнего равенства следует, что r=0, т.е.
Обратно, пусть (х-с) делит , т.е. . Тогда
Следствие. Остаток от деления многочлена на (x-с) равен .
Многочлены первой степени называются линейными многочленами. Теорема Безу показывает, что разыскание корней многочлена равносильно разысканию его линейных делителей со старшим коэффициентом 1.
Многочлен можно разделить на линейный многочлен х-с с помощью алгоритма деления с остатком, но существует более удобный способ деления, известный под названием схемы Горнера.
Пусть и пусть где Сравнивая коэффициенты при одинаковых степенях неизвестной с левой и правой частях последнего равенства, имеем:
Число с-называется корнем кратности к многочлена , если делит , но уже не делит .
Чтобы поверить, будет ли число с корнем многочлена и какой кратности, можно воспользоваться схемой Горнера. Сначала делится на х-с, затем, если остаток равен нулю, полученное частное делится на х-с, и т.д. до получения не нулевого остатка.
Число различных корней многочлена не превосходит его степени.
Большое значение имеет следующая основная теорема.
Основная теорема. Всякий многочлен с числовыми коэффициентами ненулевой степени имеет хотя бы один корень (может быть комплексный).
Следствие. Всякий многочлен степени имеет в С (множестве комплексный чисел) столько корней, какова его степень, считая каждый корень столько раз, какова его кратность.
где — корни , т.е. во множестве С всякий многочлен разлагается в произведение линейных множителей. Если одинаковые множители собрать вместе, то: где уже различные корни , — кратность корня
Если многочлен , с действительными коэффициентами имеет корень с, то число с также корень
Значит, у многочлена с действительными коэффициентами комплексные корни входят парами.
Следствие. Многочлен с действительными коэффициентами нечетной степени имеет нечетное число действительных корней.
Пусть корни Тогда делится на х-с и , но так как у и х-с, нет общих делителей, то делится на произведение
Утверждение 2. Многочлен с действительными коэффициентами степени всегда разлагается на множестве действительных чисел в произведение линейных многочленов, отвечающих его вещественным корням, и многочленов 2-ой степени, отвечающих паре сопряженных комплексных корней.
При вычислении интегралов от рациональных функций нам понадобится представление рациональной дроби в виде суммы простейших.
Рациональной дробью называется дробь где многочлены с действительными коэффициентами, причем многочлен Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя. Если рациональная дробь не является правильной, то, произведя деление числителя на знаменатель по правилу деления многочленов, ее можно представить в виде некоторые многочлены, а правильная рациональная дробь.
Лемма 1, Если правильная рациональная дробь, а число является вещественным корнем кратности многочлена , т.е., то существует вещественное число A и многочлен с вещественными коэффициентами, такие, что где дробь является правильной.
При этом несложно показать, что полученное выражение является рациональной дробью с вещественными коэффициентами.
Лемма 2. Если правильная рациональная дробь, а числоявляется корнем кратности многочлена g(x), т.е. и если , то существуют вещественные числа M и N многочлен с вещественными коэффициентами, такие, где дробь , также является правильной.
Рациональные дроби вида — трехчлен с действительными коэффициентами, не имеющий действительных корней, называются простейшими (или элементарными) дробями.
Всякая правильная рациональная дробь представима единственным образом в виде суммы простейших дробей.
При практическом получении такого разложения оказывается удобным так называемый метод неопределенных коэффициентов.
Он состоит в следующем:
При этом если степень многочлена равна n, то в числителе после приведения к общему знаменателю получается многочлен степени n-1, т.е. многочлен коэффициентами.
Число неизвестных ‘ также равняется n:
Таким образом, получается система n уравнений с n неизвестными. Существование решения у этой системы следует из приведенной выше теоремы.
- Квадратичные формы — определение и понятие
- Системы линейных уравнений с примерами
- Линейное программирование
- Дифференциальное исчисление функций одной переменной
- Кривые второго порядка
- Евклидово пространство
- Матрица — виды, операции и действия с примерами
- Линейный оператор — свойства и определение
От изучения одночленов переходим к знакомству с еще одним видом выражений —многочленами. В этой статье мы изложим все начальные и необходимые сведения о многочленах. К ним, во-первых, относится определение многочлена с сопутствующими определениями членов многочлена, в частности, свободного члена и подобных членов. Во-вторых, остановимся на многочленах стандартного вида, дадим соответствующее определение и приведем их примеры. Наконец, введем определение степени многочлена, разберемся, как ее найти, и скажем про коэффициенты членов многочлена.
Многочленом с одной переменной называется выражение вида
`P(x) = a_n x^n + a_(n-1) x^(n-1) +a_(n-2) x^(n-2) + … + a_2 x^2 + a_1 x + a_0 (a_n != 0)`. (8)
Числа `a_0`, `a_1`, `…`, `a_n` — это коэффициенты многочлена; `a_n` называют старшим коэффициентом, `a_0` — свободным членом.
Степенью многочлена называют наибольшую степень переменной, входящую в многочлен.
Например, степень многочлена `P = x^4 — x^3 — x^2 + 2x + 1` равна `4`; степень многочлена `25 + x^5 — 3x` равна `5`; степень многочлена `17` равна `0`, т. к. переменная в это выражение не входит; наконец, выражение `3x^2 + x +5+ 2/x` многочленом не является, поэтому о его степени говорить бессмысленно. Многочлен `P(x) = 0` называют нулевым многочленом. Степень нулевого многочлена не определена.
Два многочлена называются равными, если равны все их коэффициенты. Многочлен равен нулю, если все его коэффициенты равны нулю.
Число `a` называется корнем многочлена `F(x)`, если `F(alpha) = 0`.
Приведём основные сведения о многочленах.
Для любых двух многочленов `F(x)` и `G(x)` существует единственная пара многочленов `P(x)` (частное) и `Q(x)` (остаток) такая, что `F(x) = G(x) * P(x) + Q(x)`, причём степень остатка `Q(x)` меньше степени делителя `G(x)`, или `Q(x)` есть нулевой многочлен. Покажем, как на практике находят частное и остаток от деления многочленов.
Разделите с остатком многочлен `F(x) = 18x^5 + 27x^4 -37x^3 — 14x + 20`
на многочлен `G(x) = 2x^2 + 3x -5`.
Процедура деления многочленов очень похожа на деление целых чисел. Если степень делимого не меньше степени делителя, то делаем следующее: делим старший член многочлена `F(x)` на старший член многочлена `G(x)`, получившийся результат записываем в частное. Умножаем результат на весь делитель `G(x)` и вычитаем полученное из исходного многочлена `F(x)`. После этих действий член со старшей степенью `x` сокращается. Если в результате вычитания у оставшегося многочлена степень не меньше, чем степень делителя, то можно сделать ещё один шаг деления и т. д.
Деление закончится тогда, когда степень делимого будет меньше степени делителя. В случае, когда в делимом отсутствуют некоторые степени переменных, для удобства записи лучше оставить пустые места для соответствующих членов (хотя это не обязательно).
Вернёмся к нашему примеру. Первый член частного равен `(18x^5)/(2x^2) = 9x^3`. При умножении на делитель `2x^2 +3x-5` получаем `18x^5 + 27x^4 — 45x^3`. После вычитания из исходного многочлена от него остаётся `8x^3 -14x +20`. Степень многочлена, оставшегося после вычитания, равна `3`. Это больше степени делителя, поэтому можно сделать следующий шаг деления. Делим `8x^3` на `2x^2` и получаем `4x`, умножаем `4x` на `2x^2 +3x-5`, получаем `8x^3 +12x^2 -20`; вычитаем этот многочлен из `8x^3 -14x +20` и т. д.
Частное равно `9x^3 +4x -6`; остаток равен `24x-10`.
Таким образом, `18x^5 + 27x^4 — 37x^3 -14x + 20 = (2x^2 + 3x — 5)(9x^3 + 4x — 6) + (24x — 10)`.
1) Теорема Безу. Остаток от деления многочлена `F(x)` на многочлен `(x-alpha)` равен `F(alpha)`.
2) Число `alpha` является корнем многочлена `F(x)` тогда и только тогда, когда многочлен `F(x)` делится на многочлен `(x-alpha)`.
3) Если `alpha` и `beta` — различные корни многочлена `F(x)`, то он делится на многочлен `(x- alpha)(x- beta)`.
4) Многочлен степени `n` не может иметь более `n` корней.
1) Разделим с остатком многочлен `F(x)` на многочлен `(x-alpha)`. Тогда остаток либо равен нулю, либо является многочленом нулевой степени (т. к. степень остатка меньше степени делителя, а степень делителя равна `1`). Поэтому можно записать, что
`F(x) = (x-alpha) G(x) +C` (9)
Через `G(x)` здесь обозначено частное от деления, вид которого нас не интересует.
Равенство (9) верно при всех значениях `x`. Подставим в него `x=alpha`.
Тогда `F(alpha) = (alpha — alpha)G(alpha) + C`, или `F(alpha) = C`.
Подставим `C=F(alpha)` в (9) и получим
`F(x) = (x — alpha) G (x) + F(alpha)`. (10)
Первая часть доказана.
2) Из (10) следует, что `F(x)` делится на `(x — alpha)` тогда и только тогда, когда `F(alpha) = 0`, т. е. тогда и только тогда, когда `alpha` есть корень многочлена `F(x)`.
3) `alpha` — корень `F(x) => F(x)` делится на `(x- alpha) => F(x) = (x- alpha) G(x)`. Подставим в последнее равенство (которое верно для всех значений переменной `x`) `x= beta`. Тогда `F(beta) = (beta — alpha) G(beta)`.
`F(beta) = 0` (т. к. `beta` -корень `F(x)`), поэтому `(beta — alpha)G(beta) = 0 =>G(beta) = 0` (т. к. `beta != alpha`); отсюда `G(x)` делится на `(x- beta)`, т. е. `G(x) = H(x) * (x- beta)`. Подведём итог: `F(x) = (x- alpha) G(x) = (x -alpha)(x- beta) H(x)`, т. е. `F(x)` делится на `(x- alpha)(x- beta)`.
4) Теперь становится понятным, что многочлен степени `n` не может иметь больше, чем `n` корней.
Остатки от деления многочлена `F(x)` на многочлены `(x-3)` и `(x+5)` равны `2` и `(-9)` соответственно. Найдите остаток от деления многочлена `F(x)` на многочлен `x^2 + 2x -15`.
Заметим, что `x^2 + 2x -15 = (x-3)(x+5)`.
По теореме Безу `F(3) = 2`; `F(-5) =-9`.
Поделим `F(x)` с остатком на `x^2 + 2x -15`:
`F(x) = (x^2 + 2x — 15)G(x) + r(x)`.
Степень остатка не превосходит степени делителя, поэтому остаток – это либо многочлен первой степени, либо нулевой степени, либо равен нулю. В любом случае, остаток представим в виде `r(x) = ax +b` (если `a!= 0`, то получим многочлен первой степени; если `a=0`, `b!=0`, то будет многочлен нулевой степени; если `a=b=0`, то получим нулевой многочлен). Итак,
`F(x) = (x^2 + 2x-15)G(x) + ax+b`. (11)
Подставим в равенство (11) `x=3` и `x=-5`:
`F(3) = 0 * G(3) + 3a + b`; `F(-5)=0 * G(-5) -5a+b`, откуда $$ left{begin{array}{l}3a+b=2,\ -5a+b=-9.end{array}right.$$
Решая эту систему, нахоим, что `a=(11)/8`, `b=- (17)/8`.
Остаток равен `(11)/8 x — (17)/8`.
Докажите, что
$$ sqrt[3]{26-15sqrt{3}}+sqrt[3]{26+15sqrt{3}}=4$$. (12)
Пусть $$ sqrt[3]{26-15sqrt{3}}+sqrt[3]{26+15sqrt{3}}=x$$. Возведём обе части этого равенства в куб и преобразуем:
$$ 26-15sqrt{3}+3sqrt[3]{{left(26-15sqrt{3}right)}^{2}}sqrt[3]{26+15sqrt{3}}+3sqrt[3]{26-15sqrt{3}}sqrt[3]{{left(26+15sqrt{3}right)}^{2}}+26+15sqrt{3}={x}^{3}$$;
$$ 52+3sqrt[3]{26-15sqrt{3}}sqrt[3]{26+15sqrt{3}}left(sqrt[3]{26-15sqrt{3}}+sqrt[3]{26+15sqrt{3}}right)={x}^{3}$$;
$$ 52+3sqrt[3]{{26}^{2}-{left(15sqrt{3}right)}^{2}}left(sqrt[3]{26-15sqrt{3}}+sqrt[3]{26+15sqrt{3}}right)={x}^{3}$$;
$$ 52+3left(sqrt[3]{26-15sqrt{3}}+sqrt[3]{26+15sqrt{3}}right)={x}^{3}$$;
`52+3x=x^3`;
`x^3-3x-52=0`. (13)
Число `x=4` является корнем этого уравнения. Докажем, что других корней нет (и тем самым будет доказана справедливость равенства (12)). Поскольку `x=4` является корнем, многочлен `x^3 — 3x-52` делится на `x-4` без остатка. Выполняя деление, получаем:
$$ {x}^{3}-3x-52=0iff left(x-4right)left({x}^{2}+4x+13right)=0iff left[begin{array}{l}x-4=0,\ {x}^{2}+4x+13=0.end{array}right.$$
У квадратного трёхчлена `x^2 +4x+13` отрицательный дискриминант, поэтому уравнение (13) имеет ровно один корень `x=4`.
При каких `a` и `b` многочлен `F(x)=x^4 +ax^3 — 2x^2 +19x+b` делится на многочлен `x^2 -3x+2`?
1-й способ. Выполним деление с остатком:
Приравниваем коэффициенты остатка к нулю
$$ left{begin{array}{l}7a+28=0,\ b-6a-10=0,end{array}right.iff left{begin{array}{l}a=-4,\ b=-14.end{array}right.$$
2-й способ. `x^2 -3x+2=(x-1)(x-2)`.
Многочлен делится на `(x-1)(x-2)` тогда и только тогда, когда `x=1` и `x=2` являются корнями многочлена. То есть,
$$ begin{array}{c}Fleft(1right)=1+a-2+19+b=0, \ Fleft(2right)=16+8a-8+38+b=0,end{array}iff left{begin{array}{l}18+a+b=0,\ 46+8a+b=0,end{array}right.iff left{begin{array}{l}a=-4,\ b=-14.end{array}right.phantom{rule{0ex}{0ex}}$$
`a=-4`, `b=-14`.
Время чтения:
2 минуты
510
Перед тем как говорить о многочленах давайте вспомним, что именуют одночленом. Так называют математическое выражение, состоящее из произведения числовых и буквенных множителей. Примеры одночленов: ac, abc, 4ab, 2bc3, 7x5c3 d.
Понятие многочлена
Многочленом называют сумму двух и более одночленов.
Членами многочлена называют одночлены, из которых он состоит.
Числа, которые стоят при буквах членов многочлена, называют его коэффициентами.
Примеры многочленов: [7 a b c+b^{2} a d+9, a+b+c+d, 3 t^{5}+4 b], [a+2 b^{2}-c, 4-6 x y].
Не удивляйтесь знаку минуса в выражениях. Любую разность легко представить в виде суммы. В частности, последние два выражения можно переписать как [a+2 b 2+(-c), 4+(-6 x y)].
Число ноль считают нулевым многочленом.
Понятия одночлена и многочлена пересекаются между собой, ведь любой одночлен является одновременно и многочленом. Его можно записать в виде суммы одночлена и нулевого многочлена.
Двучленом называется многочлен, который составляют два одночлена.
Примеры: [a+b, b^{2}+a b, 3 a b c^{3}-a, a^{2}-4 a c, a^{2}-b c^{2}].
Трёхчленом называется многочлен, который составляют три одночлена.
Примеры: [b^{2}+a c-a, 3 a b c^{4}+4 a c, 3 a c^{3}-a+a^{2},-5 c+c^{2}, 7+a-9 c].
Из ранее пройденного материала нам известно, что степенью одночлена называют сумму степеней всех его буквенных множителей.
Линейным многочленом называется тот, в котором все его члены не выше первой степени.
Примеры: [2 x y-7 a, 3 a b+5 y+y, x y-9 a c,-2 a b+5 x+9 y].
Подобными членами многочлена называются подобные слагаемые, из которых он состоит.
Например, в многочлене [3 a^{2}+8 a c-a^{2}] подобными являются [3 a^{2}] и [-a^{2}], в [5 b^{7}+8 ac+b^{7}-4 a b c d] подобными будут [5 b^{7}] и [b^{7}].
Многочлены стандартного вида
Из ранее пройденных тем известно, что одночленами стандартного вида называются те, в которых на первом месте стоит коэффициент, а затем идут буквенные множители.
Стандартным называют многочлен, состоящий их стандартных одночленов и при этом не содержащий подобных слагаемых.
Примеры стандартных многочленов: [48 a^{3} b^{9}-6 x^{4} y^{5}, 18 x y-113 c^{3} x^{6}, 6 m n^{3}+15 a b c].
Свободным членом многочлена называется многочлен нулевой степени, у которого нет буквенной части. Проще говоря, свободный член многочлена – входящее в него в качестве слагаемого число.
Свободным членом 3ab — 3с + 12х — 4 будет -4.
[y x^{2}-6 m n+15] свободный член равен 15.
Примеры
Представьте в виде многочлена стандартного вида математическое выражение 4x + 6xy2 + x – xy2.
Решение:
Приводим подобные слагаемые: 4x + x = 5x; 6xy2 — xy2 = 5xy2. В результате имеем 4x + 6xy2 + x – xy2 = 5x + 5xy2.
Ответ: 5x + 5xy2.
Привести 2x2y3 – xy3 – x4 – x2y3 + xy3 + 2x4 к стандартному виду.
Решение:
Приводим подобные слагаемые: 2x2 y3 — x2 y3 = x2 y3; — xy3 + xy3 = 0;
(-x4) +2x4 = x4
В результате получаем x2y3 + x4.
Ответ: x2y3 + x4.
Степень многочлена
Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов.
Степенью многочлена нестандартного вида называют степень многочлена соответствующего ему стандартного вида.
Для нахождения степени многочлена следует:
- Привести к стандартному виду все его члены;
- Привести к стандартному виду сам многочлен;
- Найти и выбрать одночлен с наибольшей из степеней.
Покажем сказанное на конкретных задачах.
Примеры
Узнать степень 6x + 4xy2 + x + xy2.
Решение: Выделяем подобные слагаемые. Это 6x + x =7x и 4xy2 + xy2 = 5xy2.
В результате имеем 7x + 5xy2. Это стандартный вид указанного многочлена.
Степень первого из его членов равна 1, второго 3. Так как 3 больше 1, степень нашего многочлена будет равна 3. Нельзя забывать, что единичная степень (таковая имеется у одночлена 7x) подразумевается, но не обозначается числом сверху.
Ответ: Степень 6x + 4xy2 + x + xy2 равна 3.
Узнать степень 6xx3 + 5xx2 − 3xx3 − 3x2x.
Решение: Находим стандартный вид одночленов: 6xx3 = 6x4, у 5xx2 = 5x3, у 3x3 = 3x4, 3x2x = 6x2 .
В результате наше выражение приобретает вид 6x4 + 5x3 − 3x4 − 3x3.
Теперь приводим его к стандартному виду. Выделяем подобные слагаемые.
Это 3x3. -3x3, и 6x4, -3x4.
Наш многочлен начинает выглядеть как 3x4 – 2x3.
Сравниваем степени слагаемых, 4 больше 3.
Ответ: Степень 6xx3 + 5xx2 − 3xx3 − 3x2 x равна 4.
Нет времени решать самому?
Наши эксперты помогут!
О разложении многочлена на множители
Примеры
Вынесение общего множителя за пределы скобок:
Разложить на множители многочлен xy + xz.
Решение:
Выносим x за скобки и получаем xy + xz = x(y+z).
Ответ: x(y+z).
Использование формул сокращённого умножения:
Разложить на множители (3xa – 2yb)2 .
Решение: Для разложения на множители воспользуемся формулой
(a-b)2 = a2 – 2ab + b2.
После её применения имеем:
9x2a2 – 6xyab + 4y2b2.
Ответ: 9x2a2 – 6xyab + 4y2b2.
Группировка:
Разложить на множители x3 – 5x2y – 3xy +15y2.
Решение:
x3 – 5x2y – 3xy +15y2 = (x3 – 5x2y) – (3xy — 15y2) =
= x2(x-5y) – 3y(x-5y) = (x2 – 3y)(x-5y).
Ответ: (x2 – 3y)(x-5y).
Выделение полного квадрата:
Разложить на множители x4 – 4x2 – 1.
Решение:
X4 – 4x2 – 1 = x4 – 2*2*x2 – 4 – 1 = (x2 -2)2 – 5 = (x2 – 2 + √5)(x2 – 2 + √5). В результате получили произведение двух многочленов.
Ответ: (x2 – 2 + √5)(x2 – 2 + √5).
Разложение квадратного трёхчлена на множители:
Метод базируется на теореме, согласно которой квадратное уравнение ax2 + bx +c = 0 с корнями x1 и x2 можно записать в виде a(x-x1)(x-x2).
Разложить на множители 2x2 + 5x -3.
Решаем уравнение 2x2 + 5x -3 = 0.
x1,2 = {5 +- √[52 – 4*2*(-3]}/2*2 = (-5+-7)/4;
x1 = ½; x2 =3;
2x2 + 5x -3 = 2(x-1/2)(x+3).
Ответ: 2(x-1/2)(x+3).
Оценить статью (89 оценок):
10. Многочлены от одной переменной и действия над ними.
10.1. ОПРЕДЕЛЕНИЕ МНОГОЧЛЕНОВ ОТ ОДНОЙ ПЕРЕМЕННОЙ И ИХ ТОЖДЕСТВЕННОЕ РАВЕНСТВО
Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например от переменной х.
По определению одночлена числа и буквы (в нашем случае одна буква — х) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида ахn, где а — некоторое число. Поэтому одночлен от одной переменной х — это выражение вида ахп, где а — некоторое число, п — целое неотрицательное число. Если а 0, то показатель степени п переменной х называется степенью одночлена. Например, 25х6 —одночлен шестой степени, — х2/3— одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку 0 = 0 • х = 0 • х2 = 0 • х3…).
По определению многочлен от одной переменной х — это сумма одночленов от одной переменной х (в которой приведены подобные слагаемые, то есть все одночлены-слагаемые имеют различную степень). Поэтому
Определение 1. Многочленом от одной переменной х называется выражение вида
f (х) = аnхn + аn-1 хn-1 + … + а2х2+а1х +а0, (1)
где коэффициенты аn, аn-1, …., а0 – некоторые числа.
Если аn 0, то этот многочлен называют многочленом п-й степени от переменной х. При этом член аnхп называют старшим членом многочлена f (х), число аn — коэффициентом при старшем члене, а член а0 — свободным членом. Например, 5х3 — 2х + 1 — многочлен третьей степени, у которого свободный член равен 1, а коэффициент при старшем члене равен 5.
Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена f (х) записывают так:
f (x) = b0xn + b1xn — 1 + … + b n — 1x + b n, где b0, b1, …, bn — некоторые числа.
Т е о р е м а 1. Одночлены ахn, где а ≠ 0, и bxm, где b ≠ 0, тождественно равны тогда и только тогда, когда а = b и п = т.д.
Одночлен ахn тождественно равен нулю тогда и только тогда, когда а = 0.
Поскольку равенство одночленов
aхn = bхn (2)
выполняется при всех значениях х (по условию эти одночлены тождественно равны), то, подставляя в это равенство х = 1, получаем, что a = b. Сокращая обе части равенства (2) на a (где a ≠ 0 по условию), получаем xn =xm . При х = 2 из этого равенства имеем: 2n = 2m. Поскольку 2n = 2• 2•… • 2 (n раз),
а 2m = 2 • 2 •… • 2 (m раз), то равенство 2n = 2m возможно только тогда, когда n = m.
Таким образом, из тождественного равенства axn = bxm (a 0, b 0) получаем, что a = b и n = m.
Если известно, что axn = 0 для всех х, то при х = 1 получаем a = 0. Поэтому одночлен axп тождественно равен нулю при a = 0 (тогда axn = 0 • xn = 0).
Далее любой одночлен вида 0 • хn будем заменять на 0.
Т е о р ем а 2. Если многочлен f (x) тождественно равен нулю (то
есть принимает нулевые значения при всех значениях х), то все
его коэффициенты равны нулю.
Для доказательства используем метод математической индукции.
Пусть f (x) = anхn + an-1хn-1 + … + a1х + a0 = 0 (тождественно).
При n = 0 имеем f (х) = a0 = 0, поэтому a0 = 0. То есть в этом случае утверждение теоремы выполняется.
Предположим, что при n = k это утверждение также выполняется: если многочлен akхk + ak-1хk-1 + … + a1х + a0 тождественно равен 0, то
ak = ak — 1 = … = a1 = a0 = 0.
Докажем, что данное утверждение выполняется и при n = k + 1. Пусть
f (x) = ak+1xk + akхk + … + a1х + a0 = 0. (3)
Поскольку равенство (3) выполняется при всех значениях х, то, подставляя в это равенство х = 0, получаем, что a0 = 0. Тогда равенство (3) обращается в следующее равенство: ak+1xk+1+ akxk + … + a1x = 0. Вынесем х в левой части этого равенства за скобки и получим
х (ak+1 + xk + akxk-1 + … + a1) = 0. (4)
Равенство (4) должно выполняться при всех значениях х. Для того чтобы оно выполнялось при х 0, должно выполняться тождество ak+1xk + akxk-1 + … + a1 = 0.
В левой части этого тождества стоит многочлен со степенями переменной от х0 до xk .Тогда по предположению индукции все его коэффициенты равны нулю: ak + 1 = ak = …= a1 = 0. Но мы также доказали, что a0 = 0,
поэтому наше утверждение выполняется и при n = k + 1. Таким образом, утверждение теоремы справедливо для любого целого неотрицательного n, то есть для всех многочленов.
Определение 2. Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают 0 (х) или просто 0 (поскольку 0 (х) = 0).
Теорема 3. Если два многочлена f (x) и g (x) тождественно равны,
то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны).
Пусть многочлен f (х) = аnхn + аn-1хn — 1 + … + а2х2 + а1х + а0, а многочлен g (x) = bmxm + bm — 1xm — 1 + … + b2x2 + b1x + b0. Рассмотрим многочлен f (x) — g (x). Поскольку многочлены f (x) и g (x) по условию тождественно равны, то многочлен f (x) — g (x) тождественно равен 0. Таким образом, все его коэффициенты равны нулю.
Но f (x) — g (x) =(a0 — b0) + (a1 — b1) x +(а2 — b2) х2+ … .
Тогда a0 — b0 = 0, a1 — b1 = 0, а2 — b2 = 0, … . Отсюда a0 = b0, a1 = b1s а2 = b2, … . Как видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, n больше m), то коэффициенты разности будут равны нулю. Поэтому начиная с (m + 1)-го номера все коэффициенты at также будут равны нулю. То есть действительно многочлены f (x) и g (x) имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.
Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.
Пример. Докажите, что выражение (х + 2)(х + 4)(х + 6)(х + + 16 является полным квадратом.
Данное выражение может быть записано в виде многочлена четвертой степени, поэтому оно может быть полным квадратом только многочлена второй степени вида ах2 + bх + с (а ≠ 0).
Получаем тождество:
(х + 2)(х + 4)(х + 6)(х + 8) + 16 = (ах2 + bх + с)2. (5)
Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях х, получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:
x4 |
1 = a2 |
x3 |
2 + 4 + 6 + 8 = 2ab |
x2 |
2-4 + 2-6 + 2-8 + 4-6 + 4-8 + 6-8 = b2 + 2ac |
x1 |
2-4-6 + 2-4-8 + 2-6-8 + 4-6-8 = 2bc |
x0 |
2 — 4 — 6 — 8 + 16 = c2 |
Из первого равенства получаем а = 1 или а = -1.
При а = 1 из второго равенства имеем b = 10, а из третьего — с = 20. Как видим, при этих значениях а, b и с последние два равенства также выполняются. Следовательно, тождество (5) выполняется при а = 1, b = 10, с = 20 (аналогично можно также получить а = -1, b = -10, с = -20).
Таким образом, (х + 2)(х+ 4)(х+ 6)(х+8) + 16=(х2 +10х + 20)2.
Упражнения
1. Зная, что многочлены f (x) и g (x) тождественно равны, найдите значение
коэффициентов а, b, с, d:
1)f (x) = 2x2 — (3 — а) x + b, g (x) = cx3 + 2dx2 + x + 5;
2)f (x) = (а + 1) x3 + 2, g (x) = 3x3 + bx2 + (c — 1) x + d.
2. Найдите такие числа a.b.c чтобы данное равенство a(x2-1)+b(x-2)+c(x+2)=2 выполнялось при любых значениях x.
3. Докажите тождество:
1)(x — 1)(х +1)(х2 — х + 1)(х2 + х +1) =х6 — 1;
2)1+х4=(1+х +х2)(1-х +х2).
4. Докажите, что данное выражение является полным квадратом:
1)(х — 1)(х — 2)(х — 3)(х — 4) + 1;
2)(х + а)(х + 2а)(х + 3а)(х + 4а) + а4.
5. Найдите такие а и b, чтобы при любых значениях х выполнялось равенство: 3х4 + 4х3 + 8х2 + 3х + 2 = (3х2 + ах + 1)(х2 + х + b).
6. Запишите алгебраическую дробь 2/15х2+x-2 как сумму двух алгебраических дробей вида a/3x-1 и b/5x+2
10.2. ДЕЛЕНИЕ МНОГОЧЛЕНА НА МНОГОЧЛЕН С ОСТАТКОМ
Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.
Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.
При сложении многочленов одной степени можно получить многочлен этой же степени или многочлен меньшей степени.
Например, 2х3 — 5х2 + 3х + 1 + (-2х3 + 5х2 + х + 5) = 4х + 6.
При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей из степеней слагаемых.
Например, (3х3 — 5х + 7) + (х2 + 2х + 1) = 3х3 + х2 — 3х + 8.
Деление многочлена на многочлен определяется аналогично делению целых чисел. Напомним, что число а делится на число b (b≠ 0), если существует такое число q, что а = b • q.
Определение 3. Многочлен А (х) делится на многочлен В (х) (где В (х) —не нулевой многочлен), если существует такой многочлен Q (x), что
А (х) = В (х) • Q (x).
Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком
Разделить с остатком многочлен А (х) на многочлен В (х) (где В (х) — не нулевой многочлен) — это означает найти такую пару многочленов Q (x) и R (x), что А (х) = В (х) • Q (x) + R (x), причем степень остатка R (x) меньше степени делителя В (х) (в этом случае многочлен Q (х) называют неполным частным.)
Например, поскольку х3 — 5х + 2 = (х2 — 5) х + 2, то при делении многочлена х3 — 5х + 2 на многочлен х2 — 5 получаем неполное частное х и остаток 2.
Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом:
Алгоритм. При делении многочленов от одной переменной переменные в делимом и в делителе размещают по убыванию степеней и делят старший член делимого на старший член делителя. Потом полученный результат умножают на делитель, и это произведение вычитают из делимого. С полученной разностью выполняют аналогичную операцию: делят ее старший член на старший член делителя и полученный результат снова умножают на делитель и т. д. Этот процесс продолжают до тех пор, пока не получится в остатке 0 (если один многочлен делится на другой) или пока в остатке не получится многочлен, степень которого меньше степени делителя.
Пример. Разделим многочлен А (х) = х4 — 5х3 + х2 + 8х — 20 на многочлен B(x)= х2 — 2х+3
Докажем, что полученный результат действительно является результатом деления А (х) на В (х) с остатком.
Если обозначить результат выполнения первого шага алгоритма через f1 (x), второго шага — через f2 (x), третьего — через f3 (x), то операцию деления, выполненную выше, можно записать в виде системы равенств:
f1(x) = А (х) — х2 • В (х); (1)
f2 (x) = A (x) — (-3х) • В (х); (2)
f3 (x) = f2(x) — (-8) • В (х). (3)
Сложим почленно равенства (1), (2), (3) и получим
А (х) = (х2 — 3х — • В (х) + f3 (x). (4)
Учитывая, что степень многочлена f3 (x) = х + 4 меньше степени делителя
В (х) = х2 — 2х + 3, обозначим f3 (x) = R (x) (остаток), а х2 — 3х — 8 = Q (x) (неполное частное). Тогда из равенства (4) имеем: А (х) = В (х) — Q (x) + R (x), то есть х4 — 5х3 + х2 + 8х — 20 = (х2 — 2х + 3)(х2 — 3х — + х + 4, а это и означает, что мы разделили А (х) на В (х) с остатком.
Очевидно, что приведенное обоснование можно провести для любой пары многочленов А (х) и В (х) в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого А (х) и делителя В (х) (где В (х) — не нулевой многочлен) найти неполное частное Q (x) и остаток R (x).
То есть, имеет место следующая теорема.
Теорема 4. Для любой пары многочленов А (х) и В (х) (где В (х) — не нулевой многочлен) существует и притом единственная пара многочленов
Q(x) и R(x), такая, что А(х)=В(х)*Q(x) + R(x), причем сте-
пень R (x) меньше степени В (х) (или R (x) — нулевой многочлен).
Отметим, что в случае, когда степень делимого А (х) меньше степени делителя В (х), считают, что неполное частное Q (x) = 0, а остаток R (x) = А (х).
Упражнения
1.Выполните деление многочлена на многочлен:
1)3х3 — 5х2 + 2х — 8 на х — 2; 2) х10 + 1 на х2 + 1;
3)х5 + 3х3 + 8х — 6 на х2 + 2х + 3.
2. Выполните деление многочлена на многочлен с остатком:
1)4х4 — 2х3 + х2 — х + 1 на x2 + x + 2;
2)х5 + х4 + х3 + х2 + 1 на х2 — х — 2.
3.При каких значениях а и b многочлен А (х) делится без остатка на многочлен В(х)?
1)А (х) = х3 + ах + b, В (х) = х2 + 5х + 7;
2)А (х) = 2х3 — 5х2 + ах + b, В (х) = х2 — 4;
3)А (х) = х4 — х3 + х2 — ах + b, В (х) = х2 — х + 2.
4.Найдите неполное частное и остаток при делении многочлена А(х) на многочлен В(х) методом неопределенных коэффициентов:
1)А (х) = х3 + 6х2 + 11х + 6, В (х) = х2 — 1;
2)А (х) = х3 — 19х — 30, В (х) = х2 + 1.
10.3. ТЕОРЕМА БЕЗУ. КОРНИ МНОГОЧЛЕНА. ФОРМУЛЫ ВИЕТА
Рассмотрим деление многочлена f (x) на двучлен (х – а). Поскольку степень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Таким образом, если разделить многочлен f (x) на двучлен (х – а), то получим
f (x) = (х – а)*Q (x) + R.
Это равенство выполняется тождественно, то есть при любом значении х. При х = а имеем f (а) = R. Полученный результат называют теоремой Безу.
Те о р е м а 1 (теорема Безу). Остаток от деления многочлена f (х) на двучлен (х – а) равен f (а) (то есть значению многочлена при х = а).
Задача 1. Докажите, что х5 – 3х4 + 2х3 + 4х – 4 делится на х – 1 без остатка.
- Подставив в f (х) = х5 – 3х4 + 2х3 + 4х – 4 вместо х значение 1, получаем: f (1) = 0. Таким образом, остаток от деления f (х) на (х – 1) равен 0, то есть f (x) делится на (х – 1) без остатка.
О п р е д е л е н и е. Число α называют корнем многочлена f (x), если f (α) = 0.
Если многочлен f (х) делится на (х – α), то α — корень этого многочлена.
- Действительно, если f (х) делится на (х – α), то f (х) = (х – α)*Q (x) и поэтому f (α) = (α – α)*Q (α) = 0. Таким образом, α — корень многочлена f (х).
Справедливо и обратное утверждение. Оно является следствием теоремы Безу.
Т е о р е м а 2. Если число α является корнем многочлена f (x), то этот многочлен делится на двучлен (х – α) без остатка.
- По теореме Безу остаток от деления f (x) на (х – α) равен f (α). Но по условию α — корень f (x), таким образом, f (α) = 0.
Обобщением теоремы 2 является следующее утверждение.
Те о р е м а 3. Если многочлен f (x) имеет попарно разные корни α1, α2, …, αn, то он делится без остатка на произведение
(х – α1)(x – α2)*…*(х – αn).
- Для доказательства используем метод математической индукции.
При n= 1 утверждение доказано в теореме 2. Допустим, что утверждение справедливо при n = k. То есть если α1, α2, …, αk — попарно разные корни многочлена f (x), то он делится на произведение (х – α1)(х – α2)*…*(х – αk). Тогда
f (x) = (х – α1)(х – α2)*…*(х – αk)*Q (x). (1)
Докажем, что утверждение теоремы справедливо и при n = k + 1. Пусть α1, α2, …, αk, αk + 1 — попарно разные корни многочлена f (x). Поскольку αk + 1 — корень f (x), то f (αk + 1) = 0.
Принимая во внимание равенство (1), которое выполняется согласно предположению индукции, получаем:
f (αk + 1) = (αk + 1 – α1)(αk + 1 – α2)*…*(αk + 1 – αk)*Q (αk + 1) = 0.
По условию все корни α1, α2, …, αk, αk + 1 разные, поэтому ни одно из чисел αk + 1 – α1, αk + 1 – α2, …, αk + 1 – αk не равно нулю. Тогда Q (αk + 1) = 0. Таким образом, αk + 1 — корень многочлена Q (x). Тогда по теореме 2 Q (x) делится на (х – αk + 1), то есть Q (x) = (х – αk + 1)*Q1 (x) и из равенства (1) имеем
f (x) = (х – α1)(х – α2)*…*(х – αk)(х – αk + 1)* Q1(x).
Это означает, что f (х) делится на произведение
(х – α1)(х – α2)*…*(х – αk)(х – αk + 1),
то есть теорема доказана и при n = k + 1.
Таким образом, теорема справедлива для любого натурального n.
С л е д с т в и е. Многочлен степени n имеет не больше n разных корней.
- Допустим, что многочлен n-й степени имеет (n + 1) разных корней: α1, α2, …, αn, αn+ 1. Тогда f (x) делится на произведение (х – α1)(х – α2)*… *(х – αn + 1) — многочлен степени (n+ 1), но это невозможно. Поэтому многочлен n-й степени не может иметь больше, чем n корней.
Пусть теперь многочлен n-й степени f (x) = аnхn + аn– 1 хn–1 + … + а2х2 + а1х + а0 (an ≠ 0) имеет n разных корней α1, α2, …, αn. Тогда этот многочлен делится без остатка на произведение (х – α1)(х – α2)*…*(х – αn). Это произведение является многочленом той же n-й степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,
аnхn + аn – 1 хn – 1 + … + а2х2 + а1х + а0 = b (х – α1)(х – α2)*…*(х – αn). (2)
Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что b = аn, то есть
аnхn + аn – 1 хn – 1 + … + а2х2 + а1х + а0 = аn (х – α1)(х – α2)*…*(х – αn) (3)
Сравнивая коэффициенты при одинаковых степенях х в левой и правой частях тождества (3), получаем соотношения между коэффициентами уравнения и его корнями, которые называют формулами Виета:
a1+a2+…+an= — an-1/an; |
a1a2+a1a3+…+an-1an= an-2/an; |
(4) |
a1a2a3+a1a2a4+…+an-2an-1an= — an-3/an; |
||
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
||
a1a2a3…an= (-1)n * a0/an. |
Например, при n = 2 имеем:
a1+a2= — a1/a2, a1a2 = a0/a2
а при n = 3:
a1+a2+a3= — a2/a3; |
a1a2+ a1a3+ a2a3 = a1/a3; |
(5) |
a1a2a3 = — a0/a3. |
Выполнение таких равенств является необходимым и достаточным условием того, чтобы числа α1, α2, …, αn были корнями многочлена f (x) = аnхn + аn – 1 хn – 1 + … + а2х2 + а1х + а0 (an ≠ 0). Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена f (x) разные. Введем понятие кратного корня многочлена.
Если многочлен f (x) делится без остатка на (х – α)k, но не делится без остатка на (х – α)k + 1, то говорят, что число α является корнем кратности k многочлена f (x).
Например, если произведение (х + 2)3(х – 1)2(х + 3) записать в виде многочлена, то для этого многочлена число (–2) является корнем кратности 3, число 1 — корнем кратности 2, а число (–3) — корнем кратности 1.
При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.
Задача 2. Проверьте справедливость формул Виета для многочлена
f (x) = х3 + 2х2 – 4х – 8.
- f(x) = х3 + 2х2 – 4х – 8 = х2 (х + 2) – 4 (х + 2) = (х + 2)(х2 – 4) = (х – 2)(х + 2)2 .
Поэтому f (х) имеет корни: α1 = 2, α2 = –2, α3 = –2 (поскольку (–2) — корень кратности 2). Проверим справедливость формулы (5).
В нашем случае: а3 = 1, а2 = 2, а1= –4, а0 = –8. Тогда
2+(-2)+(-2)=-2/1; 2*(-2)+2*(-2)+(-2)*(-2)=-4/1; 2*(-2)*(-2)=-(-8)/1
Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.
Задача 3. Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения х2 – 8х + 4 = 0.
- Обозначим корни уравнения х2 – 8х + 4 = 0 через х1 и х2. Тогда корнями искомого уравнения должны быть числа a1=x12 и a2=x22 . Поэтому искомое уравнение имеет вид х2 + рх + q = 0,
где p=-(a1+a2)=-(x12+x22)=-((x1+x2)2-2x1x2), q=a1a2=x12x22=(x1x2)2
По формулам Виета имеем х1 + х2 = 8 и х1х2 = 4. Отсюда находим, что
q = (х1х2)2 = 42 = 16, а p = −((x1+x2)2-2x1x2) = -(82-2*4)=-56.
Таким образом, искомое уравнение имеет вид х2 – 56х + 16 = 0.
Упражнения
- Найдите остаток от деления многочлена х5 – 4х4 + 2х3 – 5х + 1 на х + 2.
- Найдите коэффициент а, зная, что остаток от деления многочлена х3 – ах2 + 5х – 3 на х – 1 равен 6.
- Многочлен f (х) при делении на х – 1 дает остаток 4, а при делении на х – 3 дает остаток 6. Найдите остаток от деления многочлена f (х) на х2 – 4х + 3.
- При каких значениях а и b многочлен х4 + 2х3 + ах2 – bх + 2 делится без остатка на х + 2, а при делении на х – 1 имеет остаток, который равен 3?
- Остаток от деления многочлена f (x) на 3х2 – 5х + 2 равен 7х + 1. Найдите остаток от деления этого многочлена на двучлены х – 1 и 3х – 2.
- Запишите формулы Виета при n = 4.
- Составьте кубический многочлен, который имеет корни 5, –2, 1 и коэффициент при старшем члене –2. Решите задачу двумя способами.
- При каких значениях а сумма квадратов корней трехчлена х2 – (а + 2) х + 3а равна 12?
- Какую кратность имеет корень 2 для многочлена
f (х) = х5 – 5х4 + 7х3 – 2х2 + 4х – 8?
- Составьте кубический многочлен, который имеет корень 3 кратности 2 и корень (–1), а коэффициент при старшем члене 2.
- Найдите такие а и b, чтобы число 3 было корнем кратности не меньше чем 2 для многочлена f (х) = х3 – 5х2 + ах + b.
- Составьте квадратное уравнение, корни которого противоположны корням уравнения х2 – 5х + 1 = 0.
- Составьте квадратное уравнение, корни которого обратны корням уравнения 2х2 – 5х + 1 = 0.
- Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения х2 + 6х + 3 = 0.
10.4. СХЕМА ГОРНЕРА
Делить многочлен f (x) на двучлен (х – а) иногда удобно с помощью специальной схемы, которую называют схемой Горнера.
- Пусть многочлен f (x) = а0хn + а1хn– 1 + … + аn – 1 х + аn (a0 ≠ 0) необходимо разделить на двучлен (х – а). В результате деления многочлена n-й степени на многочлен первой степени получим некоторый многочлен Q (x) (n – 1)-й степени (то есть Q (x) = b0x n – 1 + b1x n – 2 + … + bn – 2 x + b n – 1, где b0 ≠ 0) и остаток R. Тогда f (x) = (х – а)*Q (x) + R, то есть а0хn + а1хn – 1 + … + аn – 1 х + аn = = (х – а)*(b0xn – 1 + b1xn – 2 + … + bn – 2 x + bn – 1) + R. Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях х:
Xn
а0 = b0
Xn-1
а1 = b1 – аb0
Xn-2
а2 = b2 – аb1
. . . . . .
. . . . . . . . . . . .
X1
аn – 1 = bn – 1 – аbn – 2
X0
аn = R – аbn – 1
Найдем из этих равенств коэффициенты b0, b1, …, bn – 1 и остаток R: b0 = а0, b1 = ab0 + a1, b2 = ab1 + a2, …, bn – 1 = abn – 2 + an – 1, R = abn – 1 + an.
Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент bk + 1 неполного частного, достаточно предыдущий найденный коэффициент bk умножить на а и добавить k-й коэффициент делимого. Эту процедуру целесобразно оформлять в виде специальной схемы-таблицы, которую называют схемой Горнера.
Пример 1. Разделите по схеме Горнера многочлен f (х) = 3х4 – 2х3 – 4х + 1 на двучлен х – 2.
Запишем сначала все коэффициенты многочлена f (х) (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:
Таким образом, 3х4 – 2х3 – 4х +1 = (х – 2)(3х3 + 4х2 + 8х + 12) + 25.
Пример 2. Проверьте, является ли х = –3 корнем многочлена f (х) = 2х4 + 6х3 + 4х2 – 2х – 42.
- По теореме Безу остаток от деления многочлена f (х) на х – а равен f (а), поэтому найдем с помощью схемы Горнера остаток от деления f (х) на х – (–3) = х + 3
Поскольку f (–3) = 0, то х = –3 — корень многочлена f (х).
Упражнения
- Используя схему Горнера, найдите неполное частное и остаток от деления многочлена А (х) на двучлен В (х):
1) А (х) = х3 + 3х2 + 3х + 1; В (х) = х + 1;
2) А (х) = 5х3 – 26х2 + 25х – 4; В (х) = х – 5;
3) А (х) = х4 – 15х2 + 10х + 24; В (х) = х + 3.
- Используя схему Горнера, проверьте, делится ли многочлен f (x) на двучлен q (x):
1) f (х) = 4х3 – х2 – 27х – 18; q (x) = x + 2;
2) f (х) = х4 – 8х3 + 15х2 + 4х – 20; q (x) = x – 2.
- Разделите многочлен А (х) на двучлен В (х):
1) А (х) = 2х3 – 19х2 + 32х + 21; В (х) = х – 7;
2) А (х) = 4х3 – 24х2 + 21х – 5; В (х) = 2х – 1.
10.5. НАХОЖДЕНИЕ РАЦИОНАЛЬНЫХ КОРНЕЙ МНОГОЧЛЕНА С ЦЕЛЫМИ КОЭФФИЦИЕНТАМИ.
Теорема 4. Если многочлен с целыми коэффициентами f (x) = anxn + an-1xn-1 + … + a1x+a0 имеет рациональный корень x=p/q (q ≠ 0, дробь p/q несократимая), то р является делителем свободного члена (a0), а q — делителем коэффициента при старшем члене аn.
Если p/q является корнем многочлена f (х), то f(p/q) = 0. Подставляем p/q вместо х в f(x) и из последнего равенства имеем
an * pn/qn + an-1 * pn-1/qn-1 + … + a1 * p/q + a0 = 0. |
(1) |
Умножим обе части равенства (1) на (q ≠ 0). Получаем
аnрn + an-1pn-1q + … + a1pqn-1 + a0qn = 0. |
(2) |
В равенстве (2) все слагаемые, кроме последнего, делятся на р. Поэтому
a0qn = -(аnрn + an-1pn-1q + … + a1pqn-1) делится на р.
Но когда мы записываем рациональное число в виде p/q, то эта дробь считается несократимой, то есть р и q не имеют общих делителей. Произведение a0qn может делиться на р (если р и q — взаимно простые числа) только тогда, когда a0 делится на р. Таким образом, р — делитель свободного члена a0.
Аналогично все слагаемые равенства (2), кроме первого, делятся на q. Тогда
anpn = -(an-1pn-1q + … + a1pq-1 + a0qn) делится на q. Поскольку р и q — взаимно простые числа, то an делится на q, следовательно, q — делитель коэффициента при старшем члене.
Отметим два следствия из этой теоремы. Если взять q = 1, то корнем многочлена будет целое число р — делитель a0. Таким образом, имеет место:
Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.
Если в заданном многочлене f (х) коэффициент аn = 1, то делителями аn могут быть только числа ±1, то есть q =±1, и имеет место:
Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.
Задача 1 Найдите рациональные корни многочлена 2х3 – х2 + 12х – 6.
Пусть несократимая дробь p/q является корнем многочлена. Тогда р необходимо искать среди делителей свободного члена, то есть среди чисел ±1, ±2, ±3, ±6, а q — среди делителей старшего коэффициента: ±1, ±2.
Таким образом, рациональные корни многочлена необходимо искать среди чисел ±1/2, ±1, +±3/2, ±2, ±3, ±6. Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера. При x = 1/2 имеем следующую таблицу.
Кроме того, по схеме Горнера можно записать, что
2х3 – х2 + 12х – 6 = (x – 1/2) (2x2 + 12).
Многочлен 2х2 + 12 не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень x =1/2.
Задача 2 Разложите многочлен Р (х) = 2х4 + 3х3 – 2х2 – х – 2 на множители.
Ищем целые корни многочлена среди делителей свободного члена: ±1, ±2. Подходит 1. Делим Р (х) на х – 1 с помощью схемы Горнера.
Тогда Р (х) = (х – 1)(2х3 + 5х2 + 3х + 2). Ищем целые корни кубического многочлена 2х3 + 5х2 + 3х + 2 среди делителей его свободного члена: ±1, ±2. Подходит (–2). Делим на х + 2
Имеем Р (х) = (х – 1)(х + 2)(2х2 + х +1).
Квадратный трехчлен 2х2 + х +1 не имеет действительных корней и на линейные множители не раскладывается.
Ответ: Р (х) = (х – 1)(х + 2)(2х2 + х +1).
Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен х2 + х + 1 не имеет действительных корней). Таким образом, многочлен n-й степени не всегда можно разложить на линейные множители. В курсах высшей алгебры доказывается, что многочлен нечетной степени всегда можно разложить на линейные и квадратные множители, а многочлен четной степени представить в виде произведения квадратных трехчленов.
Например, многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.
Задача 3 Разложите на множители многочлен х4 + х3 + 3х2 + х + 6.
Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.
Попытаемся разложить этот многочлен в произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:
х4 + х3 + 3х2 + х + 6 = (х2 + ах + b)(х2 + сх + d), |
(3) |
где а, b, с и d — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях х у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:
х4 + х3 + 3х2 + х + 6 = x4 + cx3 + dx2 +
+ ax3 + acx2 + adx +
+ bx2 + bcx + bd.
Получаем систему
(4) |
Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что b и d могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.
Коэффициенты b и d в равенстве (3) равноправны, поэтому мы не рассматриваем случаи b = 6 и d = 1 или b = –6 и d = –1 и т. д.
Для каждой пары значений b и d из третьего равенства системы (4) найдем ас = 3 – (b + d), а из второго равенства имеем а + с = 1.
Зная а + с и ас, по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения а, b, с, d подставим в четвертое равенство системы (4) bс + ad = 1, чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:
Как видим, системе (4) удовлетворяет набор целых чисел а = –1, b = 2, с = 2, d = 3. Тогда равенство (3) имеет вид
x4 + х3 + 3х2 + х + 6 = (х2 – х + 2)(х2 + 2х + 3). |
(5) |
Поскольку квадратные трехчлены х2 – х + 2 и х2 + 2х + 3 не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.
Упражнения
- Найдите целые корни многочлена:
1) х3 – 5х + 4;
2) 2x3 + x2 – 13x + 6;
3) 5х3 + 18х2 – 10х – 8;
4) 4х4 – 11х2 + 9х – 2.
- Найдите рациональные корни уравнения:
1) х3 – 3х2 + 2 = 0;
2) 2х3 – 5х2 – х + 1 = 0;
3) 3х4 + 5х3 – х2 – 5х – 2 = 0;
4) 3х4 – 8х3 – 2х2 + 7х – 2 = 0.
- Разложите многочлен на множители:
1) 2х3 – х2 – 5х – 2;
2) х3 + 9х2 + 23х +15;
3) х4 – 2х3 + 2х – 1;
4) х4 – 2х3 – 24х2 + 50х – 25.
- Найдите действительные корни уравнения:
1) х3 + х2 – 4х + 2 = 0;
2) х3 – 7х – 6 = 0;
3) 2х4 – 5х3 + 5х2 – 2 = 0;
4) 2х3 – 5х2 + 1 = 0.
5*. Разложите многочлен на множители методом неопределенных коэффициентов:
1) х4 + х3 – 5х2 + 13х – 6;
2) х4 – 4х3 – 20х2 + 13х – 2.
6*. Разложите многочлен на множители, заранее записав его с помощью метода неопределенных коэффициентов в виде (х2 + bх + с)2 – (mх + n)2: :
1) х4+ 4х – 1;
2) х4 – 4х3 – 1;
3) х4 + 4а3х – а4.
ДОПОЛНИТЕЛЬНЫЕ УПРАЖНЕНИЯ К РАЗДЕЛУ 1
- Область определения функции y = f (x) ¾ отрезок [– 2; 1]. Найдите область определения функции:
- Постройте график функции:
- Изобразите на координатной плоскости множество точек, координаты которых удовлетворяют заданному условию:
4 (МТУСИ). Решите уравнение:
5 (МЭСИ). Решите систему уравнений:
- Решите неравенство:
- Докажите неравенство:
8 (СТАНКИН). Найдите все значения параметра а, при которых уравнение имеет точно три корня.
9 (МГАТХТ). Найдите все значения параметра а, при которых система уравнений не имеет решений.
10 (МГУ, ИСАиА). Найдите все значения параметра а, при которых система уравнений имеет единственное решение.
11 (МИСиС). При каких значениях параметра а неравенство
выполняется для всех отрицательных значений х?
12 (МГУ, мех.-мат. ф-т). При каких значениях параметра а уравнение
имеет точно три различных корня?
- При каких значениях параметра а уравнение имеет три действительных корня, которые образуют геометрическую прогрессию?
Решите задачи (14–25) на составление уравнений или неравенств и их систем.
14 (МГТУ). Рабочий должен был по плану изготовить за несколько дней 72 детали. Так как каждый день он изготавливал на 2 детали меньше плана, то закончил работу через 3 дня после срока. Сколько деталей в день должен был изготовлять рабочий по плану?
15 (МГУ, хим. ф-т). Три одинаковых комбайна, работая вместе, убрали первое поле, а затем два из них убрали второе поле (другой площади). Вся работа заняла 12 часов. Если бы три комбайна выполнили половину всей работы, а затем оставшуюся часть сделал один из них, то работа заняла бы 20 часов. За какое время два комбайна могут убрать первое поле?
16 (РЭА). Производительность первого станка на 25 % больше производительности второго станка. Второй станок сделал деталей на 4 % больше, чем первый. На сколько процентов время, затраченное вторым станком на выполнение своей работы, больше времени первого станка?
17 (ГФА). Первая из труб наполняет бассейн водой в два раза быстрее, чем другая. Если половину бассейна наполнить только из первой трубы, а оставшуюся часть — только из второй, то для наполнения бассейна потребуется 6 час. За сколько часов можно наполнить бассейн только из первой трубы?
18 (МГУПБ). Два велосипедиста выезжают одновременно навстречу друг другу из пунктов А и В, расстояние между которыми 30 км, и встречаются через час. Не останавливаясь, они продолжают путь с той же скоростью, и первый прибывает в пункт В на 1,5 часа раньше, чем второй в пункт А. Определить скорость первого велосипедиста.
19 (МГУПБ). В течение 7 ч 20 мин судно прошло вверх по реке 35 км и вернулось обратно. Скорость течения равна 4 км в час. С какой скоростью судно шло по течению?
20 (ПГУ). Смешали 30 %-ный раствор соляной кислоты с 10 %-ным и получили 600 г 15 %-го раствора. Сколько граммов каждого раствора было взято?
21 (ВШЭ). Имеются два сплава, состоящие из цинка, меди и олова. Известно, что первый сплав содержит 40 % олова, а второй — 26 % меди. Процентное содержание цинка в первом и во втором сплавах одинаково. Сплавив 150 кг первого сплава и 250 кг второго, получили новый сплав, в котором оказалось 30 % цинка. Определить, сколько килограммов олова содержится в новом сплаве.
22 (МАИ). Найти такое двузначное число, в котором число его единиц на два больше числа десятков, а произведение искомого числа на сумму его цифр равно 144.
23 (ЛТА). Около дома посажены березы и липы, причем общее их количество более 14. Если количество лип увеличить вдвое, а количество берез увеличить на 18, то берез станет больше. Если увеличить вдвое количество берез, не изменяя количества лип, то лип все равно будет больше. Сколько берез и сколько лип было посажено?
24 (МГУ, эк. ф-т, ВШЭ). Группу людей пытались построить в колонну по 8 человек в ряд, но один ряд оказался неполным. Когда ту же группу людей перестроили по 7 человек в ряд, то все ряды оказались полными, а число рядов оказалось на 2 больше. Если бы тех же людей построили по 5 человек в ряд, то рядов было бы еще на 7 больше, причем один ряд был бы неполным. Сколько людей было в группе?
25 (МГУ, эк. ф-т). В магазине продаются гвоздики и розы. Гвоздика стоит 1 руб. 50 коп., роза — 2 руб. На покупку гвоздик и роз можно затратить не более 30 руб. 50 коп. При этом число гвоздик не должно отличаться от числа роз более чем на 6. Необходимо купить максимально возможное суммарное количество цветов, при этом гвоздик нужно купить как можно меньше. Сколько гвоздик и сколько роз будет куплено при указанных условиях?