Как найти коэффициент мощности всей цепи


Загрузить PDF


Загрузить PDF

В этой статье рассказывается, как вычислить коэффициент мощности переменного электрического тока. Зная этот коэффициент, вы сможете найти полную, активную и реактивную мощности, а также угол сдвига фаз.[1]
Рассмотрим уравнение прямоугольного треугольника. Для того, чтобы найти угол треугольника, необходимо знать, что такое косинус, синус и тангенс. Для вычисления длин сторон треугольника вам понадобится также теорема Пифагора ( c² = √(a² + b²) ). Следует также знать, в каких единицах измеряется каждый вид мощности. Полная мощность измеряется в вольт-амперах, активная мощность — в ваттах, а реактивная — в единицах, называемых вольт-ампер реактивный (ВАр). Существует несколько уравнений для вычисления этих величин, и все они приведены в данной статье.

Шаги

  1. Изображение с названием Calculate Power Factor Correction Step 1

    1

    Вычислите импеданс. Представьте, что вместо полной мощности стоит импеданс, как на рисунке выше. Чтобы найти импеданс, надо воспользоваться теоремой Пифагора: c² = √ (a² + b²).[2]

  2. Изображение с названием Calculate Power Factor Correction Step 2

    2

    Таким образом, полный импеданс (обозначаемый как Z) равен квадратному корню из суммы квадратов активной и реактивной мощностей.[3]

    • Z = √(60² + 60²). Подставив эти значения в калькулятор, получим ответ 84,85 Ом ( Z = 84,85 Ом ).
  3. Изображение с названием Calculate Power Factor Correction Step 3

    3

    Найдите угол сдвига фаз. Итак, теперь вы знаете величину гипотенузы, являющейся импедансом. У вас также есть значения прилежащего катета (активная мощность) и противолежащего катета (реактивная мощность). Чтобы найти угол, вам достаточно воспользоваться любой из тригонометрических функций, упомянутых выше. Используем, например, тангенс, который равен отношению противолежащего катета к прилежащему (реактивная мощность/активная мощность).[4]

    • У вас получится следующее отношение: 60/60 = 1.
  4. Изображение с названием Calculate Power Factor Correction Step 4

    4

    Возьмите арктангенс полученной выше величины, и вы найдете угол сдвига фаз. Данная функция есть в вашем калькуляторе. Взяв арктангенс от значения тангенса, полученного выше, получим угол фазового сдвига: arctg (1) = угол фазового сдвига. Получаем ответ 45°.

  5. Изображение с названием Calculate Power Factor Correction Step 5

    5

    Вычислите полную силу тока (амперы). Сила тока измеряется в амперах, обозначаемых как A. Для ее нахождения необходимо разделить напряжение на импеданс: 120 В/84,85 Ом. В результате вы получите примерно 1,414 A ( 120 В/84,84 Ом = 1,414 A ).[5]

  6. Изображение с названием Calculate Power Factor Correction Step 6

    6

    Теперь вы можете найти полную мощность, обозначаемую как S. Для этого нет необходимости использовать теорему Пифагора, поскольку вам уже известна гипотенуза (импеданс). Помня, что полная мощность измеряется в вольт-амперах, мы можем найти ее, разделив квадрат напряжения на полный импеданс: [6]
    120 В²/84,85 Ом. В результате получится 169,71 ВА ( 120²/84,85 = 169,71 ).

  7. Изображение с названием Calculate Power Factor Correction Step 7

    7

    Теперь можно найти активную мощность, обозначаемую как P.[7]
    Для этого необходимо знать величину силы тока, которую мы рассчитали выше в шаге 4. Активная мощность, измеряемая в ваттах, находится путем умножения квадрата тока (1,414²) на сопротивление (60 Ом) цепи. В результате получится: 1,414² x 60 = 119,96 Вт.

  8. Изображение с названием Calculate Power Factor Correction Step 8

    8

    И наконец, найдите коэффициент мощности! Для этого вам потребуются следующие величины: активная мощность (ватты) и полная мощность (вольт-амперы).[8]
    Вы нашли их в предыдущих шагах: активная мощность составила 119,96 Вт, полная — 169,71 ВА. Коэффициент мощности, обозначаемый также как Pf, находится путем деления ватт на вольт-амперы. У вас получится: 119,96 Вт/169,71 ВА = 0,71.

    • Коэффициент мощности можно выразить также в процентах: умножив полученное значение 0,71 на 100%, получим коэффициент 71%.[9]

    Реклама

Предупреждения

  • При вычислении импеданса на калькуляторе используется не тангенс, а обратная ему функция (арктангенс). Помните об этом, иначе получите неправильный угол сдвига фаз.
  • Выше был приведен простейший пример вычисления угла сдвига фаз и коэффициента мощности. Существуют намного более сложные электрические цепи, содержащие емкостную мощность, большие активные и реактивные сопротивления.

Реклама

Что вам понадобится

  • Научный калькулятор
  • Карандаш
  • Ластик
  • Листок бумаги

Об этой статье

Эту страницу просматривали 11 677 раз.

Была ли эта статья полезной?

Коэффициент мощности cos φ1 Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.

Содержание

  1. Математически cos φ
  2. Повышение коэффициента мощности
  3. Повышение cos φ преследует 3 основные задачи:
  4. Основные способы коррекции cos φ

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.

Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.

Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

Васильев Дмитрий Петрович

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Коэффициент мощности cos φ2

Короткое видео о кратким объяснением, что такое коэффициент мощности:

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

  1. снижение потерь электроэнергии;
  2. рациональное использование цветных металлов на создание электропроводящей аппаратуры;
  3. оптимальное использование установленной мощности трансформаторов, генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.

Абрамян Евгений Павлович

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.

Коэффициент мощности cos φ: определение, назначение, физический смысл

Основные способы коррекции cos φ

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Подробное видео с объяснением, что такое cosφ :

Что такое коэффициент мощности, косинус фи и тангенс фи

Содержание

  • 1 Виды мощности
  • 2 Что такое коэффициент мощности
  • 3 Выгода электрооборудования с высоким коэффициентом мощности
  • 4 Как узнать коэффициент мощности
  • 5 Значения коэффициента для различных случаев
  • 6 Видео по теме

Одной из важнейших характеристик электрических устройств является мощность. Поэтому желательно знать, что такое коэффициент мощности и как он рассчитывается. Это поможет не только оценить эффективность использования электрической энергии, но и правильно организовать работу электроприбора.

Коэффициент мощности определяет эффективность-использования электроэнергии

Виды мощности

В цепи переменного электротока возникают три мощности: активная, реактивная и полная. Активную называют полезной или действующей мощностью. Это связано с тем, что она тратится на осуществление полезной работы. Обычно при этом электрическая энергия преобразуется в другие виды.

Реактивная мощность в процессе работы электроприбора не тратится, а лишь переходит из одной формы в другую. В данной мощности нуждаются устройства, принцип действия которых основывается на использовании электромагнитного поля.

Одним из примеров таких устройств может служить колебательный контур, включающий в себя индуктивность и ёмкость в предположении, что активное сопротивление деталей пренебрежимо мало. Ещё одним можно считать трансформатор. В нём ток и напряжение передаются по сердечнику с помощью колебаний электромагнитного поля.

Полную мощность можно получить векторным сложением активной и реактивной составляющих.

Треугольник мощностей

Что такое коэффициент мощности

Иногда бывает важно понять, какая часть мощности уходит на выполнение полезной работы. Для этого необходимо узнать активную и реактивную мощность рассматриваемого электрического прибора. Далее на их основе определяют полную.

В электротехнике для определения мощности в сети постоянного тока используется следующее соотношение:

Формула мощности

В цепи переменного тока вычисление искомой величины производится более сложным образом. При этом следует учитывать, что изменения напряжения и тока по времени совпадать не будут. Электроток в ёмкостной нагрузке опережает напряжение, а в индуктивной, наоборот, отстает.

Поэтому при вычислении мощности принято использовать эффективные значения тока и напряжения. При этом рассматривается такая постоянная величина тока и напряжения, которая на активном сопротивлении выделит то же количество тепла, что и рассматриваемые переменные величины.

Сдвиг между напряжением и током

Конечно, в таких случаях можно также вычислить мгновенную мощность. Для этого достаточно перемножить мгновенные значения тока и напряжения. Однако данная величина не учитывает сильную инерцию энергетических процессов, в связи с чем подобный расчет величин имеет ограниченное применение.

Чтобы определить коэффициент активной мощности нужно разделить активную мощность на полную. Данный коэффициент позволяет оценить эффективность использования рассматриваемого технического решения. Соотношение между реактивной и активной мощностью определяет тангенс «фи».

Полная мощность измеряется в вольт-амперах (ВА). Для активной используют ватты (Вт). Для реактивной применяется единица измерения вольт-ампер реактивный (ВАР).

Поскольку сложение мощностей происходит по векторным правилам, то нужно учитывать, что векторы активной и реактивной составляющих перпендикулярны друг к другу. Результат вычислений представляет собой гипотенузу прямоугольного треугольника с указанными катетами. Формула полной мощности выглядит следующим образом:

Выражение для полной мощности

Это следует из теоремы Пифагора. Здесь применяется правило для нахождения гипотенузы прямоугольного треугольника. Если выразить катеты через гипотенузу и угол «фи», то можно получить формулу для определения активной мощности:

Активная мощность

Аналогичным образом выражается и реактивная:

Реактивная мощность

Следовательно, из формулы для активной мощности можно найти cosφ:

Определение косинуса фи

Для трехфазного напряжения формула принимает следующий вид:

Формула для трёхфазного напряжения

Поэтому следует понимать, что такое косинус «фи» в данной формуле. А это все тот же коэффициент мощности, который позволяет оценивать электроприемники при наличии реактивной составляющей в потребляемом токе.

Называется cosφ коэффициентом мощности в связи с тем, что при векторном сложении в прямоугольном треугольнике значение косинуса угла φ можно найти, разделив длину катета, соответствующего активной мощности, на длину гипотенузы, выражающей полную мощность. Следовательно, формула коэффициента мощности выглядит так:

Выражение для коэффициента мощности

Коэффициент активной мощности cosφ может иметь значение в диапазоне от 0 до 1. Иногда его выражают в процентах. В таком случае коэффициент обозначают греческой буквой «лямбда». Соотношение катетов в прямоугольном треугольнике определяет тангенс «фи».

Коэффициент мощности является низким в тех случаях, когда активная составляющая мала по сравнению с полной мощностью. Это говорит о неэффективности применяемого оборудования.

Для тока и напряжения синусоидальной формы cosφ соответствует косинусу угла отставания по фазе для этих параметров.

Сущность косинуса фи

Выгода электрооборудования с высоким коэффициентом мощности

Это связано с наличием следующих факторов:

  • Поставщики электроэнергии в некоторых случаях контролируют коэффициент мощности оборудования, используемого потребителями. Они могут выставлять дополнительный счёт, если он будет ниже 0.95. В том случае, когда коэффициент меньше 0.85, поставка электроэнергии может быть ограничена.
  • Низкий коэффициент приводит к тому, что при относительно небольшом объёме полезной работы происходят повышенные траты электроэнергии. Таким образом, за определённый объём полезной работы потребителю приходится переплачивать.
  • В линиях электропередач наличие высоких показателей указывает на незначительные потери при передаче энергии.
  • Низкий коэффициент в системе электроснабжения может приводить к уменьшению напряжения в сети. Это часто становится причиной перегрева используемых потребителем устройств.

При рассмотрении работы электрических устройств нужно учитывать, что часть из них генерирует реактивную мощность, а другие являются потребителями. Следовательно, применение первых приводит к возрастанию реактивной мощности, а использование вторых — к её уменьшению.

Реактивная мощность генерируется при работе асинхронного электродвигателя, трансформаторов, ветряных генераторов, систем освещения на разрядных лампах. Наличие реактивной нагрузки ухудшает эффективность работы оборудования. В качестве потребителей рассматриваются конденсаторы, синхронные двигатели и генераторы.

Для уменьшения реактивной мощности можно использовать следующие способы:

  • В цепи устанавливаются конденсаторы. При их использовании совместно с индуктивностью они образуют колебательный контур. В нём мощность от индуктивности будет потребляться ёмкостью.
  • Следует избегать работы асинхронных двигателей вхолостую или с малой мощностью.
  • Нужно исключить возможность работы оборудования при напряжении, которое превышает номинальное.
  • Рекомендуется по мере замены двигателей переходить на те, которые имеют более высокий коэффициент полезного действия.

Оптимальной нагрузкой является номинальная. Если используется нагрузка, значение которой меньше или больше номинальной, то это существенно снижает эффективность работы оборудования.

Как узнать коэффициент мощности

Значение рассматриваемого коэффициента указывается в сопроводительной технической документации к приобретаемому промышленному оборудованию или бытовому прибору. Однако при этом речь идёт о номинальном значении.

Указание косинуса фи на этикетке

Более точно коэффициент измеряется с помощью специализированного прибора, который называется фазометром.

Такие приборы могут быть электродинамическими или цифровыми. С помощью измерений можно достаточно просто и с большой точностью узнать чему равен cosφ и какова эффективность использования прибора.

Если фазометра нет в распоряжении, следует воспользоваться амперметром, вольтметром и ваттметром, с помощью которых измеряются такие физические величины, как сила тока, напряжение и мощность, а затем с помощью соответствующих формул вычислить коэффициент мощности.

Фазометр

Значения коэффициента для различных случаев

При измерении или вычислении коэффициента мощности необходимо знать характерные значения для различных видов оборудования:

  • При использовании нагревательных устройств, несмотря на возможное присутствие индуктивных элементов, считается, что вся используемая мощность является активной. В таких случаях принимают косинус «фи» равный единице.
  • Для перфораторов и ударных дрелей этот коэффициент составляет 0.95-0.97.
  • Сварочные трансформаторы в значительной степени используют индуктивную нагрузку. Поэтому коэффициент мощности трансформатора обычно находится в диапазоне от 0.5 до 0.85.

Значение коэффициента мощности

Когда значения коэффициента являются широко известными, их могут не указывать в сопроводительной документации. Нужно помнить, что хотя в большинстве случаев напряжение меняется синусоидально, иногда оно может существенно отклоняться от этой формы. В такой ситуации говорят о присутствии высших гармоник в колебаниях.

Их появление ведёт к дополнительным затратам мощности, а также снижает компенсацию реактивной мощности, если она применялась. Подобное явление наблюдается при работе с дуговыми сталеплавильными печами, установками дуговой сварки, газоразрядными лампами.

Видео по теме

Трехфазная цепь
является обычной цепью синусоидального
тока с несколькими источниками.

Активная мощность
трехфазной цепи равна сумме активных
мощностей фаз

(7.5)

Формула (7.5)
используется для расчета активной
мощности в трехфазной цепи при
несимметричной нагрузке.

При симметричной
нагрузке:

При соединении в
треугольник симметричной нагрузки

При соединении в
звезду

.

В обоих случаях
.

3.7. Коэффициент мощности и способы его повышения

Площади поперечного
сечения приводов линий электропередачи
и электрических сетей, обмоток
электрических машин, трансформаторов,
электротехнических аппаратов и приборов
выбираются, исходя из нагревания, по
значению тока в них, который при заданном
напряжении переменного тока прямо
пропорционален полной мощности S.
А энергия, преобразуемая из электрической
в другие виды (в механическую, тепловую
и т. д.) и используемая в большей части
для практических целей, пропорциональна
активной энергии и соответствующей ей
активной мощности Р.

Как известно, между
указанными мощностями и реактивной
мощностью существуют соотношения

P = S cos
φ; S = P2
+ Q
2
.

Входящий в первое
выражение cos φ называется коэффициентом
мощности и показывает, какую часть
полной мощности составляет активная
мощность: cos φ = P/S=
Р/
P2
+ Q
2.

Считая, что активная
мощность установки, значение кото­рой
зависит в основном от мощности приемников,
остается постоянной, выясним, к чему
приведет увеличение коэффициента
мощности установки.

Как следует из
приведенных формул, при увеличении cos
φ мощность S
уменьшается.
При Р =
const это может происходить лишь за счет
уменьшения реактивной мощности Q
установки.
Снижение мощности S
приводит к
уменьшению линейного тока Iл
. Последнее
будет сопровождаться уменьшением потерь
напряжения и мощности в сопротивлениях
проводов сети, обмотках трансформаторов
и генераторов.

Очевидно, при
уменьшении тока площади поперечного
сечения названных элементов могут быть
также уменьшены. В отношении трансформаторов
и генераторов это приводит к уменьшению
габаритных размеров, расхода дефицитных
материалов на изготовление, массы,
номинальной мощности и стоимости.

В действующей
установке повышение cos φ при существующей
площади поперечного сечения проводов
позволит увеличить число приемников,
которые могут быть подключены к данной
сети.

Таким образом,
повышение коэффициента мощности дает
определенные выгоды во многих отношениях,
а поэтому имеет большое народнохозяйственное
значение.

Большая часть
элементов электрических цепей переменного
тока потребляет кроме активной мощности
также индуктивную мощность. К ним
относятся в первую очередь наиболее
распространенные в народном хозяйстве
асинхронные электродвигатели. Значительная
часть индуктивной мощности потребляется
трансформаторами, широко используемыми
вразличных установках. Индуктивная
мощность потребляется также различными
электромагнитными аппаратами, такими,
например, как электромагниты, контакторы
и магнитные пускатели, реле и т. д.

Для уменьшения
индуктивной мощности и увеличения тем
самым cos φ необходимо прежде всего:

выбирать правильно
двигатели по мощности, так как
необоснованное завышение мощности
приведет к их работе с недогрузкой, а
при этом, как правило, cos φ понижается;

заменять двигатели,
работающие с недогрузкой, двигателями
меньшей мощности;

сокращать по
возможности времена работы двигателей
и трансформаторов вхолостую.

Если все же cos φ
оказывается недостаточно высоким,
прибегают часто к его искусственному
повышению. Для этой цели подключают к
трехфазной сети компенсирующие
устройства, к которым относятся батареи
конденсаторов и трехфазные синхронные
компенсаторы (см. гл. 11). Последние
применяются реже. Батарея конденсаторов
соединяется обычно треугольником, как
показано на рис. 3.18, а.
Батарея
конденсаторов потребляет емкостную
мощность, которая частично компенсирует
индуктивную мощность установки, в
результате чего реактивная мощность
уменьшается, а коэффициент мощности
повышается.   Естественно, что  
cos φ  самих  приемников  при 
этом остается прежним.

Рис.
3.18. Схема и векторная диаграмма к
примеру 3.5

Чтобы уменьшить
ток проводов сети, батарею конденсаторов
устанавливают по возможности вблизи
приемников.

Пример 3.5. К
трехфазной сети рис. 3.18, а
с линейными напряжениями Uл
=
220В подключены
два трехфазных приемника. Активная
мощность и коэффициент мощности первого
приемника P1
= 10 кВт, cos φ1
= 0,7. Фазные сопротивления второго
приемника rф
= 6 Ом,
xLф
= 8 Ом, нагрузка симметричная.

Определить токи,
мощности и коэффициент мощности cos φ
установки из двух приемников. Найти
мощность, токи и емкость батареи
конденсаторов, если требуется повысить
коэффициент мощности до cos φ’ = 0,95.
Определить токи и мощности установки
из двух приемников и батареи конденсаторов.

Решение. Полная и
реактивная мощности первого приемника

S1
= P1/cos
φ1
= 14,3 кВ•А,   Q1
= √S12
P12
≈ 10,2 квар.

Полное сопротивление
и ток фазы второго приемника

z2
= √r22
+ x
2L2
=
10 Ом;   
Iф2
= U
ф
/z2
= U
л
/z2
=
22 А.

Активная и реактивная
мощности второго приемника

Р2
= 3I2ф2r2
= 8,7 кВт;   Q2
= 3Iф2xLф
≈ 11,6 квар.

Активная, реактивная
и полная мощности установки, состоящей
из двух преемников.

Р
= P1
+ P2
=18,7 кВт;   Q
= Q1
+ Q2
= 21,8 квар;

S
= √P2
+ Q2
≈ 28,7 кВ•А.

Линейный ток и
коэффициент мощности установки из двух
приемников

Iл
= I
a
=
S√3Uл
≈ 75,5 A;   cos φ
= P/S

0,65.

Мощности установки
из приемников и батареи конденсаторов

Р’
= Р =
18,7 кВт;    S’
= P/cos
φ’ = 19,68 кВ•А;

Q’
= √S’2
P’2
=
6,13 квар.

Линейные токи
установки из приемников и батареи
конденсаторов, мощность и линейные токи
батареи конденсаторов

I’л
= I’
a
= S√3Uл
= 51,7 A; Qк
= Q — Q’
=15,67 квар;

Iк.л
= Qк
/√3Uл
= 41,2 А.

Фазные токи и
сопротивление фазы батареи конденсаторов

Iк.л/√3
= 20,8 А; xк.ф
= Uф
/Iк.ф
= Uл
/Iк.ф
= 10,58 Ом.

Емкость одной фазы
и всей батареи конденсаторов

Ск.ф
=1/2π/хк.ф
= 30 мкФ;    Ск
= 3Ск.ф
= 90 мкФ.

Векторная диаграмма
цепи рис, 3.18, а
приведена
на рис. 3.18, б.
На диаграмме
показаны только те токи, которые
определяют ток I’a
(t. е. Ia
и Iкa),
а также токи, определяющие ток Iкa

(т. е. Iкab
и Iкca).

20.
Основные понятия и принципы анализа
переходных процессов в электрических
цепях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ads

Коэффициент мощности (cos φ — косинус фи) — это отношение активной мощности к полной. Чем ближе это значение к единицы, тем лучше, так как при значении cos φ = 1 — реактивная мощность равна нулю следовательно меньшая потребляемая мощность в целом.

cos φ = P/S

Активная мощность (P)

Измеряется в ваттах Вт

Активная (средняя) мощность — это среднее значение мощности за период.. Активная мощность используется только на активные сопротивления, то есть на выполнения полезной работы.

P = I*U*cos φ 

Активное сопротивление

Как известно сопротивление проводника при переменном токе больше чем при постоянном, в следствии явлений поверхностного эффекта, эффекта близости, возникновение вихревых токов и излучение электромагнитной 

Резистор

энергии в пространство. Именно поэтому сопротивление  проводника в постоянных цепях называют омическим, а в переменного тока называют активным сопротивлением.

Реактивная мощность (Q)

Измеряется в вар (вольт ампер реактивный)

Реактивная мощность является мерой потребления (или выработки реактивного тока). То есть это мощность которая сначала накапливается во внешней электрической цепи (в индуктивности и ёмкости), а потом отдаваемая обратно в сеть на протяжения 1/4 периода.

Реактивная мощность может быть как положительной так и отрицательной.

Появление реактивной мощности связанно с наличием в цепях индуктивной и ёмкостной нагрузки.

Q = I*U*sin φ 

Реактивная мощность в отличии от активной не расходуется на прямые нужды (преобразование электрической энергии в другие виды энергии). Она как бы не несёт полезной нагрузки, но без неё невозможно осуществление полезной работы. В  настоящий момент прилагается много усилий на уменьшение затрачиваемой реактивной мощности, так как это приводит к уменьшению потребления активной мощности.

Полная мощность (S)

Измеряется в вольт-амперах (BA)

Полная мощность (S) — это произведение действующего напряжения и тока на зажимах цепи. То есть полная мощность это вся мощность затраченная в электрической цепи. Полная мощность складывается из геометрической суммы активной и реактивной мощности.

S = I*U

формула

Понравилась статья? Поделить с друзьями:
  • Как найти масло черного тмина
  • Как найти процентную разницу между двумя числами
  • Как найти хай хэт в фл студио
  • Как найти радиус круга цилиндра
  • Как найти количество оценок в экселе