На этой странице вы узнаете
- В чем прелесть фазовых переходов?
- Что лучше выбрать: Mercedes или BMW?
Люди научились летать в космос, покорять недра Земли и погружаться в глубины океана. Эти и другие достижения возможны благодаря способности извлекать максимум пользы из имеющихся ресурсов,а именно получать тепловую энергию различными доступными способами. Сегодня мы разберем задачи, которые заставят тепловые процессы играть на нашей стороне.
Тепловые машины и их КПД
Рекомендация: перед тем как приступить к выполнению задач неплохо было бы повторить тему «Уравнение состояния идеального газа» . Но ключевую теорию, на которой основано решение задач, сейчас разберем вместе.
Вспомним, что фазовые переходы — это переход из одного агрегатного состояния в другое. При этом может выделяться большое количество теплоты.
Именно благодаря этому они и стали такими полезными для нас. Например, в ядерных реакторах воду используют в качестве рабочего тела, то есть она нагревается вследствие энергии, полученной из ядерных реакций, доходит до температуры кипения, а затем под большим давлением уже в качестве водяного пара воздействует на ротор генератора, который вращается и дает нам электроэнергию! На этом основан принцип работы атомных электростанций.
А самый простой пример фазового перехода — образование льда на лужах в морозные ноябрьские дни. Правда о выделении тепла здесь речи не идет.
Мы не почувствуем, как испарится капелька у нас на руке, потому что это не требует много тепла от нашего тела. Но мы можем наблюдать, как горят дрова в мангале, когда мы жарим шашлык, потому что выделяется огромное количество теплоты. А зачем мы вообще рассматриваем эти фазовые переходы? Все дело в том, что именно фазовые переходы являются ключевым звеном во всех процессах, где нас просят посчитать КПД, от них нашему рабочему телу и подводится теплота нагревателя.
Человечество придумало такие устройства, которые могут переработать тепловую энергию в механическую.
Тепловые двигатели, или тепловые машины, — устройства, способные преобразовывать внутреннюю энергию в механическую.
Их устройство довольно просто: они на входе получают какую-то энергию (в основном — энергию сгорания топлива), а затем часть этой теплоты расходуется на совершение работы механизмом. Например, в автомобилях часть энергии от сгоревшего бензина идет на движение. Схематично можно изобразить так:
Рабочее тело — то, что совершает работу — принимает от нагревателя количество теплоты Q1, из которой A уходит на работу механизма. Остаток теплоты Q2 рабочее тело отдает холодильнику, по сути — это потеря энергии.
Физика не была бы такой загадочной, если б все в ней было идеально. Как и в любом процессе или преобразовании, здесь возможны потери, зачастую очень большие. Поэтому «индикатором качества» машины является КПД, с которым мы уже сталкивались в механике:
Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.
(eta) — КПД,
A — работа газа (Дж),
Q1 — количество теплоты, полученное от нагревателя (Дж).
Мы должны понимать, что КПД на практике никогда не получится больше 1, поскольку всегда будут тепловые потери.
Полезную работу можно расписать как Q1 — Q2 (по закону сохранения энергии). Тогда формула примет вид:
(eta = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1})
Давайте попрактикуемся в применении данной формулы на задаче номер 9 из ЕГЭ.
Задача. Тепловая машина, КПД которой равен 60%, за цикл отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях).
Решение:
Давайте сначала вспомним нашу формулу для КПД:
(eta = frac{Q_1 — Q_2}{Q_1}),
где (Q_1) — это теплота, которую тело получает от нагревателя, (Q_2) — теплота, которая подводится к холодильнику.
Тогда отсюда можно вывести искомую теплоту нагревателя:
(eta Q_1 =Q_1-Q_2)
(eta Q_1 — Q_1= -Q_2)
(Q_1=frac{- Q_2}{eta-1}=frac{-100}{0,6-1}=250 Дж).
Ответ: 250 Дж
Цикл Карно
Мы знаем, что потери — это плохо, поэтому должны предотвращать их. Как это сделать? Нам ничего делать не нужно, за нас уже все сделал Сади Карно, французский физик, разработавший цикл, в котором машины достигают наивысшего КПД. Этот цикл носит его имя и состоит из двух изотерм и двух адиабат. Рассмотрим, как этот цикл выглядит в координатах p(V).
- Температура верхней изотермы 1-2 — температура нагревателя (так как теплота в данном процессе подводится).
- Температура нижней изотермы 3-4 — температура холодильника (так как теплота в данном процессе отводится).
- 2-3 и 4-1 — это адиабатические расширение и сжатие соответственно, в них газ не обменивается теплом с окружающей средой.
Цикл Карно — цикл идеальной тепловой машины, которая достигает наивысшего КПД.
Формула, по которой можно рассчитать ее КПД выражается через температуры:
T1 — температура нагревателя,
T2 — температура холодильника.
Не то круто, что красиво, а то, что по Карно работает! Поэтому присматривайте такой автомобиль, у которого высокий КПД.
Интересно, что максимальный уровень КПД двигателя внутреннего сгорания автомобилей на данный момент всего около 43%. По официальным заявлениям компания Nissan Motor с 2021 года испытывает прообраз двигателя нового поколения с планируемым КПД 50%.
Приступим к задачам
Задачи на данную тему достаточно часто встречаются в задании 27 из КИМа ЕГЭ. Давайте разберем некоторые примеры.
Задание 1. Одноатомный газ совершает циклический процесс, как показано на рисунке. На участке 1–2 газ совершает работу A12 = 1520 Дж. Участок 3–1 представляет собой адиабатный процесс. Количество теплоты, отданное газом за цикл холодильнику, равно |Qхол| = 4780 Дж. Найдите работу газа |A13| на адиабате, если количество вещества постоянно.
Решение:
Шаг 1. Первое, с чего лучше начинать задачи по термодинамике — исследование процессов.
Посмотрим на участок 1-2 графика: продолжение прямой проходит через начало координат, поэтому график функционально можно записать, как p = aV, где a — какое-то число, константа. Графиком является не изотерма, поскольку график изотермы в координатах p-V — гипербола. Из уравнения Менделеева-Клапейрона следует: (frac{pV}{T} = const). Отсюда можно сделать вывод, что возрастает температура, так как растут давление и объем. Температура и объем растут, значит, увеличивается и внутренняя энергия и объем соответственно.
Участок 2-3: процесс изохорный, поскольку объем постоянен, следовательно, работа газом не совершается. Рассмотрим закон Шарля: (frac{p}{T} = const). Давление в этом процессе растет, тогда растет и температура, поскольку дробь не должна менять свое значение. Делаем вывод, что внутренняя энергия тоже увеличивается.
Участок 3-1: адиабата по условию, то есть количество теплоты в этом переходе равна нулю из определения адиабатного процесса. Работа газа отрицательна, так как газ уменьшает объем.
Оформим все данные в таблицу.
Определим знаки Q, используя первый закон термодинамики: Q = ΔU + A.
Из этих данных сразу видно, что количество теплоты, отданное холодильнику — это количество теплоты в процессе 2-3.
Шаг 2. Первый закон термодинамики для процесса 1-2 запишется в виде:
Q12 = ΔU12 + A12.
Работа A12 — площадь фигуры под графиком процесса, то есть площадь трапеции:
(A_{12} = frac{p_0 + 2p_0}{2} * V0 =frac{3p_0V_0}{2}).
Запишем изменение внутренней энергии для этого процесса через давление и объем. Мы выводили эту формулу в статье «Первое начало термодинамики»:
(Delta U_{12} = frac{3}{2}(2p_0 * 2V_0 — p_0V_0) = frac{9p_0V_0}{2}).
Заметим, что это в 3 раза больше работы газа на этом участке:
(Delta U_{12} = 3A_{12} rightarrow Q_{12} = 4A_{12}).
Шаг 3. Работа цикла — площадь фигуры, которую замыкает график, тогда . A = A12 — |A31|. С другой стороны, работа цикла вычисляется как разность между энергиями нагревателя и холодильника: A = Q12 — |Q31|.
Сравним эти формулы:
Q12 -|Q31| = A12 — |A31|,
подставим выражения из предыдущего пункта:
4A12 — |Q31| = A12 — |A31| (rightarrow) |A31| = -3A12 + |Q31| = -31520 + 4780 = 220 Дж.
Ответ: 220 Дж
Задание 2. Найти КПД цикла для идеального одноатомного газа.
Решение:
Шаг 1. КПД цикла определим по формуле: (eta = frac{A}{Q}), где Q — количество теплоты от нагревателя, а А — работа газа за цикл. Найдем А как площадь замкнутой фигуры: A = (2p1 — p1)(3V1 — V1) = 2p1V1.
Шаг 2. Найдем процесс, который соответствует получению тепла от нагревателя. Воспользуемся теми же приемами, что и в прошлой задаче:
Посмотрим на участок 1-2 графика: давление растет, объем не меняется. По закону Шарля (frac{p}{T} = const) температура тоже растет. Работа газа равна 0 при изохорном процессе, а изменение внутренней энергии положительное.
2-3: давление не меняется, растет объем, а значит, работа газа положительна. По закону Гей-Люссака (frac{V}{T} = const) температура тоже растет, растет и внутренняя энергия.
3-4: давление уменьшается, следовательно, и температура уменьшается. При этом процесс изохорный и работа газа равна 0.
4-1: давление не меняется, объем и температура уменьшаются — работа газа отрицательна и внутренняя энергия уменьшается.
Оформим данные в таблицу:
Отметим, что необходимое Q = Q12 + Q23.
Шаг 3. Запишем первый закон термодинамики для процессов 1-2 и 2-3:
(Q_{12} = U_{12} + A_{12} = Delta U_{12} = frac{3}{2}(2p_1V_1 -p_1V_1) = frac{3}{2}p_1V_1).
(Q_{23} = Delta U_{23} + A_{23}), работу газа найдем как площадь под графиком: A23 = 2p1(3V1 — V1) = 4p1V1.
(Delta U_{12} = frac{3}{2}(2p_1 * 3V_1 — 2p_1V_1) = 6p_1V_1).
(Q_{23} = Delta U_{23} + A_{23} = 10p_1V_1).
Шаг 4. Мы готовы считать КПД: (eta = frac{A}{Q} = frac{A}{Q_{12} + Q_{23}} = frac{2p_1V_1}{frac{3}{2}p_1V_1 + 10p_1V_1} = frac{4}{23} approx 0,17).
Ответ: 17%
Теперь вас не должно настораживать наличие графиков в условиях задач на расчет КПД тепловых машин. Продолжить обучение решению задач экзамена вы можете в статьях «Применение законов Ньютона» и «Движение точки по окружности».
Фактчек
- Тепловые двигатели — устройства, способные преобразовывать внутреннюю энергию в механическую.
- Тепловая машина принимает тепло от нагревателя, отдает холодильнику, а рабочим телом совершает работу.
- Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.
(eta = frac{A}{Q_1} = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1}) - Цикл Карно — цикл с максимально возможным КПД: (eta = frac{T_1 — T_2}{T_1} = 1 — frac{T_2}{T_1})
- Не забываем, что работа считается, как площадь фигуры под графиком.
Проверь себя
Задание 1.
1 моль идеального газа переходит из состояния 1 в состояние 2, а потом — в состояние 3 так, как это показано графике. Начальная температура газа равна T0 = 350 К. Определите работу газа при переходе из состояния 2 в состояние 3, если k = 3, а n = 2.
- 5672 Дж
- 4731 Дж
- 5817 Дж
- 6393 Дж
Задание 2.
1 моль идеального одноатомного газа совершает цикл, который изображен на pV-диаграмме и состоит из двух адиабат, изохоры, изобары. Модуль отношения изменения температуры газа при изобарном процессе ΔT12 к изменению его температуры ΔT34 при изохорном процессе равен 1,5. Определите КПД цикла.
- 0,6
- 0,5
- 0,8
- 1
Задание 3.
В топке паровой машины сгорело 50 кг каменного угля, удельная теплота сгорания которого равна 30 МДж/кг. При этом машиной была совершена полезная механическая работа 135 МДж. Чему равен КПД этой тепловой машины? Ответ дайте в процентах.
- 6%
- 100%
- 22%
- 9%
Задание 4.
С двумя молями одноатомного идеального газа совершают циклический процесс 1–2–3–1 (см. рис.). Чему равна работа, совершаемая газом на участке 1–2 в этом циклическом процессе?
- 4444 Дж
- 2891 Дж
- 4986 Дж
- 9355 Дж
Ответы:1 — 3; 2 — 1; 3 — 4; 4 — 3.
Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника.
Для характеристики работоспособности двигателей введено понятие коэффициента полезного действия (КПД). Впервые ввёл в науку и технику понятие КПД двигателя французский инженер Сади Карно.
Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.
КПД теплового двигателя определяют по формуле:
или
КПД=Q1−Q2Q1⋅100%
.
— полезная работа, совершенная тепловым двигателем;
— количество теплоты, полученное рабочим телом от нагревателя;
— количество теплоты, отданное рабочим телом холодильнику (т.е. окружающей среде);
— количество теплоты, которое пошло на совершение тепловым двигателем полезной работы.
Обрати внимание!
Коэффициент полезного действия не имеет единицы измерения, но может выражается в процентах, или записывается в виде десятичной дроби.
В этом случае он будет меньше единицы, т.е. менее (100)%.
Например, КПД двигателей внутреннего сгорания не превышает (20 )— (40)%, а КПД паровых турбин чуть выше (30)%.
Формула КПД и как его вычислить для тепловой машины или механизма
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Эта аббревиатура вряд ли требует расшифровки: она неизвестна разве что тем, у кого в школе был «неуд» по физике.
Но для забывчивых всё же напомним, что под этим сокращением скрывается коэффициент полезного действия. Что же собой представляет эта величина?
Поговорим о ней простым и понятным языком – это может пригодиться даже в повседневной жизни.
Что такое КПД в физике и какова его формула
Для выполнения какой-либо работы необходимо затратить определённое количество энергии. Чтобы ехал велосипед, вы тратите мышечную энергию крутя педали. Чтобы двигался автомобиль, используется энергия сжигаемого топлива (бензина, солярки или газа).
Для горения лампочки требуется энергия электрического тока. Список можно продолжать до бесконечности. Точку можно поставить на солнечной энергии, благодаря которой существует жизнь на Земле.
Далее возникает логичный вопрос: а насколько эффективно расходуется эта энергия? В идеале хотелось бы, чтобы вся она шла «в дело», то есть использовалась только по прямому назначению. Но, к сожалению, на практике такого не бывает.
Затраченная энергия будет всегда больше, чем полезная работа, так как для достижения основной цели (движение, подъём груза, освещение, отопление и т.д.) часть энергии неизбежно уйдёт на неустранимые потери (преодоление силы трения, нагрев электропроводки, выброс продуктов горения в атмосферу и т.д.). Понятно, что чем меньше такие потери, тем лучше.
Критерием того, насколько эффективно работает система (устройство, агрегат, двигатель, машина и т.д.), служит показатель, получивший название коэффициент полезного действия (КПД).
Иными словами, коэффициент полезного действия показывает, какова доля полезной работы в общих энергозатратах. Математически КПД (чаще всего обозначается символом ŋ) определяется по формуле:
где A — полезная энергия (работа);
Q — энергия, затраченная на совершение полезной работы.
Понятно, что ŋ – величина безразмерная и не может быть больше единицы (да и равной единице она может быть чисто теоретически).
Выражается она в виде десятичной дроби либо в процентах (в последнем случае в формулу вставляется множитель х100).
Так, если КПД равен 0,9 (90%), то это значит, что 10% полезной мощности составили безвозвратные потери.
КПД теплового двигателя (машины)
Под тепловым двигателем понимается машина (агрегат), в которой энергия, высвобождающаяся в процессе расширения рабочего тела, преобразуется в механическую работу.
В качестве рабочего тела обычно выступает газ или газообразные вещества (пары бензина, водяной пар и т.п.).
Тепловые машины работают по замкнутому циклу. Это значит, что процесс преобразования энергии и сопутствующей теплопередачи периодически повторяется, а рабочее тело совершает круговой цикл, возвращаясь в исходное состояние.
К тепловым двигателям относятся:
- поршневые (паровые машины, двигатели внутреннего сгорания);
- роторные/турбинные (газовые или паровые турбины АЭС и ТЭЦ);
- реактивные (авиация);
- ракетные (космическая техника).
Используя положения предыдущего параграфа, КПД тепловой машины можно сформулировать как отношение полезной работы, совершённой за один цикл, к энергии (количеству теплоты), поступившей от энергоносителя (нагревателя).
Тогда формулу (1) можно преобразовать следующим образом:
где Q1 — количество теплоты, полученное двигателем от нагревателя за цикл;
Q2 — количество теплоты, отданное двигателем охладителю (холодильнику) за цикл;
Q1 – Q2 – количество теплоты, которое пошло на совершение работы.
Предположим, что Q1 = Q2, то есть на совершение полезной работы ничего не осталось – вся энергия «ушла в трубу». Тогда и КПД будет нулевым. Если же Q2 = 0, то есть вся энергия отдана полезной работе (потери отсутствуют), то коэффициент полезного действия будет равен 1.
Но это теория, на практике ни то ни другое нереалистично. В первом случае двигатель просто бесполезен, во втором – идеален, но недосягаем.
Значения КПД для различных типов тепловых двигателей приведены ниже.
Самым большим КПД обладают тепловые двигатели, работающие на основе цикла Карно (процесс назван в честь французского инженера, открывшего это явление в 1824 г.). В термодинамике оно характеризует круговой цикл, включающий в себя две стадии: расширение и сжатие рабочего тела.
Причём на протяжении обеих стадий попеременно проходят два процесса: изотермический (протекающий при постоянной температуре), и адиабатический (протекающий без теплообмена с окружающей средой). Максимальное значение КПД здесь достигается за счёт того, что тела с разной температурой не контактируют, а значит, без осуществления работы теплопередача исключается.
КПД механизма — по какой формуле вычисляют
Человек придумал разнообразные механизмы, с помощью которых можно поднимать тяжёлые грузы на определённую высоту. Так, для подъёма ведра с водой из колодца изобрели ворот, для подъёма автомобиля – домкрат. При помощи лебёдки и наклонной плоскости египтяне построили свои грандиозные пирамиды.
Пользуясь этими приспособлениями, человек редко вспоминает об их КПД. В качестве примера рассмотрим этот показатель для наклонной плоскости.
Принцип расчёта КПД остаётся неизменным: нужно найти отношение полезной работы ко всей затраченной энергии. То есть опять-таки используем общую формулу (1), сделав соответствующие преобразования.
Предположим, тело массой m нужно поднять (точнее затолкать или затянуть) на высоту h. При постоянной скорости подъёма полезная работа будет равна произведению силы тяжести (mg) на высоту (h).
Затраченная работа определяется произволением силы толчка или тяги F на длину наклонной плоскости L. Заметим, что толчковое (тяговое) усилие идёт на преодоление силы трения Fтр.
Таким образом, КПД такого простейшего механизма можно посчитать по формуле:
Несложный анализ показывает, что коэффициент полезного действия наклонной плоскости обратно пропорционален силе трения и длине аппарели. Последняя, в свою очередь, зависит от угла наклона: чем он больше, тем короче аппарель.
Как можно увеличить КПД
Современная наука постоянно ищет пути повышения коэффициента полезной модности двигателей и отдельных механизмов, внедряя новые технические решения и технологические инновации.
Чем выше будет КПД, тем экономичней будет двигатель, тем больше энергоресурсов удастся сберечь.
Тепловой двигатель
Из формулы (2) следует, что для увеличения КПД есть два пути: а) повышение температуры нагревателя; б) понижение температуры холодильника. Оба пути малоперспективны.
Нагреватель нельзя разогревать до бесконечности, так как любой материал имеет предел жаропрочности. Холодильником почти всегда служит окружающая среда, а внедрение в систему дополнительного теплообменника (например, баллона с жидким азотом) нецелесообразно: это резко увеличит вес, габариты и стоимость двигателя.
Установлено, что на коэффициент полезного действия не влияют характеристики рабочего тела. Что же остаётся?
А остаётся немало практически реализуемых способов, таких как уменьшение трения в механических узлах, минимизация теплопотерь путём достижения максимально полного сгорания топлива, создание обтекаемых форм для снижения лобового сопоставления (воздуха или воды) и т.д.
Учитывая, что в механике хорошим показателем на сегодняшний день считается КПД 30-40%, учёным и практикам есть над чем работать.
Наклонная плоскость
Из формулы (3) следует, что для повышения КПД нужно снижать силу трения (прежде всего, путём создания гладких соприкасающихся поверхностей) и увеличивать угол наклона. Но! При крутом уклоне силёнок для поднятия тяжёлого груза может и не хватить.
В заключение отметим, что в электротехнике ситуация с КПД обстоит гораздо лучше (показатель в 95% для электродвигателя – норма). На то есть объективные причины, объяснение которых выходит за рамки рассматриваемой темы.
Сергей Сергеевич Соев
Эксперт по предмету «Физика»
Задать вопрос автору статьи
Исторически появление термодинамики как науки было связано с практической задачей создания эффективного теплового двигателя (тепловой машины).
Тепловая машина
Тепловым двигателем называют устройство, которое совершает работу за счет поступающей к двигателю теплоты. Данная машина является периодической.
Тепловая машина включает в себя следующие обязательные элементы:
- рабочее тело (обычно газ или пар);
- нагреватель;
- холодильник.
Рисунок 1. Цикл работы тепловой машины. Автор24 — интернет-биржа студенческих работ
На рис.1 изобразим цикл, по которому может работать тепловая машина. В этом цикле:
- газ расширяется от объема $V_1$ до объема $V_2$;
- газ сжимается от объема $V_2$ до объема $V_1$.
Для того чтобы получить работу, которую выполняет газ, большей чем ноль, давление (следовательно, температура) в процессе расширения должно быть больше, чем в процессе сжатия. С этой целью газ в процессе расширения теплоту получает, а при сжатии у рабочего тела тепло отбирают. Отсюда сделает вывод о том, что кроме рабочего тела в тепловом двигателе должны присутствовать еще два внешних тела:
- нагреватель, отдающий рабочему телу теплоту;
- холодильник, тело, которое забирает от рабочего тела тепло в ходе сжатия.
После выполнения цикла рабочее тело и все механизмы машины возвращаются в прежнее состояние. Это означает, что изменение внутренней энергии рабочего тела — ноль.
На рис.1 указано, что в процессе расширения рабочее тело получает количество теплоты, равное $Q_1$. В процессе сжатия рабочее тело отдает холодильнику количество теплоты, равное $Q_2$. Следовательно, за один цикл количество теплоты, полученное рабочим телом равно:
«КПД теплового двигателя с формулой» 👇
$Delta Q=Q_1-Q_2 (1).$
Из первого начала термодинамики, учитывая то, что в замкнутом цикле $Delta U=0$, работа, совершаемая рабочим телом равна:
$A=Q_1-Q_2 (2).$
Для организации повторных циклов тепловой машины необходимо, чтобы она часть своей теплоты отдавала холодильнику. Данное требование находится в согласии со вторым началом термодинамики:
Невозможно создать вечный двигатель, который периодически трансформировал полностью теплоту, получаемую от некоего источника полностью в работу.
Так, даже у идеального теплового двигателя количество теплоты, передаваемое холодильнику, не может равняться нулю, существует нижний предел величины $Q_2$.
КПД тепловой машины
Понятно, что насколько эффективно работает тепловая машина, следует оценивать, учитывая полноту превращения теплоты, полученной от нагревателя в работу рабочего тела.
Параметром, который показывает эффективность теплового двигателя, является коэффициент полезного действия (КПД).
Определение 1
КПД теплового двигателя называют отношение работы, выполняемой рабочим телом ($A$) к количеству теплоты, которое это тело получает от нагревателя ($Q_1$):
$eta=frac{A}{Q_1}(3).$
Принимая во внимание выражение (2) КПД тепловой машины найдем как:
$eta=frac{Q_1-Q_2}{Q_1}(4).$
Соотношение (4) показывает, что КПД не может быть больше единицы.
КПД холодильной машины
Обратим цикл, который отображен на рис. 1.
Замечание 1
Обратить цикл – это значит, изменить направление обхода контура.
В результате обращения цикла получим цикл холодильной машины. Эта машина получает от тела с низкой температурой теплоту $Q_2$ и передает ее нагревателю, имеющему более высокую температуру количество теплоты $Q_1$, причем $Q_1>Q_2$. Над рабочим телом совершается работа $A’$ за цикл.
Эффективность нашего холодильника определяется коэффициентом, который вычисляют как:
$tau =frac{Q_2}{A’}=frac{Q_2}{Q_1-Q_2}left (5right).$
КПД обратимой и необратимой тепловой машины
КПД необратимого теплового двигателя всегда меньше, чем КПД обратимой машины, при работе машин с одинаковыми нагревателем и холодильником.
Рассмотрим тепловую машину, состоящую из:
- цилиндрического сосуда, который закрыт поршнем;
- газа под поршнем;
- нагревателя;
- холодильника.
В ней:
- Газ получает некоторое количество теплоты $Q_1$ от нагревателя.
- Газ расширяется и толкает поршень, выполняет работу $A_+0$.
- Газ сжимают, холодильнику передается теплота $Q_2$.
- Работа совершается над рабочим телом $A_-
Работа, которую выполнят рабочее тело за цикл, равна:
$A=A_+-A_-(6).$
Для выполнения условия обратимости процессов их надо проводить очень медленно. Кроме этого необходимо, чтобы отсутствовало трение поршня о стенки сосуда.
Обозначим работу, совершаемую за один цикл обратимым тепловым двигателем как $A_{+0}$.
Выполним тот же цикл с большой скоростью и при наличии трения. Если провести расширение газа быстро, давление его около поршня будет меньше, чем если газ расширяют медленно, поскольку возникающее под поршнем разрежение распространяется на весь объем с конечной скоростью. В этой связи, работа газа в необратимом увеличении объема меньше, чем в
обратимом:
$A_{+n}$
Если выполнить сжатие газа быстро давление около поршня больше, чем при медленном сжатии. Значит, величина отрицательной работы рабочего тела в необратимом сжатии больше, чем в обратимом:
$A_{-n}A_{+o}$.
Получим, что работа газа в цикле $A$ необратимой машины, вычисляемая по формуле (5), выполняемая за счет теплоты, полученной от нагревателя будет меньше, чем работа, выполненная в цикле обратимым тепловым двигателем:
$A_n$
Трение, имеющееся в необратимом тепловом двигателе, ведет к переходу части работы выполненной газом в теплоту, что уменьшает КПД двигателя.
Так, можно сделать вывод о том, что коэффициент полезного действия теплового двигателя обратимой машины больше, чем необратимой.
Замечание 2
Тело, с которым обменивается теплом рабочее тело, станем называть тепловым резервуаром.
Обратимая тепловая машина совершает цикл, в котором имеются участки, где рабочее тело совершает обмен теплотой с нагревателем и холодильником. Процесс обмена теплом является обратимым, только если при получении теплоты и возвращении ее при обратном ходе, рабочее тело обладает одной и той же температурой, равной температуре теплового резервуара. Если говорить более точно, то температура тела, которое получает теплоту, должная быть на очень малую величину менее температуры резервуара.
Таким процессом может быть изотермический процесс, который происходит при температуре резервуара.
Для функционирования теплового двигателя у него должно быть два тепловых резервуара (нагреватель и холодильник).
Обратимый цикл, который выполняется в тепловом двигателе рабочим телом, должен быть составлен из двух изотерм (при температурах тепловых резервуаров) и двух адиабат.
Адиабатические процессы происходят без обмена теплом. В адиабатных процессах происходит расширение и сжатие газа (рабочего тела).
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Описанные нами циклические процессы чаще всего происходят в, так называемых, тепловых машинах. Тепловой двигатель (тепловая машина) – устройство, которое превращает внутреннюю энергию топлива в механическую энергию. Логика всех тепловых машин, в теории, одинакова (рис. 1).
Рис. 1. Тепловая машина
Классически, тепловая машина состоит нагревательного элемента, рабочего тела и холодильной установки. Каждый из этих элементов может инженерно выглядит как угодно, рабочее тело чаще всего газ. Нагреватель отдаёт рабочему телу теплоту , при этом рабочее тело (газ) расширяется и совершает работу (), часть энергии уходит к холодильнику (на самом деле, холодильником может служить окружающая среда и — это банальные теплопотери).
Тогда, исходя из закона сохранения энергии:
(1)
- где
Для характеристики тепловой машины вводят понятие КПД тепловой машины (коэффициент полезного действия). КПД, как физический параметр, везде одинаков: отношение полезной работы к затраченной. В нашей системе полезной является работа газа (), затраченной, в нашем случае, является энергия, принятая от нагревателя (), тогда:
(2)
- где
- — КПД.
Важно: необходимо помнить, что — абсолютное значение теплоты, т.е. следим, чтобы значение этой теплоты было положительным.
Вывод: задачи на КПД тепловой машины относятся к любой из формулировок соотношения (2). Поиск , или чаще всего идёт через первое начало термодинамики и уравнение Менделеева-Клапейрона.