Как найти количество аминокислот в гене

Темы «Молекулярная биология» и «Генетика» – наиболее интересные и сложные темы в курсе «Общая биология». Эти темы изучаются и в 9-х, и в 11­х классах, но времени на отработку умения решать задачи в программе явно недостаточно. Однако умение решать задачи по генетике и молекулярной биологии предусмотрено Стандартом биологического образования, а также  такие задачи входят в состав КИМ ЕГЭ.

Для  решения задач по молекулярной биологии  необходимо владеть следующими биологическими понятиями: виды нуклеиновых  кислот,строение ДНК,  репликация ДНК , функции ДНК, строение  и функции РНК, генетический код, свойства генетического кода,мутация.

Типовые задачи знакомят с основными приемами рассуждений в генетике, а «сюжетные»– полнее раскрывают и иллюстрируют особенности этой науки, делая ее интересной и привлекательной для учащихся. Подобранные задачи характеризуют генетику как точную науку, использующую математические методы анализа. Решение задач в биологии требует умения анализировать фактический материал, логически думать и рассуждать , а также определенной изобретательности при решении особенно трудных  и запутанных задач.

Для закрепления теоретического материала по способам и приемам  решения задач предлагаются задачи для самостоятельного решения, а также вопросы для самоконтроля.

Примеры решения задач

Необходимые пояснения:

  • Один шаг это полный виток спирали ДНК–поворот на 360o
  • Один шаг составляют 10 пар нуклеотидов
  • Длина одного шага – 3,4 нм
  • Расстояние между двумя нуклеотидами – 0,34 нм
  • Молекулярная масса одного нуклеотида – 345 г/моль
  • Молекулярная масса одной аминокислоты – 120 г/мол
  • В молекуле ДНК: А+Г=Т+Ц (Правило Чаргаффа: ∑(А) = ∑(Т), ∑(Г) = ∑(Ц), ∑(А+Г) =∑(Т+Ц)
  • Комплементарность нуклеотидов: А=Т; Г=Ц
  • Цепи ДНК удерживаются водородными связями, которые образуются между комплементарными азотистыми основаниями: аденин с тимином соединяются 2 водородными связями, а гуанин с цитозином тремя.
  • В среднем один белок содержит 400 аминокислот;
  • вычисление молекулярной массы белка:


где Мmin – минимальная молекулярная масса белка,
а – атомная или молекулярная масса компонента,
в – процентное содержание компонента.

Задача № 1.Одна из цепочек  ДНК имеет последовательность нуклеотидов : АГТ  АЦЦ  ГАТ  АЦТ  ЦГА  ТТТ  АЦГ  … Какую последовательность нуклеотидов имеет вторая цепочка ДНК той же молекулы. Для наглядности  можно использовать  магнитную «азбуку» ДНК (прием автора статьи) .
Решение: по принципу комплементарности достраиваем вторую цепочку (А-Т,Г-Ц) .Она выглядит следующим образом: ТЦА  ТГГ  ЦТА   ТГА  ГЦТ  ААА  ТГЦ.

Задача № 2. Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так: ААА  ЦАЦ  ЦТГ  ЦТТ  ГТА  ГАЦ. Напишите последовательности аминокислот, которой начинается цепь инсулина.
Решение: Задание выполняется с помощью таблицы генетического кода, в которой нуклеотиды в иРНК (в скобках – в исходной ДНК) соответствуют аминокислотным остаткам.

Задача № 3. Большая из двух цепей белка инсулина имеет (так называемая цепь В) начинается со следующих аминокислот : фенилаланин-валин-аспарагин-глутаминовая кислота-гистидин-лейцин. Напишите последовательность нуклеотидов в начале участка молекулы ДНК,  хранящего информацию об этом белке.

Решение (для удобства используем табличную форму записи решения): т.к. одну аминокислоту могут кодировать несколько триплетов, точную структуру и-РНК  и участка  ДНКопределить невозможно, структура может варьировать. Используя принцип комплементарности  и таблицу генетического кода получаем один из вариантов:

Цепь белка

Фен

Вал

Асн

Глу

Гис

Лей

и-РНК

УУУ

ГУУ

ААУ

ГАА

ЦАЦ

УУА

ДНК

1-я цепь

ААА

ЦАА

ТТА

ЦТТ

ГТГ

ААТ

2-я цепь

ТТТ

ГТТ

ААТ

ГАА

ЦАЦ

ТТА

Задача № 4. Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ  ЦГЦ  ТЦА  ААА  ТЦГ  …  Укажите строение соответствующего участка белка, информация о котором содержится в данном гене. Как отразится на строении  белка удаление из гена четвертого нуклеотида?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем:

Цепь ДНК

ЦГГ

ЦГЦ

ТЦА

ААА

ТЦГ

и -РНК

ГЦЦ

ГЦГ

АГУ

УУУ

АГЦ

Аминокислоты цепи белка

Ала-Ала-Сер-Фен-Сер

При удалении из гена четвертого нуклеотида – Ц произойдут заметные изменения – уменьшится количество и состав аминокислот в  белке:

Цепь ДНК

ЦГГ

ГЦТ

ЦАА

ААТ

ЦГ

и -РНК

ГЦЦ

ЦГА

ГУУ

УУА

ГЦ

Аминокислоты цепи белка

Ала-Арг-Вал-Лей-

Задача № 5. Вирусом табачной мозаики (РНК-содержащий вирус) синтезируется участок белка с аминокислотной последовательностью: Ала – Тре – Сер – Глу – Мет-. Под действием азотистой кислоты (мутагенный фактор) цитозин в результате дезаминирова ния превращается в урацил. Какое строение будет иметь участок белка вируса табачной мозаики,  если все цитидиловые нуклеотиды  подвергнутся указанному химическому превращению?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем  :

Аминокислоты цепи белка (исходная)

Ала – Тре – Сер – Глу – Мет-

и -РНК (исходная)

ГЦУ

АЦГ

АГУ

ГАГ

АУГ

и -РНК (дезаминированная)

ГУУ

АУГ

АГУ

ГАГ

АУГ

Аминокислоты цепи белка (дезаминированная)

Вал – Мет – Сер – Глу – Мет-

Задача № 6. При  синдроме Фанкоми (нарушение образования костной ткани)  у больного с мочой выделяются аминокислоты , которым соответствуют кодоны в и -РНК : АУА   ГУЦ  АУГ  УЦА  УУГ  ГУУ  АУУ. Определите, выделение каких аминокислот с мочой характерно  для синдрома Фанкоми, если у здорового человека в моче содержатся аминокислоты аланин, серин, глутаминовая кислота, глицин.

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем:

и -РНК

АУА

ГУЦ

АУГ

УЦА

УУГ

ГУУ

АУУ

Аминокислоты цепи белка (больного человека)

Изе-Вал-Мет-Сер-Лей-Вал-Иле

Аминокислоты цепи белка (здорового человека)

Ала-Сер-Глу-Гли

Таким образом, в моче больного человека только одна аминокислота (серин) такая же как, у здорового человека, остальные – новые, а три, характерные для здорового человека, отсутствуют.

Задача № 7. Цепь А инсулина быка в 8-м звене содержит аланин, а лошади – треонин, в 9-м звене соответственно серин и глицин. Что можно сказать о происхождении инсулинов?

Решение (для удобства  сравнения используем табличную форму записи решения): Посмотрим, какими триплетами в и-РНК кодируются упомянутые в условии задачи аминокислоты.

Организм

Бык

Лошадь

8-е звено

Ала

Тре

и- РНК

ГЦУ

АЦУ

9-е звено

Сер

Гли

и- РНК

АГУ

ГГУ

Т.к. аминокислоты кодируются  разными триплетами, взяты триплеты, минимално отличающиеся друг от друга. В данном случае  у лошади и быка в 8-м и 9-м звеньях  изменены аминокислоты в результате замены первых нуклеотидов в триплетах и -РНК : гуанин заменен на аденин ( или наоборот). В двухцепочечной ДНК  это будет равноценно замене пары Ц-Г  на  Т-А (или наоборот).
Следовательно, отличия цепей А инсулина быка и  лошади обусловлены транзициями в участке молекулы ДНК, кодирующей 8-е и 9-е звенья цепи А инсулинов быка и лошади.

Задача № 7 . Исследования показали, что в и- РНК содержится 34% гуанина,18% урацила, 28% цитозина и 20% аденина.Определите процентный состав  азотистых оснваний в участке ДНК, являющейся матрицей для данной и-РНК.
Решение (для удобства   используем табличную форму записи решения): Процентное соотношение азотистых оснований высчитываем исходя из принципа комплементарности:

и-РНК

Г

У

Ц

А

34%

18%

28%

20%

ДНК (смысловая цепь, считываемая)

Г

А

Ц

Т

28%

18%

34%

20%

ДНК (антисмысловая цепь)

Г

А

Ц

Т

34%

20%

28%

18%

Суммарно  А+Т  и Г+Ц в смысловой цепи будут составлять: А+Т=18%+20%=38%  ; Г+Ц=28%+34%=62%. В антисмысловой (некодируемой) цепи суммарные показатели будут такими же , только процент отдельных оснований будет обратный: А+Т=20%+18%=38%  ; Г+Ц=34%+28%=62%. В обеих же цепях в парах комплиментарных оснований будет поровну, т.е аденина и тимина – по 19%, гуанина и цитозина по 31%.

Задача № 8.  На фрагменте одной нити ДНК нуклеотиды расположены в последователь ности:  А–А–Г–Т–Ц–Т–А–Ц–Г–Т–А–Т. Определите процентное содержание всех нукле отидов в этом фрагменте ДНК и длину гена.

Решение:

1) достраиваем вторую нить (по принципу комплементарности)

2) ∑(А +Т+Ц+Г) = 24,из них ∑(А) = 8 = ∑(Т)

24 – 100%

=> х = 33,4%

8 – х%

24 – 100%

=>  х = 16,6%

4 –  х%

∑(Г) = 4 = ∑(Ц) 

  
3) молекула ДНК двуцепочечная, поэтому длина гена равна длине одной цепи:

12 × 0,34 = 4,08 нм

Задача № 9. В молекуле ДНК на долю цитидиловых нуклеотидов приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.

Решение:

1) т.к. Ц = 18%, то и Г = 18%;
2) на долю А+Т приходится 100% – (18% +18%) = 64%, т.е. по 32%

Задача № 10. В молекуле ДНК обнаружено 880 гуанидиловых нуклеотидов, которые составляют 22% от общего числа нуклеотидов в этой ДНК. Определите: а) сколько других нуклеотидов в этой ДНК? б) какова длина этого фрагмента?

Решение:

1) ∑(Г) = ∑(Ц)= 880 (это 22%); На долю других нуклеотидов приходится 100% – (22%+22%)= 56%, т.е. по 28%; Для вычисления количества этих нуклеотидов составляем пропорцию:

22% – 880
28% – х, отсюда х = 1120

2) для определения длины ДНК нужно узнать, сколько всего нуклеотидов содержится в 1 цепи:

(880 + 880 + 1120 + 1120) : 2 = 2000
2000 × 0,34 = 680 (нм)

Задача № 11. Дана молекула ДНК с относительной  молекулярной массой 69 000, из них 8625 приходится на долю адениловых нуклеотидов. Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.

Решение:

1) 69 000 : 345 = 200 (нуклеотидов в ДНК), 8625 : 345 = 25 (адениловых нуклеотидов в этой ДНК),∑(Г+Ц) = 200 – (25+25)= 150, т.е. их по 75;
2) 200 нуклеотидов в двух цепях, значит в одной – 100. 100 × 0,34 = 34 (нм)

Задача № 12. Что тяжелее: белок или его ген?

Решение: Пусть х – количество аминокислот в белке, тогда масса этого белка – 120х, количество нуклеотидов в гене, кодирующем этот белок, – 3х, масса этого гена – 345 × 3х.  120х < 345 × 3х, значит ген тяжелее белка.

Задача № 13. Гемоглобин крови человека содержит 0, 34% железа. Вычислите минимальную молекулярную массу гемоглобина.

Решение: Мmin = 56 : 0,34% · 100% = 16471

Задача №14. Альбумин сыворотки крови человека имеет молекулярную массу 68400. Определите количество аминокислотных остатков в молекуле этого белка.

Решение: 68400 : 120 = 570 (аминокислот в молекуле альбумина)

Задача №15. Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если М глицина = 75,1? Сколько аминокислотных остатков в этом белке?

Решение: Мmin = 75,1 : 0,5% · 100% = 15020 ; 15020 : 120 = 125 (аминокислот в этом белке)

Задачи для самостоятельной работы

  1. Молекула ДНК распалась на две цепочки. одна из них имеет строение : ТАГ  АЦТ  ГГТ  АЦА  ЦГТ  ГГТ  ГАТ  ТЦА … Какое строение будет иметь  вторая молекула ДНК ,когда указанная цепочка достроится до полной двухцепочечной молекулы ?
  2. Полипептидная цепь одного белка животных имеет следующее начало : лизин-глутамин-треонин-аланин-аланин-аланин-лизин-… С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?
  3. Участок молекулы белка имеет следующую последовательность аминокислот: глутамин-фенилаланин-лейцин-тирозин-аргинин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.
  4. Участок молекулы белка имеет следующую последовательность аминокислот: глицин-тирозин-аргинин-аланин-цистеин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.
  5. Одна из цепей рибонуклеазы (фермента поджелудочной железы) состоит из 16 аминокислот: Глу-Гли-асп-Про-Тир-Вал-Про-Вал-Про-Вал-Гис-фен-Фен-Асн-Ала-Сер-Вал. Определите  структуру участка ДНК , кодирующего эту часть рибонуклеазы.
  6. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ГТЦ  ЦТА  АЦЦ  ГГА  ТТТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  7. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТЦГ  ГТЦ  ААЦ  ТТА  ГЦТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  8. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТГГ  АЦА  ГГТ  ТТЦ  ГТА. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  9. Определите порядок следования аминокислот в участке молекулы белка, если известно, что он кодируется такой последовательностью нуклеотидов ДНК: ТГА  ТГЦ   ГТТ  ТАТ  ГЦГ  ЦЦЦ. Как изменится  белок , если химическим путем будут удалены 9-й и 13-й нуклеотиды?
  10. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ  ЦГТ  ТТЦ  ТЦГ  ГТА. Как изменится структура молекулы белка, если произойдет удвоение шестого нуклеотида в цепи ДНК. Объясните результаты.
  11. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ  ТТЦ  ТЦГ  АГА. Как изменится структура молекулы белка, если произойдет удвоение восьмого нуклеотида в цепи ДНК. Объясните результаты.
  12. Под воздействием мутагенных факторов во фрагменте гена: ЦАТ  ТАГ  ГТА  ЦГТ  ТЦГ произошла замена второго триплета на триплет АТА. Объясните, как изменится структура молекулы белка.
  13. Под воздействием мутагенных факторов во фрагменте гена: АГА  ТАГ  ГТА  ЦГТ  ТЦГ произошла замена четвёртого триплета на триплет АЦЦ. Объясните, как изменится структура молекулы белка.
  14. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГЦА  УГУ  АГЦ  ААГ  ЦГЦ. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.
  15. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГАГ  ЦЦА  ААУ  АЦУ  УУА. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.
  16. Ген ДНК включает 450пар нуклеотидов. Какова длина, молекулярная масса гена и сколько аминокислот закодировано в нём?
  17. Сколько нуклеотидов содержит ген ДНК, если в нем закодировано 135 аминокислот. Какова молекулярная масса данного гена и его длина?
  18. Фрагмент одной цепи ДНК имеет следующую структуру: ГГТ АЦГ АТГ ТЦА АГА. Определите первичную структуру белка, закодированного в этой цепи, количество (%) различных видов нуклеотидов в двух цепях фрагмента и его длину.
  19. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 1500 г/моль?
  20. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 42000 г/моль?
  21. В состав белковой молекулы входит 125 аминокислот. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.
  22. В состав белковой молекулы входит 204 аминокислоты. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.
  23. В синтезе белковой молекулы приняли участие 145 молекул   т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.
  24. В синтезе белковой молекулы приняли участие 128 молекул   т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.
  25. Фрагмент цепи и-РНК имеет следующую последовательность: ГГГ  УГГ  УАУ  ЦЦЦ  ААЦ  УГУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.
  26. Фрагмент цепи и-РНК имеет следующую последовательность: ГУУ  ГАА  ЦЦГ  УАУ  ГЦУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.
  27. В молекуле и-РНК содержится 13% адениловых, 27% гуаниловых и 39% урациловых нуклеотидов. Определите соотношение всех видов  нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК.
  28. В молекуле и-РНК содержится 21% цитидиловых, 17% гуаниловых и 40% урациловых нуклеотидов. Определите соотношение всех видов  нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК
  29. Молекула и-РНК содержит 21% гуаниловых нуклеотидов, сколько цитидиловых нуклеотидов содержится в кодирующей цепи участка ДНК?
  30. Если в цепи молекулы ДНК, с которой транскрибирована генетическая информация, содержалось 11% адениловых нуклеотидов, сколько урациловых нуклеотидов будет содержаться в соответствующем ему отрезке и-РНК?

Используемая литература.

  1. Болгова И.В. Сборник задач по общей биологии с решениями для поступающих в вузы–М.: ООО «Издательство Оникс»:»Издательство.»Мир и Образование», 2008г.
  2. Воробьев О.В. Уроки биологии с применением информационных технологий .10 класс. Методическое пособие с электронным приложением–М.:Планета,2012г.
  3. Чередниченко И.П. Биология. Интерактивные дидактические материалы.6-11 класс. Методическое пособие с электронным интерактивным приложением. – М.:Планета,2012г.
  4. Интернет-ссылки:
  5. http://ru.convdocs.org/download/docs-8406/8406.doc
  6. https://bio.1sept.ru/articles/2009/06

Генетическая информация и генетический код

Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.

У белков есть несколько состояний их структур:

Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:

Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.

Нуклеотиды, составляющие ДНК и РНК различаются:

В состав ДНК входят:

А – аденин

Т – тимин

Ц – цитозин

Г – гуанин

В состав РНК входят:

А – аденин

У – урацил

Ц – цитозин

Г – гуанин

Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) – дезоксирибоза. РНК – одноцепочечная, а ДНК – двухцепочечная.

Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.

Свойства генетического кода

  1. Генетические код триплетен, то есть состоит из аминокислот, которые состоят из триплетов, а триплеты – 3 нуклеотида.
  2. Генетический код специфичен, один триплет кодирует одну аминокислоту. Посмотрите на таблицу аминокислот. При пересечении всех трех нуклеотидов у нас нет выбора между аминокислотами, таблица указывает лишь на одну определенную аминокислоту.
  3. Генетический код избыточен, одна аминокислота может быть закодирована более чем одним триплетом нуклеотидов. Здесь важно не запутаться. Опять смотрим на таблицу. Несмотря на то, что пересечение трех нуклеотидов дает 1 аминокислоту, мы видим повторы аминокислот в таблице. Например, аминокислота фенилаланин (сокращенно Фен) кодируется как триплетом УУУ, так и УУЦ. Есть аминокислоты и с большим количеством вариантов.
  4. Неперекрываемость генетического кода. Один и тот же нуклеотид не может входить в состав разных триплетов. Это не значит, что если у нас есть триплет УУУ, то рядом с ним не может быть триплета УЦГ. Это значит, что урацил в этих триплетах – не одна и та же молекула.
  5. Генетический код универсален, то есть, несмотря на все различия между живыми организмами, их генетическая информация кодируется одинаковыми аминокислотами, но в разных последовательностях и вариациях.
  6. Полярность генетического кода. В цепочке аминокислот есть триплеты, которые не несут информацию, а присутствуют для разделения цепи. Так как они не некодирующие, то в таблице у этих сочетаний букв стоит прочерк: УАА, УАГ, УГА.

Транскрипция и трансляция

Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.

Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.

Процесс транскрипции

Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны

тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.

В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.

Процесс трансляции

Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.

По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.

Задание ollbio10101120162017в1

В геном одного из растений ввели генно-инженерную конструкцию, похожую на использованную в предыдущем задании. Но промотор был заменён на другой – APETALA 3, который включается в лепестках и тычинках. В дальнейшем получили чистую линию трансгенных растений (линия №1).

Другие растение трансформировали конструкцией, в которой кодирующая часть гена CRE была поставлена под промотор LEA, активирующийся на поздних стадиях формирования зародыша, а ко ди рующая часть гена Flp – под промотор CAULIFLOWER, который активен в чашелистиках и лепест ках. После этого удалось получить чистую линию №2.

А. Какие органы будут светиться у растений из линии №1? Растений из линии №2?

Б. Каким будет фенотип растений первого поколения гибридов между линиями №1 и №2? Для об основания ответа опишите структуру генно-инженерной конструкции с флуоресцентными белками.

В. Каким будет расщепление по фенотипами и генотипам среди потомков второго поколения, полученных при самоопылении гибридов первого поколения? Считайте, что генно-инженерные конструкции наследуются независимо, а кроссинговер внутри конструкций не происходит


А. Красным светом будут светиться лепестки и тычинки, поскольку промотор APETALA 3 активен именно в этих органах. У линии №2 свечения не будет, поскольку в неё не были введены гены, кодирующе флуоресцентные белки.

Б. Поскольку рекомбиназа CRE подействовала на поздних этапах развития зародыша, то у всех потомков F1 произойдёт рекомбинация по сайтам LoxP. Строение этого участка ДНК будет следующим:

В чашелистиках и лепестках на эту последовательность ДНК подействует флиппаза. Это приведёт к тому, что участок между сайтами FRT «перевернётся»:

Это означает, что после включения промотора APETALA 3 в лепестках и тычинках лепестки будут светиться зелёным светом (результат двух рекомбинаций), а тычинки – синим светом (результат только одной рекомбинации). Остальные части растения не должны светиться.

В. Условно обозначим исходную вставку, несущую гены флуоресцирующих белков, в линии №1 как L1 (см. рисунок 1 в условии задачи), а отсутствие вставки обозначим как l0.
Аналогично обозначим генно-инженерную конструкцию, несущую гены рекомбиназы и флипазы, в линии №2 как R (см. рис. 2), а отсутствие вставки будем обозначать как r0. Тогда генотипы родительских линий:
Р: Линия №1 – L1L1 r0r0 × Линия №2 l0l0 RR

Сразу после скрещивания генотипы зигот:
F1: L1l0 Rr0

Но уже при формировании зародыша «включится» рекомбиназа CRE, что приведёт к изменению структуры ДНК-вставки L1. Обозначим получившийся вариант вставки, которая потенциально могла бы светиться синим светом, как L2 (см. рис. 3 из ответа Б). Ни в пестиках, ни в тычинках гены CRE и Flp не «включаются» (не экспрессируются) , поэтому потомкам F2 могут достаться либо L2, либо l0.

Гаметы: 1/4 L2R 1/4 L2r 1/4 l0R 1/4 l0r
Генотипы зигот сразу после образования

Жёлтой заливкой показаны генотипы, в которых не присутствует вставка с рекомбиназами, поэтому генотипы изменяться не будут. Красными точечными рамками показаны генотипы, в которых нет вставку с флуоресцентными белками. В этом случае рекомбинации также не
будет. У этих 1/4 растений с генотипом l0l0 свечения не будет ни в одном из органов. У 3/16 растений с генотипом L2l0 rr будет свечение и чашелистиков, и лепестков синим светом.

У остальных 9/16 растений с генотипами L2- R- на позних этапах образования зародыша произойдёт рекомбинация по сайтам LoxP. Вставка перейдёт обратно в форму L1, которая будет сохраняться по мере вегетативного развития. При образовании лепестков и чашелистиков
начнёт экспрессироваться ген Flp, что приведёт к рекомбинации по прямым повторам FRT. Участок между ними, содержащий гены DsRed и YFP, будет утрачен, а промотор APETALA 3 как бы «приблизится» к кодирующей части гена GFP. Таким образом, лепестки у этих
растений будут светиться зелёным светом, а тычинки – красным.

Ответ: среди потомков второго поколения 1/4 растений не будут светиться вообще, у 3/16 растений и чашелистики, и лепестки будут светиться синим светом, а у оставшихся 9/16 растений лепестки будут светиться зелёным, тогда как свечение тычинок будет красным

pазбирался: Надежда | обсудить разбор

Задание ollbio09101120162017в1

Для исследования различных процессов в живых организмах используют флуоресцентные белки. При облучении, например, ультрафиолетовым светом такой белок светится в видимой части спектра. Получены зеленый (GFP, green fluorescent protein), синий (BFP, blue fluorescent protein), желтый (YFP, yellow fluorescent protein) и даже красный (DsRed, из коралла Discosoma striata) флуоресцентные белки.
В генно-инженерных конструкциях их ставят под определенные промоторы. В зависимости от этого в живом объекте светятся разные части.
35 CaMV – промотор, который работает во всех клетках растений. Генный инженер создал конcтрукцию, схематическая карта которой приведена ниже. Промотор условно изображён в форме пятиугольника, кодирующие части генов – в форме серых прямоугольников, сайты Lox P и FRT – в виде стрелок, показывающих направление асимметричной части. Для получения белкового продукта необходимо, чтобы кодирующая часть оказалась на той же цепи ДНК, что и промотор, находилась в верной ориентации (и при этом – в сторону 5´- конца нити ДНК относительно промотора). Последовательности Lox P и FRT достаточно короткие и не мешают считыванию и-РНК. Чёрными ромбами обозначены терминаторы транскрипции. Считайте, что в этом месте матричный синтез и-РНК прекращается.
А. Каким цветом должны светиться клетки, в которых содержится данная генно-инженерная конструкция? Почему?

Б. Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия рекомбиназы CRE. (Считайте, что при этом рекомбинация произошла только один раз!) Изменится ли после этого свечение клеток?
В. Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия флиппазы Flp. (Считайте, что при этом рекомбинация произошла только один раз!) Изменится ли после этого свечение клеток?
Г. Предположим, что на исходную последовательнось ДНК в генно-инженерной конструкции сначала подействовали рекомбиназой CRE, а после этого – флиппазой Flp. Нарисуйте схему строения ДНК для этого случая. Каким будет свечение клеток?


В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P.
Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно
друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем

соединит по-новому две нити ДНК (т.е. произойдет рекомбинация).
Аналогично работает и другая система гомологичной рекомбинации – Flp-FRT, обнаруженная у пекарских дрожжей. Сайт FRT – это последовательность ДНК, которую узнает свой фермент гомологичной рекомбинации – флиппаза (Flp).

При рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Заметим, что флиппаза Flp узнает только свою последовательность FRT, но не может работать с сайтами Lox P, а рекомбиназа CRE узнает только свои сайты Lox P, но не работает с сайтами FRT.

 

Предварительное доказательство (лемма) к задаче 9 (5 баллов).
1. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» (инвертированным) повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек.

Затем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами “перевернулась”.

2. Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем
молекулу ДНК и условно обозначим на ней буквами несколько точек.
Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов (точка С) шли точки D, E, F, а потом начинался новый повтор (в точке G). После рекомбинации точки С и G поменяются местами, и в результате получится кольцевая ДНК (C, D, E, F, G) и линейный участок (A, B, H, J). Будем считать, что кольцевая ДНК как бы «исчезает» (не может реплицироваться в клетке).

 

А. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом.
Б. Рекомбиаза CRE узнаёт последовательнсоти LoxP. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом:

Свечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток.
В. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом:

Клетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

Г. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»:

В этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

pазбирался: Надежда | обсудить разбор

Задание ollbio09101120172018в2

У одного из представителей семейства Колокольчиковые (Campanulaceae) – платикодона
крупноцветкового (Platycodon grandiflorum) пентамерные цветки, состоящие из круга чашелистиков,
круга лепестков, круга тычинок и круга плодолистиков (см. рис.). Иногда среди платикодонов можно найти
махровые цветки, у которых на месте тычинок развиваются лепестки.
А. Нарисуйте диаграмму махрового цветка платикодона. На диаграмме обозначьте части цветка.
Предложите для него формулу.
Б. Предположим, что в природной популяции
платикодона крупноцветкового возникла форма
с махровыми цветками (по остальным признакам
форма не отличается от нормы). Образование
махровых цветков определяется одной рецессивной
мутацией. Ученые пересадили из природы на
экспериментальный участок два мутантных и одно
нормальное растение. Считая, что при опылении
пыльца всех особей смешивается, пыльца из
природных популяций не попадает на участок, и
при этом возможно самоопыление, рассчитайте,
каким может быть расщепление в потомстве первого
поколения по генотипам и фенотипам.
В. Далее среди потомков первого поколения выбрали только те растения, у которых цветки нормальные,
а остальные убрали с участка до опыления. С оставленных растений собрали семена и посеяли. Каким
может оказаться расщепление среди потомков второго поколения по генотипу и фенотипу?


А. Опираясь на рисунок, мы видим, что чашелистики изображены свободными, тогда как все лепестки
срослись. Пять тычинок свободные, а плодолистиков три, и они также срослись. (У Колокольчиковых
завязь нижняя, но это не принципиально для дальнейшего решения.) Можно предложить следующую
формулу для типичного цветка в сем. Колокольчиковые: * Ч5 Л(5) Т5 П(3) или * Ca5 Co(5) A5 G(3) . Поскольку у махровых форм происходит замена тычинок на лепестки, в формуле вместо тычинок нужно указать дополнительный круг лепестков: * Ч5 Л(5)+(5) П(3) или * Ca5 Co(5)+(5) G(3) .

При построении диаграммы должны выполняться следующие принципы:
1. Органы в круге располагаются друг относительно друга под углом 360 : 5 = 72 градуса.
2. В двух соседних кругах органы должны чередоваться, т.е. положение медианы каждого
органа должно приходиться строго на промежуток между органами предыдущего круга. Для
пентамерного цветка между органами в соседних кругах угол должен составлять 36 градусов. На
рисунке видно, что плодолистики (поскольку из три) не могут правильно чередоваться с пятью
тычинками.
3. Если рассматривать органы через круг, то их медианы должны находиться друг напротив друга
(органы противолежат).
4. Центром цветка считается центр завязи. Поэтому при проверке расположения органов в цветке все
линии будут проводиться через центр завязи и центральную (медианную) жилку органа.
5. На рисунке показан цветок с центрально-угловой плацентацией (гинецей синкарпный). Между
гнездами завязи находятся перегородки (септы). Для плодолистика медианой считается линия, делящая угол между септами ровно пополам.

 

Б. Обозначим ген, отвечающий за проявление махровости как А. Поскольку мы знаем, что махровость цветков определяется рецессивной мутацией по этому гену, генотип махровых растений может быть только аа. Взятое из природы нормальное растение могло оказаться как гомозиготой АА, так и носителем рецессивного аллеля Аа. Поэтому возможно два варианта расщепления среди потомков.
Из природы были взяты два махровых и одно немахровое растение, и по семенной продуктивности все три растения одинаковы, следовательно, 2/3 семян будет собрано с махровых, и 1/3 – с немахровых растений. Однако пыльцу может образовать только растение с немахровыми цветками.
Вариант 1. Немахровое растение – гомозигота АА.

Тогда среди потомков в данном скрещивании должно оказаться:
1/3 (≈33.3%) АА 2/3 (≈66.7%)
Аа или 1 АА : 2 Аа
По фенотипу все потомки окажутся немахровыми.
Вариант 2. Немахровое растение – гетерозигота Аа.
Среди женских гамет соотношение вклад каждого из растений останется прежним, т.е. 2/3 от
всех аллелей а придут от махровых растений. Среди оставшихся 1/3 женских гамет 1/6 будет нести
аллель а, и еще 1/6 – аллель А. Таким образом, соотношение среди женских гамет будет 5/6 а и 1/6 А.
Среди мужских гамет 1/2 будет нести аллель А, и еще 1/2 – аллель а.

Таким образом, среди потомков первого поколения возможно следующее расщепление по
генотипам: 1/12 АА (≈8.3%) 6/12=1/2 Аа (50.0%) 5/12 аа (≈41.7%)
1 АА : 6 Аа : 5 аа
По фенотипам: 7/12 (≈50.3%) немахровых 5/12 (≈41.7%) махровых
7 немахровых : 5 махровых

 

В. В первом варианте скрещивания махровых растений не окажется. Рассчитаем доли потомков
по генотипам и фенотипам во втором поколении.
1/3 (≈33.3%) АА дадут только гаметы А, тогда как 2/3 растений с генотипом Аа дадут половину
гамет А и вторую половину гамет а. Таким образом, суммарно гамет А в популяции окажется 2/3,
и 1/3 гамет, несущих аллель а.

Таким образом, среди потомков второго поколения возможно следующее расщепление по
генотипам: 4/9 АА (≈44.4%) 4/9 Аа (44.4%) 1/9 аа (≈11.1%)
4 АА : 4 Аа : 1 аа
По фенотипам: 8/9 (≈88.9%) немахровых 1/9 (≈11.1%) махровых
8 немахровых : 1 махровых.
Во втором случае (из природы было взято гетерозиготное немахровое растение) после того,
как мы удалим все махровые растения, останется 1/7 АА (≈14.3%) и 6/7 Аа (≈85.7%). Последние
дадут половину гамет А (3/7) и половину гамет а (3/7). Суммарная доля гамет А составит 4/7. Тогда:

Во втором случае расщепление среди потомков второго поколения будет:
по генотипам:
16/49 АА (≈32.6%) 24/49 Аа (≈49.0%) 9/49 аа (≈18.4%)
25 АА : 30 Аа : 9 аа
По фенотипам: 40/49 (≈81.6%) немахровых 9/49 (≈18.4%) махровых
40 немахровых : 9 махровых.

pазбирался: Надежда | обсудить разбор

Задание ollbio08101120172018в2

У многих видов бактерий для защиты от вирусов есть специальные ферменты – рестриктазы. Они расщепляют ДНК по определённым симметричным последовательностям, которые в ДНК бактерий данного вида отсутствуют или модифицированы присоединением к основанию метильной группы. Они называются по первым буквам латинского названия рода и вида бактерии, например, Bgl – рестриктаза из гнилостной бактерии Bacillus globigii. При действии такого фермента на очищенную ДНК разрывы происходят в
строго определённых местах и образуются фрагменты ДНК определённой длины с определёнными последовательностями на концах. Например, рестриктаза BglII расщепляет последовательность:
При этом на концах полученных фрагментов ДНК всегда будут одинаковые и комплементарные друг другу одноцепочечные участки ДНК, называемыми «липкими концами», т.к. они могут соединяться между собой за счёт образования комплементарных пар оснований. Если такой комплекс обработать ферментом

ДНК-лигазой, произойдёт ковалентное соединение фрагментов, соединённых «липкими концами». Это лежит в основе метода получения рекомбинантных ДНК.
При таком сшивании соединение концов одного фрагмента при его длине более 500 нуклеотидных пар происходит в 10 раз чаще, чем соединение концов двух разных фрагментов.
У многих бактерий кроме основной хромосомы присутствуют небольшие дополнительные ДНК, называемые плазмидами. Они представляют собой кольцевые молекулы ДНК, способные к репликации в клетке, и несут гены, отсутствующие в основной хромосоме, например, гены устойчивости к антибиотикам.
Плазмида pСО36 несёт гены устойчивости к эритромицину и ампицилину и состоит из 4200 пар нуклеотидов. Рестриктаза BglII расщепляет эту плазмиду только по гену устойчивости к эритромицину в начале этого гена. В районе расщепления ДНК имеет последовательность нуклеотидов:

Плазмиду обработали рестриктазой BglII до полного расщепления. После этого рестриктазу удалили и смесь фрагментов ДНК обработали ДНК-лигазой. Полученные ДНК смешали с клетками бактерий, не несущих плазмид и неустойчивых к антибиотикам. В результате произошла генетическая трансформация: в часть клеток проникла ДНК плазмиды и изменила их свойства. Полученные клетки высеяли на твёрдую питательную среду, не содержащую антибиотиков. В результате деления каждая клетка образовала
колонию генетически идентичных клеток. Было получено 51366 таких колоний. Клетки из каждой колонии пересеяли на среду, содержащую ампициллин, на которой рост дали 573 колонии. Клетки из колоний,
выросших на ампициллине, пересеяли на среду с эритромицином. На этой среде выросла 51 колония.
Из них выдели плазмидную ДНК, и оказалось что она представлена двумя разными по длине формами, причём каждой колонии был только один вид плазмиды.
А. Какова (в %) эффективность трансформации клеток плазмидной ДНК?
Б. Почему не все колонии, выросшие на ампициллине, дали рост на эритромицине?
В. Как можно объяснить разную длину плазмид в устойчивых к эритромицину колониях?
Г. Сколько всего размерных классов плазмид можно найти в колониях, устойчивых к ампицилину?


Сначала найдём место расщепления плазмиды рестриктазой BglII:

Таких участков оказывается два. В результате расщепления из плазмиды выщепляется короткий фрагмент:

Остаётся укороченная линейная ДНК, содержащая интактный ген устойчивости к ампицилину и расщеплённый ген устойчивости к эритромицину.

При сшивании липких концов ДНК-лигазой наиболее часто будут соединяться концы этой молекулы и образовываться кольцо длиной 4163 нуклеотида. Такая ДНК будет сообщать клеткам устойчивость к
ампицилину и не даст устойчивости к эритромицину. Второй фрагмент из-за небольшой длины не может замкнуться в кольцо. Второй вариант лигирования приводит к сшиванию липких концов двух фрагментов. Он происходит примерно в 10 раз реже, а после сшивки вторая пара липких концов скорее всего также, как и исходный фрагмент замкнётся в кольцо. Таких колец из пары фрагментов может образоваться 4 вида: димеры большого фрагмента в двух разных ориентациях (правый конец с левым концом второго фрагмента и левый конец с правым концом второго фрагмента или правый с правым и левый с левым) и соединения большого и малого фрагмента в двух разных ориентациях (вариант исходной плазмиды и инверсия малого фрагмента). Из них только в варианте исходной плазмиды восстанавливается устойчивость к эритромицину.
Линейная молекула, образованная сшиванием двух фрагментов, может присоединить ещё один
фрагмент с ещё в 10 раз меньшей частотой. Такие фрагменты в дальнейшем будут циклизоваться
в плазмиды трёх размеров: из трёх больших фрагментов, из двух больших и одного малого и одного
большого и двух малых. Три малых фрагмента дадут короткую последовательность, которая не сможет
замкнуться в кольцо и существовать в клетке. В каждом размерном классе будет несколько вариантов с
разной ориентацией фрагментов. Только в одном из них восстановится ген устойчивости к эритромицину: правый конец большого фрагмента соединяется с левым концом малого фрагмента, а правый конец малого фрагмента – с левым концом второго большого фрагмента, а оставшиеся концы двух больших фрагментов соединяются с образованием кольцевой плазмиды длиной 8363 пары нуклеотидов. Доля таких молекул будет менее 1% всех плазмид. Вероятность образования плазмид из 4 и более фрагментов ещё на порядок ниже и их обнаружение при данном числе полученных трансформированных клеток нереально.
А. Так как расщепление рестриктазой не затрагивает ген устойчивости к ампицилину, все клетки, в
результате трансформации получившие любую плазмиду, будут устойчивы к ампицилину и вырастут
на среде с этим антибиотиком. Таким образом из 33506 выросших колоний плазмиду получили 578,
выросших на ампицилине. Эффективность трансформации представляет долю трансформированных
клеток от общего их числа, т.е. 573 : 51366 × 100% = 1.12%
Б. На эритромицине могут вырасти только те клетки, в которые попали плазмиды, в которых в
результате лигирования восстановится последовательность нуклеотидов в гене устойчивости к этому
антибиотику, расщеплённому рестриктазой. Остальные плазмиды, полученные по приведённой методике, будут содержать либо ген с выщепленным коротким фрагментом, что приведёт либо к утрате стартового кодона (если обозначенный зелёным цветом кодон является стартовым), либо к сдвигу рамки считывания (т.к. число удалённых нуклеотидов не кратно трём), либо, при инверсии короткого фрагмента, к появлению стоп-кодонов т.е. прекращению синтеза белка. Таким образом большинство полученных плазмид не обеспечат устойчивости к эритромицину.
В. Рост на эритромицине могут обеспечить только плазмиды, несущие восстановленную последовательность гена устойчивости. Такие плазмиды могли образоваться из одного большого и одного малого фрагмента (4200 пар, исходная плазмида)) или из двух больших и одного малого (8363 пары, начало и конец гена из разных копий большого фрагмента).
Г. Получается 1 размер из одного большого фрагмента, два размерных класса из двух фрагментов
и три размерных класса из трёх фрагментов, то есть 6 размерных классов. (В реальности различить
по длине плазмиды, отличающиеся на длину малого фрагмента, т.е. менее чем на 0,5%, невозможно.
Поэтому в эксперименте, например на электрофореграмме, будут видны лишь три размерных класса, соответствующие 1, 2 или 3 копиям большого фрагмента.)

pазбирался: Надежда | обсудить разбор

Задание EB2719t

Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: АГТЦЦГАТГТГТ. Определите последовательность кодонов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка. Ответ поясните. Для решения задания используйте таблицу генетического кода.


Выписываем ДНК.

АГТЦЦГАТГТГТ

По принципу комплементарности строим иРНК на матрице ДНК.

УЦАГГЦУАЦАЦА

Теперь, опять же по принципу комплементарности, строим тРНК.

АГУ, ЦЦГ, АУГ, УГУ

Определяем с помощью таблицы аминокислотную последовательность синтезируемого белка по иРНК.

сер-гли-тир-тре

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0319D

В некоторой молекуле ДНК на долю нуклеотидов с тимином приходится 14%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.


Для решения данного задания следует вспомнить правило Чаргаффа, которое гласит, что количество аденина равно количеству тимина, а количество гуанина – цитозину. Это согласуется и с правилом комплементарности.

По условию в молекуле ДНК на тимин приходится 14%. Исходя из правила Чаргаффа, на аденин тоже приходится 14%. Остаток приходится на гуанин и цитозин в равных количествах.

Аденин + Тимин = 14%+14% = 28%

Гуанин + Цитозин = 100% – 28% = 72%

Гуанин и Цитозин раздельно: 72% : 2 = 36%

Ответ: 36

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB2719D

Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов:ЦГЦЦЦГАТАЦТАГАЦ

В результате мутации – замены одного нуклеотида в ДНК третья аминокислота во фрагменте полипептида заменилась на аминокислоту Гис. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

 


  1. По принципу комплементарности на основе ДНК находим иРНК.

ДНК: ЦГЦ-ЦЦГ-АТА-ЦТА-ГАЦ

иРНК: ГЦГ-ГГЦ-УАУ-ГАУ-ЦУГ

  1. Третья аминокислота, которая кодировалась до мутации состоит из нуклеотидов УАУ, то есть это аминокислота Тир.

Аминокислота Гис кодируется следующими триплетами: ЦАУ, ЦАЦ.

В условии сказано, что произошла замена лишь одного нуклеотида. Значит, аминокислота Гис кодируется последовательностью ЦАУ.

После мутации:

иРНК: ГЦГ-ГГЦ-ЦАУ-ГАУ-ЦУГ

ДНК: ЦГЦ-ЦЦГ-ГТА-ЦТА-ГАЦ

  1. Одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом благодаря такому свойству генетического кода как универсальность

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0520D

Установите соответствие между характеристиками и видами молекул: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ ВИДЫ МОЛЕКУЛ

А)   содержит один вид азотистых оснований

Б)    обеспечивает энергией реакции синтеза

В)    входит в состав рибосом

Г)    содержит макроэргические связи

Д)    содержит четыре вида азотистых оснований

Е)    служит матрицей при трансляции

1)     РНК

2)     АТФ


РНК расшифровывается как рибонуклеиновая кислота. РНК. Сама РНК состоит из цепи нуклеотидов. Нуклеотиды РНК включают в себя следующие части: фосфатная группа, сахар рибоза и азотистое основание. Одно из отличий ДНК от РНК – азотистые основания. Для РНК это аденин, урацил, гуанин и цитозин, а для ДНК вместо урацила тимин. РНК играют важную роль в биосинтезе белка в клетке. РНК входит в состав рибосом.

АТФ расшифровывается как аденозинтрифосфат. Это молекулы, которые являются универсальным аккумулятором энергии в клетке. АТФ включает в себя азотистое основание аденин, сахар рибозу и 3 остатка фосфорной кислоты. Фосфатные группы соединены макроэргическими связями, есть в них заключено много энергии, которая при разрушении этих связей высвобождается. Синтез АТФ происходит в животных клетках в митохондриях, а в растительных и в митохондриях, и в хлоропластах. АТФ можно обнаружить в цитоплазме, ядре, митохондриях, хлоропластах. В растительных клетках эти молекулы образуются в результате фотосинтеза, а в животных – в результате дыхания.

Один вид азотистых оснований содержит АТФ, это аденин.

Обеспечивает энергией тоже АТФ.

Входит в состав рибосом РНК.

Макроэргические связи содержит АТФ.

Четыре вида азостистых оснований содержит РНК, это аденин, урацил, гуанин, цитозин.

Служит матрицей при трансляции РНК, трансляция – один из этапов биосинтеза белка.

Ответ: 221211

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0320D

Сколько триплетов в молекуле иРНК кодируют белок, состоящий из 102 аминокислот? В ответе запишите только соответствующее число.


Одна аминокислота кодируется одним триплетом нуклеотидов. В условии сказано, что белок состоит из 102 аминокислот, значит, из 102 триплетов.

Ответ: 102

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0319t

Участок гена состоит из 100 триплетов. Сколько аминокислот будет представлено в молекуле кодируемого этим участком фрагментом белка? В
ответе запишите только соответствующее число.


Одна аминокислота кодируется одним триплетом нуклеотидов. Следовательно, 100 триплетов – 100 аминокислот.

Ответ: 100

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11284

Дана цепь ДНК: ЦТААТГТААЦЦА. Определите:

А) Первичную структуру закодированного белка.

Б) Процентное содержание различных видов нуклеотидов в этом гене (в двух цепях).

В) Длину этого гена.

Г) Длину белка.

https://bio-ege.sdamgia.ru/get_file?id=25056

Примечание от составителей сайта.

Длина 1 нуклеотида — 0,34 нм

Длина одной аминокислоты — 0,3 нм

Длина нуклеотида и аминокислоты — это табличные данные, их нужно знать (к условию не прилагаются)


Содержание верного ответа и указания к оцениванию Баллы
  1. Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА, поэтому и-РНК: ГАУ-УАЦ-АУУ-ГГУ.
  2. По таблице генетического кода определяем аминокислоты: асп — тир — иле — гли-.
  3. Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА, поэтому вторая цепь ДНК: ГАТ-ТАЦ-АТТ-ГГТ.
  4. Количество А=8; Т=8; Г=4; Ц=4. Все количество: 24, это 100%. Тогда

А = Т = 8, это (8х100%) : 24 = 33,3%. Г = Ц = 4, это (4х100%) : 24 = 16,7%.

  1. Длина гена: 12 х 0,34 нм (длина каждого нуклеотида) = 4,08 нм.
  2. Длина белка: 4 аминокислоты х 0,3 нм (длина каждой аминокислоты) = 1,2 нм.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11283

В одной молекуле ДНК нуклеотиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.


Содержание верного ответа и указания к оцениванию Баллы
  1. Аденин (А) комплементарен тимину (Т), а гуанин (Г) — цитозину (Ц), поэтому количество комплементарных нуклеотидов одинаково;
  2. количество нуклеотидов с аденином составляет 24%;
  3. количество гуанина (Г) и цитозина (Ц) вместе составляют 52%, а каждого из них — 26%.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11273

Ген содержит 1500 нуклеотидов. В одной из цепей содержится 150 нуклеотидов А, 200 нуклеотидов Т, 250 нуклеотидов Г и 150 нуклеотидов Ц. Сколько нуклеотидов каждого вида будет в цепи ДНК, кодирующей белок? Сколько аминокислот будет закодировано данным фрагментом ДНК?


Содержание верного ответа и указания к оцениванию Баллы
  1. В кодирующей цепи ДНК в соответствии с правилом комплементарности нуклеотидов будет содержаться: нуклеотида Т — 150, нуклеотида А — 200, нуклеотида Ц — 250, нуклеотида Г — 150. Таким образом, всего А и Т по 350 нуклеотидов, Г и Ц по 400 нуклеотидов.
  2. Белок кодируется одной из цепей ДНК.
  3. Поскольку в каждой из цепей 1500/2=750 нуклеотидов, в ней 750/3=250 триплетов. Следовательно, этот участок ДНК кодирует 250 аминокислот.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11282

В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы и-РНК и т-РНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах?


Содержание верного ответа и указания к оцениванию Баллы
  1. Первичная структура белка определяется последовательностью аминокислот, зашифрованных на участке молекулы ДНК. ДНК является матрицей для молекулы и-РНК.
  2. Матрицей для синтеза белка является молекула и-РНК, а они в пробирке одинаковые.
  3. 3) К месту синтеза белка т-РНК транспортируют аминокислоты в соответствии с кодонами и-РНК.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11276

В процессе трансляции участвовало 30 молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.


  1. Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка участвовало 30 т-РНК, белок состоит из 30 аминокислот.
  2. Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодирует 30 триплетов.
  3. 3) Триплет состоит из 3 нуклеотидов, значит, количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, равно 30х3=90.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21764

Последовательность аминокислот во фрагменте молекулы белка следующая: ФЕН-ГЛУ-МЕТ. Определите, пользуясь таблицей генетического кода, возможные триплеты ДНК, которые кодируют этот фрагмент белка.https://bio-ege.sdamgia.ru/get_file?id=25056


  • Составим цепь иРНК. Для этого выпишем аминокислоты из условия и найдем соответствующие им триплеты нуклеотидов. Внимание! Одну аминокислоту могут кодировать несколько триплетов.

ФЕН – УУУ или УУЦ

ГЛУ – ГАА или ГАГ

МЕТ – АУГ

  • Определим триплеты ДНК по принципу комплементарности

УУУ-ААА

УУЦ-ААГ

ГАА-ЦТТ

ГАГ-ЦТЦ

АУГ-ТАЦ

Содержание верного ответа и указания к оцениванию Баллы
  1. Аминокислота ФЕН кодируется следующими триплетами иРНК: УУУ или УУЦ, следовательно, на ДНК ее кодируют триплеты ААА или ААГ.
  2. Аминокислота ГЛУ кодируется следующими триплетами иРНК: ГАА илиГАГ. Следовательно, на ДНК ее кодируют триплеты ЦТТ или ЦТЦ.
  3. 3) Аминокислота МЕТ кодируется триплетом иРНК АУГ. Следовательно, на ДНК ее кодирует триплет ТАЦ.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB26715

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).

5’-ТАТЦГАТТЦГЦЦТГА-3’

3’-АТАГЦТААГЦГГАЦТ-5’

Установите нуклеотидную последовательность участка тРНК который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента. Какой кодон иРНК будет соответствовать антикодону этой тРНК, если она переносит к месту синтеза белка аминокислоту ГЛУ. Ответ поясните. Для решения задания используйте таблицу генетического кода:

https://bio-ege.sdamgia.ru/get_file?id=25056


Выписываем себе смысловую цепь:

5’-ТАТ — ЦГА — ТТЦ — ГЦЦ — ТГА- 3’.

Выписываем транскрибируемую цепь:

3’-АТА — ГЦТ — ААГ — ЦГГ — АЦТ- 5’.

Строим тРНК по транскрибируемой ДНК:

5’УАУ3’, 5’ЦГА3’, 5’УУЦ3’, 5’ГЦЦ3’, 5’УГА3’.

Теперь, пользуясь табличкой генетического кода, обнаружим последовательности иРНК, кодирующие аминокислоту «Глу».

Это последовательности 5’- ГАА — 3’ и 5’- ГАГ — 3’.

Построим комплементарные этим иРНК триплеты тРНК:

3’ЦУУ5’ и  3’ЦУЦ5’. Нам необходимо понять, какая же иРНК, переносящая аминокислоту «Глу» комплементарна антикодону тРНК. Значит, мы должны найти полученные нами кодоны тРНК в построенной ранее цепочке тРНК. Однако, мы получили триплеты ориентированные от 5’ к 3’ концу, а в построенной цепочке наоборот.

Перепишем полученные триплеты в нужной ориентации:

3’УУЦ5’ и 3’ЦУЦ 5’.

Третий триплет последовательности тРНК совпадает с полученным нами триплетом 3’УУЦ5’.

Значит, иРНК, которая переносит аминокислоту «Глу» в данном случае имеет последовательность 5’- ГАА — 3’

Содержание верного ответа и указания к оцениванию Баллы
  1. 1) Нуклеотидная последовательность участка тРНК — УАУ-ЦГА-ЦУУ-ГЦЦ-УГА;

    2) нуклеотидная последовательность кодона ГАА (находим по таблице генетического кода триплеты соответсвующие аминокислоте глу — ГАА; ГАГ);

    3) нуклеотидная последовательность антикодона тРНК — ЦУУ, что соответствует кодону ГАА по правилу комплементарности.

    Примечание.

    Внимательно читайте условие.

    Ключевое слово: «Известно, что все виды РНК синтезируются на ДНК-матрице.»

    В данном задании просят найти тРНК (трилистник), который построен на основе ДНК, а затем уже у нее вычислить местоположение антикодона.

Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB26713

Антикодоны тРНК поступают к рибосомам в следующей последовательности нуклеотидов УЦГ, ЦГА, ААУ, ЦЦЦ. Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов на ДНК, кодирующих определенный белок и последовательность аминокислот во фрагменте молекулы синтезируемого белка, используя таблицу генетического кода:https://bio-ege.sdamgia.ru/get_file?id=25056


Нам дана тРНК, она ориентирована от 5′ к 3′ концу.

Для удобства, на черновике, выписываем цепь тРНК из условия, чтобы не потерять какой-нибудь нуклеотид:

тРНК 5’УЦГ3′, 5’ЦГА3′, 5’ААУ3′, 5’ЦЦЦ3′

Теперь выписываем тРНК, ориентируя антикодоны не в направлении 5′ к 3′ концу, а наоборот. тРНК 3’ГЦУ5′, 3’АГЦ5′, 3’УАА5′, 3’ЦЦЦ5′

Примечание: когда записываем тРНК, то указываем 5′ и 3′ концы, ставим запятые между тРНК.

Картинки по запросу трнк

Теперь строим цепь иРНК, указываем 5′ и 3′ концы. тРНК ориентирована от 3′ к 5′ , поэтому, учитывая принцип антипараллельности, иРНК ориентирована наоборот, от 5′ и 3′:

Напоминаю, какие же есть пары у РНК: А комплементарна У, Г комплементарна Ц.

иРНК 5′ — ЦГА — УЦГ — АУУ — ГГГ — 3′

Теперь по принципу комплементарности строим цепь ДНК по иРНК, это будет транскрибируемая цепь ДНК. Над ней необходимо будет построить смысловую цепь ДНК. Опять же, не забываем про антипараллельность.

Напоминаю пары в ДНК: А комплементарна Т, Ц комплементарна Г

3′ — ГЦТ — АГЦ — ТАА — ЦЦЦ — 5′ — это наша транскрибируемая цепь. Строим по ней смысловую цепь: 5′ — ЦГА — ТЦГ — АТТ — ГГГ — 3′

Теперь определим последовательность получившихся аминокислот в иРНК. Для этого воспользуемся таблицей генетического кода, которая прилагается в задании.

Как пользоваться таблицей? .

Рассмотрим пример: последовательность аминокислоты: АГЦ

  1. Находим первое основание в первом столбце таблицы – А.
  2. Находим второе основание среди колонок 2-4. Наше основание – Г. Ему соответствует 4 столбец таблицы.
  3. Находим последнее, третье основание. У нас это Ц. В последнем столбике ищем в первой строке букву Ц. Теперь ищем пересечение с нужным столбиков, указывающим на второе основание.
  4. Получаем аминокислоту «сер»

C:UsersКсеньяDesktopБезымянный.png

Определим наши аминокислоты:

ЦГА — «Арг»

УЦГ – «Сер»

АУУ– «Иле»

ГГГ – «Гли»

Итоговая последовательность: Арг-Сер-Иле-Гли

Содержание верного ответа и указания к оцениванию Баллы
  1. 1. По принципу комплементарности определяем последовательность иРНК: 5’-ЦГА-УЦГ-АУУ-ГГГ- 3’;

    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности:

     

    5’ − ЦГА-ТЦГ-АТТ-ГГГ − 3’

    3’ − ГЦТ-АГЦ-ТАА-ЦЦЦ − 5’

     

    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде: Арг-Сер-Иле-Гли

Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11126

Чем строение молекулы ДНК отличается от строения молекулы иРНК?


  1. ДНК построена по типу двойной спирали, и-РНК — одноцепочечная.
  2. В нуклеотидах ДНК углевод дезоксирибоза и азотистое основание тимин
  3. В нуклеотидах и-РНК — рибоза и урацил.

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB20604

Вставьте в текст «Биосинтез белка» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

БИОСИНТЕЗ БЕЛКА

В результате пластического обмена в клетках синтезируются специфические для организма белки. Участок ДНК, в котором закодирована информация о структуре одного белка, называется ______(А). Биосинтез белков начинается с синтеза ______(Б), а сама сборка происходит в цитоплазме при участии ______(В). Первый этап биосинтеза белка получил название _________(Г), а второй — трансляция.

ПЕРЕЧЕНЬ ТЕРМИНОВ:

  1. иРНК
  2. ДНК
  3. транскрипция
  4. мутация
  5. ген
  6. рибосома
  7. комплекс Гольджи
  8. фенотип

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам: 


Ген — участок ДНК, в котором закодирована информация о структуре одного белка. 5)

Биосинтез белка начинается с синтеза иРНК, сборка происходит в цитоплазме при помощи рибосом.1) 6)

Первый этап — транскрипция (переписывание). 3)

Ответ: 5163

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21657

Установите правильную последовательность процессов биосинтеза белка. Запишите в таблицу соответствующую последовательность цифр.

  1. присоединение аминокислоты к пептиду
  2. синтез иРНК на ДНК
  3. узнавание кодоном антикодона
  4. объединение иРНК с рибосомой
  5. выход иРНК в цитоплазму

Расположим в правильном порядке:

  1. синтез иРНК на ДНК
  2. выход иРНК в цитоплазму
  3. объединение иРНК с рибосомой
  4. узнавание кодоном антикодона
  5. присоединение аминокислоты к пептиду

Ответ: 25431

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21756

Установите правильную последовательность реакций, происходящих в процессе биосинтеза белков. Запишите в таблицу соответствующую последовательность цифр.

  1. раскручивание молекулы ДНК
  2. объединение иРНК с рибосомой
  3. присоединение первой тРНК с определённой аминокислотой
  4. выход иРНК в цитоплазму
  5. постепенное наращивание полипептидной цепи
  6. синтез иРНК на одной из цепей ДНК

Раскручивание молекулы ДНК синтез иРНК на одной из цепей ДНК выход иРНК в цитоплазму объединение иРНК с рибосомой присоединение первой тРНК с определённой аминокислотой постепенное наращивание полипептидной цепи

Ответ: 164235

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB16828

Установите последовательность процессов при биосинтезе белка в клетке.

  1. образование пептидной связи между аминокислотами
  2. взаимодействие кодона иРНК и антикодона тРНК
  3. выход тРНК из рибосомы
  4. соединение иРНК с рибосомой
  5. выход иРНК из ядра в цитоплазму
  6. синтез иРНК

1. Образование функционального центра рибосомы — ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) — центр узнавания аминокислоты и П (пептидный) — центр присоединения аминокислоты к пептидной цепочке.

2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарности возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс «кодон рРНК и тРНК с аминокислотой» перемещается в активный центр , где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматической сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) —> РНК (трансляция) —> белок

Ответ: 654213

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB10829

Установите, в какой последовательности образуются структуры молекулы белка.

  1. полипептидная цепь
  2. клубок или глобула
  3. полипептидная спираль
  4. структура из нескольких субъединиц

Картинки по запросу первичная вторичная третичная четвертичная структура белка

Третичная структура — глобула, четвертичная — несколько глобул.

Ответ: 1324

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB22097

Все при­ведённые ниже процессы, кроме двух, можно отнести к матричным реакциям в клетке. Определите два процесса, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в ответ цифры, под ко­то­ры­ми они ука­за­ны.

  1. синтез РНК
  2. биосинтез белка
  3. хемосинтез
  4. фотолиз воды
  5. репликацию ДНК

Раз “матричные реакции», то они связаны с ДНК и РНК. Не стоит забывать, что они являются белками. К матричным реакциям, в таком случае, относятся: синтез РНК, репликация ДНК, биосинтез белка. Хемосинтез и фотолиз воды отношения к этому не имеют.

Ответ: 34

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0301

Длина фрагмента молекулы ДНК бактерии равняется 20,4 нм. Сколько аминокислот будет в белке, кодируемом данным фрагментом ДНК?

Примечание.

Длина одного нуклеотида 0,34 нм.


Обратите внимание на примечание, оно явно здесь не просто так.

Итак, сейчас перед нами практически задача по математике из начальной школы.

Первое наше действие: У нас есть бусы, длина которых 20,4 единиц измерения. Диаметр одной бусины 0,34 единиц измерения. Сколько здесь бусин? Естественно, нужно просто поделить все бусы на размер одной их составляющей:

20,4 : 0,34= 60.

Мы нашли количество нуклеотидов. У генетического кода есть такое свойство как триплетность. Она аминокислота кодируется тремя нуклеотидами. Чтобы узнать число аминокислот нужно разбить нуклеотиды на группки по три:

60: 3= 20

20 аминокислот будет в белке с длинной фрагмента ДНК 20,4 нм.

Ответ: 20

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB2412

Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.


Раз одна аминокислота кодируется тремя нуклеотидами, то 1 аминокислота=3 нуклеотида

25*3 = 75

Ответ: 75

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB1038

Все представленные на схеме вещества, кроме двух, имеют в своём составе азотистое основание — аденин. Определите два вещества, «выпадающие» из общего списка, и запишите


В состав ДНК и РНК точно входят Аденин, ведь отличаются они совсем другими азотистыми основаниями: Аденину в РНК по принципу комплементарности соответствует Урацил, а не Тимин. На картинке с тРНК вообще видны буквы А. Это и есть Аденин.

Внимание! Раз на первой картинке была ДНК, то это совсем не значит, что на второй и третьей тоже она. Это может быть любой другой белок, в состав которого Аденин может и не входить.

Остается еще АТФ. В ее она включает в себя Аденин, так что под решение вопроса не подходит.

Лишними являются вторичная и третичная структура неопределенного белка.

Ответ: 23

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB6645

Сколько ами­но­кис­лот кодирует 900 нуклеотидов. В ответ запишите только соответствующее число.


1 аминокислота= 3 нуклеотида. Делим все нуклеотиды на 3, получаем аминокислоты.

900 : 3 = 300.

Ответ: 300

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB7512

Какой ан­ти­ко­дон транспортной РНК со­от­вет­ству­ет триплету ТГА в мо­ле­ку­ле ДНК?


Здесь можно разработать алгоритм. Если дана молекула ДНК, а нужно найти тРНК, то нужно:

  1. Записать информационную РНК (иРНК) по принципу комплементарности
  2. Записать транспортную ДНК по принципу комплементарности.
  3. Готово!

На нашем примере:

Тимину соответствует аденин

Гуанину – цитозин

Аденину – урацил, ведь это РНК

1) АЦУ

Аденину соответствует урацил

Цитозину – гуанин

Урацилу – аденин

2) УГА

Ответ: УГА

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB6702

В молекуле ДНК количество нуклеотидов с гуанином составляет 20% от общего числа. Сколько нуклеотидов в % с тимином в этой молекуле. В ответ запишите только соответствующее число.


Раз у нас дано, что 20% от общего числа – гуанин, то это значит, то 20% приходится и на комплементарный ему цитозин.

20% + 20% = 40%- гуанин и цитозин.

Для аденина и тимина остается:

100% – 40% = 60%

60% – для аденина и тимина, а вопрос только про тимин,значит, число нужно поделить на 2:

60% : 2 = 30%

30% – на тимин

30% – на аденин

Ответ: 30

pазбирался: Ксения Алексеевна | обсудить разбор

Ксения Алексеевна | Просмотров: 9.2k

Задачи по цитологии на ЕГЭ по биологии

  • Типы задач по цитологии

  • Решение задач первого типа

  • Решение задач второго типа

  • Решение задач третьего типа

  • Решение задач четвертого типа

  • Решение задач пятого типа

  • Решение задач шестого типа

  • Решение задач седьмого типа

  • Примеры задач для самостоятельного решения

  • Приложение I Генетический код (и-РНК)

Автор статьи — Д. А. Соловков, кандидат биологических наук

к оглавлению ▴

Типы задач по цитологии

Задачи по цитологии, которые встречаются в ЕГЭ, можно разбить на семь основных типов. Первый тип связан с определением процентного содержания нуклеотидов в ДНК и чаще всего встречается в части А экзамена. Ко второму относятся расчетные задачи, посвященные определению количества аминокислот в белке, а также количеству нуклеотидов и триплетов в ДНК или РНК. Этот тип задач может встретиться как в части А, так в части С.

Задачи по цитологии типов 3, 4 и 5 посвящены работе с таблицей генетического кода, а также требуют от абитуриента знаний по процессам транскрипции и трансляции. Такие задачи составляют большинство вопросов С5 в ЕГЭ.

Задачи типов 6 и 7 появились в ЕГЭ относительно недавно, и они также могут встретиться абитуриенту в части С. Шестой тип основан на знаниях об изменениях генетического набора клетки во время митоза и мейоза, а седьмой тип проверяет у учащегося усвоения материала по диссимиляции в клетке эукариот.

Ниже предложены решения задач всех типов и приведены примеры для самостоятельной работы. В приложении дана таблица генетического кода, используемая при решении.

к оглавлению ▴

Решение задач первого типа

Основная информация:

  • В ДНК существует 4 разновидности нуклеотидов: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин).
  • В 1953 г Дж.Уотсон и Ф.Крик открыли, что молекула ДНК представляет собой двойную спираль.
  • Цепи комплементарны друг другу: напротив аденина в одной цепи всегда находится тимин в другой и наоборот (А-Т и Т-А); напротив цитозина — гуанин (Ц-Г и Г-Ц).
  • В ДНК количество аденина и гуанина равно числу цитозина и тимина, а также А=Т и Ц=Г (правило Чаргаффа).

Задача: в молекуле ДНК содержится 17% аденина. Определите, сколько (в %) в этой молекуле содержится других нуклеотидов.

Решение: количество аденина равно количеству тимина, следовательно, тимина в этой молекуле содержится 17%. На гуанин и цитозин приходится 100% - 17% - 17% = 66%. Т.к. их количества равны, то Ц=Г=33%.

к оглавлению ▴

Решение задач второго типа

Основная информация:

  • Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Каждая молекула т-РНК переносит только одну аминокислоту.
  • Информация о первичной структуре молекулы белка зашифрована в молекуле ДНК.
  • Каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.

Задача: в трансляции участвовало 30 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Решение: если в синтезе участвовало 30 т-РНК, то они перенесли 30 аминокислот. Поскольку одна аминокислота кодируется одним триплетом, то в гене будет 30 триплетов или 90 нуклеотидов.

к оглавлению ▴

Решение задач третьего типа

Основная информация:

  • Транскрипция — это процесс синтеза и-РНК по матрице ДНК.
  • Транскрипция осуществляется по правилу комплементарности.
  • В состав РНК вместо тимина входит урацил

Задача: фрагмент одной из цепей ДНК имеет следующее строение: ААГГЦТАЦГТТГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка.

Решение: по правилу комплементарности определяем фрагмент и-РНК и разбиваем его на триплеты: УУЦ-ЦГА-УГЦ-ААУ. По таблице генетического кода определяем последовательность аминокислот: фен-арг-цис-асн.

к оглавлению ▴

Решение задач четвертого типа

Основная информация:

  • Антикодон — это последовательность из трех нуклеотидов в т-РНК, комплементарных нуклеотидам кодона и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.
  • Молекула и-РНК синтезируется на ДНК по правилу комплементарности.
  • В состав ДНК вместо урацила входит тимин.

Задача: фрагмент и-РНК имеет следующее строение: ГАУГАГУАЦУУЦААА. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК.

Решение: разбиваем и-РНК на триплеты ГАУ-ГАГ-УАЦ-УУЦ-ААА и определяем последовательность аминокислот, используя таблицу генетического кода: асп-глу-тир-фен-лиз. В данном фрагменте содержится 5 триплетов, поэтому в синтезе будет участвовать 5 т-РНК. Их антикодоны определяем по правилу комплементарности: ЦУА, ЦУЦ, АУГ, ААГ, УУУ. Также по правилу комплементарности определяем фрагмент ДНК (по и-РНК!!!): ЦТАЦТЦАТГААГТТТ.

к оглавлению ▴

Решение задач пятого типа

Основная информация:

  • Молекула т-РНК синтезируется на ДНК по правилу комплементарности.
  • Не забудьте, что в состав РНК вместо тимина входит урацил.
  • Антикодон — это последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.

Задача: фрагмент ДНК имеет следующую последовательность нуклеотидов ТТАГЦЦГАТЦЦГ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

Решение: определяем состав молекулы т-РНК: ААУЦГГЦУАГГЦ и находим третий триплет — это ЦУА. Это антикодону комплементарен триплет и-РНК — ГАУ. Он кодирует аминокислоту асп, которую и переносит данная т-РНК.

к оглавлению ▴

Решение задач шестого типа

Основная информация:

  • Два основных способа деления клеток — митоз и мейоз.
  • Изменение генетического набора в клетке во время митоза и мейоза.

Задача: в клетке животного диплоидный набор хромосом равен 34. Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

Решение: По условию, rm 2n=34. Генетический набор:

к оглавлению ▴

Решение задач седьмого типа

Основная информация:

  • Что такое обмен веществ, диссимиляция и ассимиляция.
  • Диссимиляция у аэробных и анаэробных организмов, ее особенности.
  • Сколько этапов в диссимиляции, где они проходят, какие химические реакции проходят во время каждого этапа.

Задача: в диссимиляцию вступило 10 молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.

Решение: запишем уравнение гликолиза: rm C_6H_{12}O_6 = 2ПВК + 4Н + 2АТФ. Поскольку из одной молекулы глюкозы образуется 2 молекулы ПВК и 2АТФ, следовательно, синтезируется 20 АТФ. После энергетического этапа диссимиляции образуется 36 молекул АТФ (при распаде 1 молекулы глюкозы), следовательно, синтезируется 360 АТФ. Суммарный эффект диссимиляции равен rm 360+20=380 АТФ.

к оглавлению ▴

Примеры задач для самостоятельного решения

  1. В молекуле ДНК содержится rm 31% аденина. Определите, сколько (в %) в этой молекуле содержится других нуклеотидов.
  2. В трансляции участвовало 50 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
  3. Фрагмент ДНК состоит из 72 нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.
  4. Фрагмент одной из цепей ДНК имеет следующее строение: ГГЦТЦТАГЦТТЦ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).
  5. Фрагмент и-РНК имеет следующее строение: ГЦУААУГУУЦУУУАЦ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).
  6. Фрагмент ДНК имеет следующую последовательность нуклеотидов АГЦЦГАЦТТГЦЦ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.
  7. В клетке животного диплоидный набор хромосом равен 20. Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.
  8. В диссимиляцию вступило 15 молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.
  9. В цикл Кребса вступило 6 молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

Ответы:

  1. Т=31%, Г=Ц= по 19%.
  2. 50 аминокислот, 50 триплетов, 150 нуклеотидов.
  3. 24 триплета, 24 аминокислоты, 24 молекулы т-РНК.
  4. и-РНК: ЦЦГ-АГА-УЦГ-ААГ. Аминокислотная последовательность: про-арг-сер-лиз.
  5. Фрагмент ДНК: ЦГАТТАЦААГАААТГ. Антикодоны т-РНК: ЦГА, УУА, ЦАА, ГАА, АУГ. Аминокислотная последовательность: ала-асн-вал-лей-тир.
  6. т-РНК: УЦГ-ГЦУ-ГАА-ЦГГ. Антикодон ГАА, кодон и-РНК — ЦУУ, переносимая аминокислота — лей.
  7. rm 2n=20. Генетический набор:
    1. перед митозом 40 молекул ДНК;
    2. после митоза 20 молекулы ДНК;
    3. после первого деления мейоза 20 молекул ДНК;
    4. после второго деления мейоза 10 молекул ДНК.
  8. Поскольку из одной молекулы глюкозы образуется 2 молекулы ПВК и 2АТФ, следовательно, синтезируется 30 АТФ. После энергетического этапа диссимиляции образуется 36 молекул АТФ (при распаде 1 молекулы глюкозы), следовательно, синтезируется 540 АТФ. Суммарный эффект диссимиляции равен 540+30=570 АТФ.
  9. В цикл Кребса вступило 6 молекул ПВК, следовательно, распалось 3 молекулы глюкозы. Количество АТФ после гликолиза — 6 молекул, после энергетического этапа — 108 молекул, суммарный эффект диссимиляции 114 молекул АТФ.

Итак, в этой статье приведены основные типы задач по цитологии, которые могут встретиться абитуриенту в ЕГЭ по биологии. Надеемся, что варианты задач и их решение будет полезно всем при подготовке к экзамену. Удачи!

Смотри также: Подборка заданий по цитологии на ЕГЭ по биологии с решениями и ответами.

к оглавлению ▴

Приложение I Генетический код (и-РНК)

Первое основание Второе основание Третье основание
У Ц А Г
У Фен Сер Тир Цис У
Фен Сер Тир Цис Ц
Лей Сер А
Лей Сер Три Г
Ц Лей Про Гис Арг У
Лей Про Гис Арг Ц
Лей Про Глн Арг А
Лей Про Глн Арг Г
А Иле Тре Асн Сер У
Иле Тре Асн Сер Ц
Иле Тре Лиз Арг А
Мет Тре Лиз Арг Г
Г Вал Ала Асп Гли У
Вал Ала Асп Гли Ц
Вал Ала Глу Гли А
Вал Ала Глу Гли Г

Если вам понравился наш разбор задач по цитологии — записывайтесь на курсы подготовки к ЕГЭ по биологии онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задачи поu0026nbsp;цитологии на ЕГЭ по биологии» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.05.2023

Разберем
решение задачи по определению первичной
структуры белка, если известна
последовательность нуклеотидов ДНК.

Условия
задачи
. Фрагмент молекулы ДНК
состоит из нуклеотидов, расположенных
в следующей последовательности:
ТАААЦЦГЦГАААТЦТГААГТЦ. Определите
состав и последовательность аминокислот
в полипептидной цепи, закодированной
в этом участке гена.

Решение

  1. Выписываем
    из таблицы 1 генетического кода нуклеотиды
    ДНК, разбиваем их на триплеты: ТАА –
    АЦЦ – ГЦГ — …

  2. Затем
    составляем кодоны иРНК, комплементарные
    триплетам ДНК, и записываем их строчкой
    ниже:

ДНК: ТАА – АЦЦ –
ГЦГ — …

иРНК: АУУ – УГГ –
ЦГЦ — …

  1. Определяем
    по таблице, какая аминокислота
    закодирована каждым кодоном иРНК.

  2. Определяем строение
    белка:

ДНК: ТАА – АЦЦ –
ГЦГ — …

иРНК: АУУ – УГГ –
ЦГЦ — …

Белок: изолейцин
– триптофан — аргинин…

Разберем решение другой задачи на
определение структуры ДНК по
последовательности аминокислот в белке.

Условия
задачи
. Фрагмент
молекулы белка миоглобина содержит
аминокислоты, расположенные в следующем
порядке: валин – аланин – глутаминовая
кислота – тирозин – серин – глутамин.
Напишите структуру участка молекулы
ДНК, кодирующего эту последовательность
аминокислот.

Решение

  1. По
    таблице 1 находим триплеты, кодирующие
    каждую из указанных аминокислот (в
    таблице указаны кодоны иРНК, а не ДНК,
    поскольку в синтезе белка участвуют
    непосредственно молекулы иРНК, а не
    ДНК). Код для аминокислот: валин – ГУЦ,
    аланин – ГЦЦ и т.д. Если аминокислота
    закодирована несколькими кодонами, то
    можно выбрать любой из них. Затем
    выписываем кодоны всех аминокислот в
    последовательности, соответствующей
    порядку аминокислот. Полученная цепочка
    отражает строение молекулы иРНК: ГУЦ
    — ГЦЦ – …

  2. Определяем
    строение той цепочки ДНК, которая
    кодировала строение иРНК. Для этого
    под каждым кодоном молекулы иРНК
    записываем комплементарный ему триплет
    молекулы ДНК. Состав триплетов ДНК
    определите сами: ЦАГ – ЦГГ — …

  3. ДНК
    состоит из двух цепочек, поэтому под
    кодонами 1-й цепочки ДНК записываем
    кодоны 2-й цепочки, образованные по
    принципу комплементарности:

1
цепочка ДНК: ЦАГ – ЦГГ — …

2-я цепочка ДНК:
ГТЦ – ГЦЦ — …

Соединяем
нуклеотиды 1-й цепочки вертикальными
линиями с комплементарными им нуклеотидами
2-й цепочки и получаем структуру участка
молекул ДНК.

Таблица 1 — Генетический
код иРНК

Первый

нуклеотид

Второй нуклеотид

Ц

Г

У

А

Ц

ЦЦЦ

Ц

пролин

ЦГ

ЦЦУ

ЦЦА

ЦГЦ

Ц

аргинин

ГГ

ЦГУ

ЦГА

ЦУЦ

Ц

лейцин

УГ

ЦУУ

ЦУА

Ц

гистидин

АЦ

ЦАУ

Ц

глутамин

АГ

ЦАА

Г

ГЦЦ

Г

аланин

ЦГ

ГЦУ

ГЦА

ГГЦ

Г

глицин

ГГ

ГГУ

ГГА

ГУЦ

Г

валин

УГ

ГУУ

ГУА

ГАЦ
аспарагин.

ГАУ
кислота

ГАГ
глутамин.

ГАА
кислота

У

УЦЦ

У

серин

ЦГ

УЦУ

УЦА

У

цистеин

ГЦ

УГУ

УГГ
– триптофан

УГА
– стоп-кодон

УУЦ
фенилала-

УУУ нин

У

лейцин

УА

УУГ

У

тирозин

АЦ

УАУ

У

стоп-кодон

АГ

УАА

А

АЦЦ

А

треонин

ЦГ

АЦУ

АЦА

А

серин

ГЦ

АГУ

А

аргинин

ГГ

АГА

АУЦ
изолей-

АУУ цин

АУА

АУГ – метионин

А

аспарагин

АЦ

ААУ

А

лизин

АГ

ААА

ЗАДАЧИ
ПО МОЛЕКУЛЯРНОЙ ГЕНЕТИКЕ. ГРУППА I

  1. Участок
    гена, кодирующего белок, состоит из
    последовательно расположенных
    нуклеотидов ААЦГАЦТАТЦАЦТАТАЦЦААЦГАА.
    Определите состав и последовательность
    аминокислот в полипептидной цепи,
    закодированной в этом участке гена.

  2. Участок
    гена, кодирующего одну из полипептидных
    цепей гемоглобина, состоит из кодонов
    следующего состава: АЦЦТТТГАЦЦАТГАА.
    Определите состав и последовательность
    аминокислот в полипептидной цепи.

  3. Полипептидная
    цепь А инсулина включает 12 аминокислот:
    глицин – изолейцин – валин – глутамин
    – глицин – серин – валин – цистеин –
    серин – лейцин – тирозин – глицин.
    Определите структуру участка молекулы
    ДНК, кодирующего эту полипептидную
    цепь.

  4. Фрагмент
    полипептидной цепи В инсулина включает
    8 аминокислот: глицин – изолейцин –
    валин – глутамин – глицин – цистеин
    – цистеин – аланин. Напишите порядок
    расположения и состав триплетов в
    молекуле ДНК на участке, кодирующем
    полипептидную цепь.

  5. Начальный
    участок полипептидной цепи бактерии
    E.coli
    состоит из 10 аминокислот, расположенных
    в следующем порядке: метионин – глицин
    – аргинин – тирозин – глутамин – серин
    – лейцин – фенилаланин – аланин –
    глицин. Какова последовательность
    нуклеотидов на участке ДНК, кодирующем
    полипептидную цепь?

  6. Определите,
    какие нуклеотиды м-РНК кодируют
    аминокислотный состав белковой молекулы
    в следующей последовательности:

а) цистеин – аргинин
– метионин – серин;

б) лизин – триптофан
– пролин – лейцин;

в) аспаргиновая
кислота – фенилаланин – валин –
гистидин.

  1. Участок
    гена состоит из следующих нуклеотидов:
    ГАГ ААТ ТГГ ЦТА АЦА ГТА. Выпишите
    последовательность аминокислот в
    белковой молекуле, кодируемой этим
    геном.

  2. Участок
    гена состоит из следующих нуклеотидов:
    АГГ ТТЦ ГАЦ ТЦГ ЦАЦ АТГ. Расшифруйте
    последовательность аминокислот в
    белковой молекуле, кодируемой данным
    геном.

  3. Участки молекулы
    м-РНК имеют следующий состав нуклеотидов:

а) ЦАГ ГГЦ УУЦ ГУУ
ААУ ААГ;

б) ГАЦ УГГ АГА ГУГ
ГЦГ ЦЦА;

в) УЦЦ ЦУГ УАЦ УУГ
ЦАА УУЦ.

Определите порядок
расположения аминокислот в белковой
молекуле, синтезируемой на этой м-РНК.

  1. Выпишите
    нуклеотиды м-РНК, кодирующие аминокислотный
    состав белковой молекулы в следующих
    последовательностях:

а) аспарагин –
аланин – тирозин – лизин;

б) фенилаланин –
изолейцин – валин – глицин;

в) триптофан –
гистидин – глутамин – серин.

  1. Участки молекулы
    м-РНК имеют следующий состав нуклеотидов:

а) АГУ ЦАЦ ЦГГ АЦЦ
ААГ УГЦ;

б) ААУ УАУ ГУЦ ЦГА
УГГ ГАУ;

в) УАУ ГАУ ЦЦА АЦУ
УУЦ АУГ.

Пользуясь
генетическим кодом, укажите порядок
расположения аминокислот в белковой
молекуле, синтезируемой на этой м-РНК.

  1. Укажите, какие
    нуклеотиды м-РНК кодируют аминокислотный
    состав белковой молекулы в такой
    последовательности:

а) тирозин – пролин
– треонин – изолейцин;

б) глутамин – серин
– аргинин – валин;

в) глутаминовая
кислота – цистеин – аланин – аспарагиновая
кислота.

  1. Участок
    гена состоит из следующих нуклеотидов:
    АЦА АТТ ГАГ ЦГЦ ТЦТ ТГТ. Расшифруйте
    последовательность аминокислот в
    белковой молекуле, кодируемой этим
    геном.

ЗАДАЧИ
ПО МОЛЕКУЛЯРНОЙ ГЕНЕТИКЕ. ГРУППА II

  1. Длина
    гена, контролирующего синтез белка,
    составляет 3352,4 Ао.
    Определите, сколько аминокислот входит
    в состав этого белка, если расстояние
    между двумя нуклеотидами в молекуле
    ДНК раняется 3,4 Ао.

  2. Определите
    молекулярный вес гена, детерминирующего
    образование инсулина, состоящего из
    51 аминокислоты, если известно, что
    средний молекулярный вес нуклеотида
    равен 340 дальтон.

  3. Какую
    длину имеет молекула ДНК, кодирующая
    фермент рибонуклеазу поджелудочной
    железы, если известно, что молекула
    данного фермента имеет в своем составе
    124 аминокислоты, а расстояние между
    двумя соседними нуклеотидами, измеренное
    вдоль оси спирали, составляет 3,4 Ао?

  4. При
    синдроме Фанкони (нарушение образования
    костной ткани) у больного с мочой
    выделяются аминокислоты, которым
    соответствуют следующие триплеты
    и-РНК: АУА, ГУЦ, АУГ, УЦА, УУГ, УАУ, ГУУ,
    АУУ. Определите, выделение каких
    аминокислот с мочой характерно для
    синдрома Фанкони?

  5. Определите
    количество аминокислот, составляющих
    белковую молекулу, при условии, что
    молекулярный вес гена, контролирующего
    синтез этого белка, равен 323100. Средний
    молекулярный вес одного нуклеотида
    равен 340 дальтон.

  6. Длина
    гена, детерминирующего образование
    белка, равняется 7799,6 Ао.
    Определите количество аминокислот,
    входящих в данную молекулу белка, если
    расстояние между двумя нуклеотидами
    составляет 3,4 Ао.

  7. Определите
    количество аминокислот в белковой
    молекуле, при условии, что молекулярный
    вес гена, контролирующего образование
    данного белка, равен 214200. Средний
    молекулярный вес одного нуклеотида
    составляет 340 дальтон.

  8. Определите
    молекулярный вес гена, контролирующего
    образование белка рибонуклеазы
    поджелудочной железы, состоящего из
    124 аминокислот, если известно, что
    средний молекулярный вес нуклеотида
    равен 340 дальтон.

  9. В
    состав молекулы белка входит 157
    аминокислот. Определите длину
    контролирующего ее гена, если известно,
    что расстояние между двумя нуклеотидами
    в молекуле ДНК составляет 3,4 Ао.

  10. В
    состав белковой молекулы входит 491
    аминокислота. Определите длину
    контролирующего ее гена, если известно,
    что расстояние между двумя нуклеотидами
    в молекуле ДНК составляет 3,4 Ао.

  11. В
    состав белка входят 658 аминокислот.
    Какова длина гена, который контролирует
    его синтез, если расстояние между
    нуклеотидами в молекуле ДНК равняется
    3,4 Ао?

  12. Считая,
    что средняя относительная молекулярная
    масса аминокислоты около 110, а нуклеотида
    – 340 дальтон, прикиньте, что тяжелее:
    белок или его ген?

  13. Нуклеиновая
    кислота фага имеет относительную
    молекулярную массу порядка 107.
    Сколько, примерно, белков закодировано
    в ней, если принять, что типичный белок
    состоит в среднем из 400 мономеров, а
    молекулярная масса нуклеотида 340
    дальтон?

ЗАДАЧИ
ПО МОЛЕКУЛЯРНОЙ ГЕНЕТИКЕ. ГРУППА III

  1. В 6-ом триплете
    гена (ЦТТ), кодирующего синтез –цепи
    гемоглобина, произошла мутация, в
    результате которой в полипептиде вместо
    глутаминовой кислоты на шестом месте
    оказался валин. Определите, какой
    триплет оказался в гене.

  2. В результате
    мутации на участке гена, содержащем 6
    триплетов: ААЦ – ТАТ – ГАЦ – АЦЦ – ГАА
    – ААА, произошло замещение в третьем
    триплете: вместо гуанина обнаружен
    цитозин. Напишите состав аминокислот
    в полипептиде до и после мутации.

  3. Определите
    порядок расположения аминокислот на
    одном из участков молекулы белка, если
    известно, что он кодируется такой
    последовательностью нуклеотидов ДНК:
    АЦЦ ТАЦ АГТ ЦТГ ГАТ. Каким будет ответ,
    если химическим путем из молекулы ДНК
    будут удалены третий и восьмой нуклеотиды?

  4. Исследованиями
    было установлено, что 22% общего числа
    нуклеотидов определенной и-РНК приходится
    на гуанин, 35% — на цитозин, 19% — на аденин,
    24% — на урацил. Определите процентный
    состав азотистых оснований двухцепочной
    ДНК, слепком с которой является эта
    и-РНК.

  5. Исследования
    генетиков показали, что 17% общего числа
    нуклеотидов данной и-РНК приходится
    на гуанин, 29% — на урацил, 33% — на цитозин,
    21% — на аденин. Определите процентный
    состав азотистых оснований двухцепочной
    ДНК, слепком с которой является
    вышеуказанная и-РНК.

  6. Укажите
    последовательность аминокислот в
    белковой молекуле, кодируемой следующими
    нуклеотидами ДНК: АТА ЦТГ АЦА ТТА ГАА.
    Какой будет последовательность
    аминокислот, если между десятым и
    одиннадцатым нуклеотидами произойдет
    вставка гуанина?

  7. Напишите
    последовательность расположения
    аминокислот на одном из участков
    молекулы белка, если известно, что он
    кодируется такой последовательностью
    нуклеотидов ДНК: АТГ ТЦГ ЦГТ ААА ЦАТ.
    Как изменится ответ, если химическим
    путем из молекулы ДНК будет удален
    десятый нуклеотид?

  8. Укажите
    порядок расположения аминокислот на
    одном из участков молекулы белка, если
    известно, что он кодируется такой
    последовательностью нуклеотидов ДНК:
    ГГТ АЦА ЦТЦ ААГ ГТА. Как изменится ответ,
    если химическим путем из молекулы ДНК
    будет удален шестой нуклеотид?

  9. Какие
    аминокислоты в белковой молекуле
    кодируются такой последовательностью
    нуклеотидов ДНК: ТАЦ ЦГА ГАГ ГТА АЦЦ.
    Как изменится состав белковой молекулы,
    если под действием облучения второй
    нуклеотид в ДНК будет замещен на тимин,
    а четырнадцатый – на гуанин?

  10. Выпишите
    последовательность аминокислот в
    белковой молекуле, при условии, что она
    кодируется следующими нуклеотидами
    молекулы ДНК: ЦАТ ААГ ТТА ЦАТ ЦГА.
    Назовите последовательность аминокислот
    в молекуле белка в случае, если между
    вторым и третьим нуклеотидами произойдет
    вставка цитозина и тимина.

  11. С
    последовательности каких аминокислот
    начинается белок, если он закодирован
    следующими нуклеотидами ДНК: ГГГ АТГ
    ЦЦА ГГЦ ГТТ. Каким станет начало цепочки
    синтезируемого белка, если под действием
    облучения второй нуклеотид окажется
    выбитым из молекулы ДНК?

  12. Определите
    последовательность аминокислот,
    входящих в состав белковой молекулы,
    если известно, что она закодирована
    следующими нуклеотидами ДНК: ТАТ АТА
    ТГЦ АЦГ ГЦТ. Как отразится на начале
    цепочки синтезируемого белка выпадение
    из молекулы ДНК пятого нуклеотида под
    действием облучения?

  13. Назовите
    последовательные мономеры участка
    молекулы белка, который синтезируется
    на основе информации, закодированной
    в молекуле ДНК с таким порядком
    нуклеотидов: ГГЦ ГАГ ГТЦ АГТ ААГ. Покажите
    изменения в строении белковой молекулы
    при удалении из состава ДНК двенадцатого
    нуклеотида.

ЗАДАЧИ
ПО МОЛЕКУЛЯРНОЙ ГЕНЕТИКЕ. ГРУППА IV

  1. Ниже приведен
    фрагмент кодирующей цепи молекулы ДНК:
    ТТТ ТЦЦ ЦАГ ЦГЦ. Определите: а) какие
    точковые мутации в указанном фрагменте
    не приведут к изменению генетической
    информации (вырожденность кода); б)
    какие точковые мутации в указанном
    фрагменте приведут к изменению
    генетического кода?

  2. Ниже приведен
    фрагмент кодирующей цепи молекулы ДНК
    и две цепи, возникшие в результате
    точковых мутаций в исходной цепи ДНК:

ЦЦТ АГА ГТЦ ЦТГ ААЦ ТГГ ЦТА

ЦЦТ АГГ ТЦТ ГАЦ ТГГ ЦТА

ЦЦТ АГГ АГТ ЦАЦ ТГА ТАЦ ТГГ ЦТА

а)
определите типы мутаций; б) укажите
последовательность аминокислот в
полипептидах, кодируемых молекулами
ДНК; в) попытайтесь объяснить, почему
обнаружение подобных мутаций является
генетическим доказательством триплетности
кода наследственности.

  1. У человека,
    свиньи и кролика молекулы белкового
    гормона инсулина различаются лишь по
    одной аминокислоте. У кролика в положении
    30 в цепи имеется серин, у свиней –
    аланин, у человека – треонин. Установите,
    какие точковые мутации могли привести
    к возникновению вариантов инсулина?

  2. Установите,
    какие аминокислотные замены произошли
    в гемоглобинах в результате точковых
    мутаций в генах, контролирующих синтез
    цепи гемоглобинов: а) -цепь,
    мутация в 6-ом триплете; ЦТТ – нормальный
    гемоглобин (HbA); ЦАТ –
    аномальный гемоглобин (HbS);
    ТТТ – аномальный гемоглобин (HbC);
    б) -цепь, мутация в
    23-ем триплете; ЦТТ – нормальный гемоглобин
    (HbA); ГТТ – аномальный
    гемоглобин (Hb Мемфис);
    ТТТ – аномальный гемоглобин (Hb
    Чад).

  3. В связи с
    «вырожденностью» генетического кода
    любая аминокислота в белковой молекуле
    может быть закодирована не одним, а 2-6
    разными триплетами. Закодируйте
    следующую последовательность аминокислот:
    изолейцин – глутаминовая кислота –
    фенилаланин – аргинин – серин, используя
    одни, а затем другие триплеты генетического
    кода.

  4. Рибонуклеаза
    гипофиза содержит следующий количественный
    состав аминокислот: лизин – 7, глутамин
    – 9, треонин – 15, аланин – 8, фенилаланин
    – 6, аргинин – 2, серин – 21, аспарагиновая
    кислота – 14, гистидин – 5, метионин –
    8, тирозин – 6, цистеин – 12, глутаминовая
    кислота – 3, аспарагин – 3, пролин – 7,
    валин – 16, лейцин – 5, глицин – 10,
    изолейцин – 6. Определите количественное
    соотношение нуклеотидов
    (аденин+тимин)/(гуанин+цитозин) на участке
    цепи ДНК, кодирующем данную рибонуклеазу.

  5. При изучении
    крови людей были найдены типы гемоглобина,
    отклоняющиеся от нормы. Из обозначили:
    А – нормальный гемоглобин, S
    — гемоглобин из крови больных с
    серповидноклеточной анемией, С – другой
    аномальный тип. В.Ингрэм обнаружил, что
    они различаются по последовательностям
    аминокислот в –цепи
    гемоглобина:

— у гемоглобина А:

Гис – Вал – Лей – Лей – Тре – Про –
Глу – Глу – Лиз;

— у гемоглобина S:

Гис
– Вал – Лей – Лей – Тре – Про – Вал –
Глу – Лиз;

— у гемоглобина С:

Гис – Вал – Лей – Лей – Тре – Про –
Лиз – Глу – Лиз.

Определите
количественное соотношение нуклеотидов
(аденин+тимин)/(гуанин+цитозин) в цепях
ДНК, кодирующих каждый из этих типов
гемоглобина.

  1. В связи с
    «вырожденностью» генетического кода
    любая аминокислота в белковой молекуле
    может быть закодирована не одним, а 2-6
    разными триплетами. Закодируйте
    следующую последовательность аминокислот:
    серин – лейцин – лизин – аланин — валин,
    используя одни, а затем другие триплеты
    генетического кода.

  2. Один из
    ферментов поджелудочной железы имеет
    следующий количественный состав
    аминокислот: лизин – 12, глутамин – 5,
    треонин – 11, аланин – 6, фенилаланин –
    7, аргинин – 3, серин – 18, аспарагиновая
    кислота – 10, гистидин – 2, метионин –
    7, тирозин – 3, цистеин – 11, глутаминовая
    кислота – 6, аспарагин – 5, пролин – 2,
    валин – 9, лейцин – 1, глицин – 4, изолейцин
    – 4. Определите количественное соотношение
    нуклеотидов (аденин+тимин)/(гуанин+цитозин)
    на участке цепи ДНК, кодирующем этот
    фермент.

  3. Закодируйте
    следующую последовательность аминокислот:
    тирозин – аспарагин – треонин – пролин
    – цистеин, используя одни, а затем
    другие триплеты, учитывая «вырожденность»
    генетического кода.

  4. Одна из цепей
    белка инсулина (так называемая цепь В)
    начинается со следующих аминокислот:
    фенилаланин – валин – аспарагин –
    глутамин – гистидин – лейцин. Напишите
    возможную последовательность расположения
    нуклеотидов в начале участка молекулы
    ДНК, хранящую информацию об этом белке.

  5. Инсулин
    состоит из А и В цепей, включающих 51
    аминокислоту. Однако молекулы инсулина
    лошади, барана и быка несколько
    различаются по составу. Количество
    различных аминокислот в молекуле
    инсулина этих животных приведено ниже
    в таблице 4. Определите коэффициент
    видовой специфичности инсулина для
    указанных сельскохозяйственных
    животных.

Таблица 2 – Различия в аминокислотном
составе молекул инсулина

сельскохозяйственных животных

Аминокислота

Число
аминокислот в инсулине…

барана

быка

лошади

Глицин

5

4

5

Валин

5

5

4

Изолейцин

1

1

2

Лейцин

6

6

6

Фенилаланин

3

3

3

Тирозин

5

5

5

Серин

2

3

2

Треонин

1

1

2

Лизин

1

1

1

Аргинин

1

1

1

Гистидин

2

2

2

Цистеин

6

6

6

Пролин

1

1

1

Аланин

3

3

2

Глутамин

6

6

6

Аспарагин

3

3

3

  1. Ионизируюшая
    радиация способна иногда «выбивать»
    отдельные нуклеотиды из молекулы
    нуклеиновой кислоты без нарушения ее
    целостности. Допустим, что в одном
    случае из молекулы удален только один
    нуклеотид, в другом – три нуклеотида
    подряд, а в третьем – тоже три нуклеотида,
    но расположенные на некотором расстоянии
    друг от друга. Как это отразится на
    белке, синтезируемом на основе
    наследственной информации, закодированной
    в такой поврежденной молекуле? В каких
    случаях (из указанных трех) фактически
    образующийся белок будет отличаться
    от нормального сильнее всего или всего
    слабее?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Определение нуклеотидов в ДНК и РНК. Примеры решения задач

Определение массы и длины белка закодированного на ДНК

Задача 5.
Масса гена, который кодирует белок, равна 207000. Определите массу и длину белка закодированного на ДНК.
Решение:
Линейная длина одного аминокислотного остатка в полипептидной цепи – 0,35 нм, или 3,5 А(Ангстрем);
Средняя молекулярная масса одного аминокислотного остатка – 110 г/ моль;
Средняя молекулярная масса одного нуклеотидного остатка – 345 г/ моль.
Определим сколько нуклеотидов содержится в гене имеющем массу 207000, зная, что молекулярная масса одного нуклеотида равна 345 г/ моль. Тогда получим число нуклеотидов в гене:

207000/345 = 600 нуклеотидов. 

Известно, что одну аминокислоту кодирует триплет, состоящий из трех нуклеотида. Определим сколько аминокислот содержит белок, если ген содержит 600 нуклеотидов, получим:

600/3 =200 аминокислот. 

Так как масса одной аминокислоты рана 120 г/моль, то массу всего белка рассчитаем, получим:

200 . 110 = 22000 г/ моль. 

Длина одной аминокислоты равна 0,3 нм. Тогда весь белок имеет длину:

200 . 0,35 = 70 нм.

Ответ: масса белка рана 22000 г/моль; длина белка — 70 нм.
 


Определение длины фрагмента молекулы ДНК


Задача 6. 
Дана молекула ДНК с относительной  молекулярной массой 75 900, из них 10350 приходится на долю адениловых нуклеотидов.
Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.
Решение:
Расстояние между двумя нуклеотидами – 0,34 нм;
молекулярная масса одного нуклеотида – 345 г/моль.

1) Находим количество нуклеотидов:

а) 75 900 : 345 = 220 (нуклеотидов в ДНК),

б) 10350 : 345 = 30 (адениловых нуклеотидов в этой ДНК),

в) ∑(Г + Ц) = 220 – (30 + 30) = 160, т.е. Г = Ц = 80, их по 80;

2) Определяем длину фрагмента ДНК, получим:

220 нуклеотидов в двух цепях, значит в одной – 110.

Тогда 

L(ДНК) = 110 . 0,34 = 37,4 (нм).

Ответ: 37,4 (нм).
 


Определение аминокислотных остатков в молекуле белка

Задача 7. 
Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если Мглицина = 75,1 г/моль? Сколько аминокислотных остатков в этом белке?
Решение:
Молекулярная масса одной аминокислоты = 110 г/моль;
М(глицина) = а = 75,1 г/моль; 
в = 0,5%.

1) Находим минимальну массу белка

Вычисление минимальной молекулярной массы белка определяем по формуле:

 Мmin = (а/в) . 100%,

где

Мmin – минимальная молекулярная масса белка, а – атомная или молекулярная масса компонента,
в – процентное содержание компонента.

Тогда

Мmin = (75,1 г/моль /0,5%) . 100% = 15 020 г/моль.

2) Расчитаем количество аминокислотных остатков, получим:

15 020 : 110 ≈ 136 (аминокислот в этом белке).

Ответ: Аминокислотных остатков в белке  136.
 


Вычисление процентного содержания нуклеотидов в ДНК и длину ее молекулы


Задача 8. 
В молекуле ДНК 20% гуаниловых нуклеотидов. Определите процентное содержание Ц, Т, А и длину молекулы ДНК, если в ней всего 400 нуклеотидов.
Решение:
Расстояние между двумя нуклеотидами – 0,34 нм.
В соответствии с принципом комплементарности количество (Г) равно количеству (Ц), т.е. (Г) = (Ц) = 30%. Тогда их совместное количество: (Г + Ц) = 60%, а количество (А + Т) = 100 — 60 = 40%, а в отдельности (А) = (Т) = 40/2 = 20%. Длина молекулы ДНК определяется количеством нуклеотидов в одной цепи (т.е. количеством пар нуклеотидов) умноженным на длину нуклеотида. В ДНК 400 нуклеотидов (шт.) или 200 пар, расстояние между соседними парами 0,34 нм, следовательно длина молекулы ДНК будет: 200 х 0,34 = 68 нм.

Ответ: (Г) = 30%, (Ц) = 30%, (А) = 20%, (Т) = 20%; длина ДНК 68 нм.


Понравилась статья? Поделить с друзьями:
  • Как найти порт видеорегистратора
  • Как найти банковский идентификационный код
  • Как найти название картины по ее изображению
  • Как составить пропорции в русском языке
  • Как исправить аккаунт в компьютере