Как найти количество движения молекулы

• Основное уравнение
кинетической теории газов

,

где
р — давление
газа, n
концентрация
молекул (число молекул в единице объема),

средняя кинетическая энергия
поступательного движения одной молекулы,
угловые скобки обозначают осреднение
по

большому
ансамблю частиц, m0
масса
молекулы,

средняя квадратичная скорость движения
молекул.

• Средняя
кинетическая энергия поступательного
движения одной молекулы

,

где
k
=
1,38·10-23
Дж/К –

постоянная Больцмана, Т
– абсолютная температура.


Энергия теплового
движения молекул (внутренняя энергия
идеального газа):

,

где
i
– число степеней свободы молекулы, m
– масса газа, М
– молярная
масса данного вещества, R
= 8,31 Дж/(кг·К)

универсальная газовая постоянная, Т
– абсолютная
температура.

• Числом степеней
свободы называется число независимых
координат полностью определяющих
положение тела в пространстве. Любая
молекула имеет 3 поступательных степени
свободы (iпост=3).
Молекулы,
кроме одноатомных, имеют еще вращательные
степени свободы (у двухатомных молекул
iвр
= 2
, у
многоатомных iвр
= 3
) и
колебательные степени свободы, которые
при невысоких (комнатных) температурах
не учитываются.

• В соответствии
с законом Больцмана о равномерном
распределении энергии по степеням
свободы, в
среднем на каждую степень свободы
молекулы приходится одинаковая энергия,
равная
.

• Средняя
кинетическая энергия вращательного
движения одной молекулы:


Средняя суммарная
кинетическая энергия одной молекулы:

,

где
i
– число степеней свободы молекулы
(i=iпост+
iвр).

• Средняя
квадратичная скорость молекулы:

• Средняя
арифметическая скорость (средняя
скорость теплового движения)молекулы:

,

где m0
– масса одной молекулы, М
– молярная масса вещества, причем
,

NA=
6,023·10
23
1/моль

число Авогадро.

• Барометрическая
формула характеризует изменение давления
газа с высотой в поле сил тяжести:

или
,

где
p
давление
на высоте h
над уровнем
моря, p0
– давление на высоте h
=
0,
g
ускорение
свободного падения. Эта формула
приближенная, так как температуру нельзя
считать постоянной для большой разности
высот.


Распределение
Больцмана для концентрации частиц в
силовом поле имеет вид:

,

где
n
– концентрация частиц, обладающих
потенциальной энергией Wп
,
n0
концентрация
частиц в точках поля с Wп
=
0.

Примеры
решения задач

Задача
1.
Найти
среднюю кинетическую энергию
вращательного движения одной молекулы
кислорода при температуреТ
= 350 К, а также среднюю кинетическую
энергию
вращательного движения всех молекул
кислорода массойm
= 4 г.

Решение.
Согласно закону Больцмана о равном
распределении энергии по степеням
свободы на каждую степень свободы
приходится энергия равная
,
гдеk
– постоянная Больцмана, Т
абсолютная
температура.

Так
как молекула кислорода двухатомная, у
нее две вращательных степени свободы,
поэтому средняя кинетическая энергия
вращательного движения выразится
формулой:

Подставим
в полученную формулу значения k
= 1,38·10-23
Дж/К, и Т
= 350 К, получим

Кинетическая
энергия всех N
молекул, содержащихся в 4 г кислорода
равна:

Число
всех молекул газа можно вычислить по
формуле:

,
где NA
число
Авогадро,

количество вещества,m
– масса газа, М
молярная
масса. Учтя приведенные выражения,
получим:

Подставляем
числовые значения: NA
= 6,023·1023
1/моль ; m
= 4 г = 4·10-3
кг ; М
= 32·10-3
кг/моль;
=
4,83·10-21
Дж:

Выведем
размерность полученной величины:

Задача
2.
В
воздухе при нормальных условиях взвешены
одинаковые частицы. Известно, что
концентрация частиц уменьшается в два
раза на высоте h
= 20 м. Определить массу частицы.

Решение.
Воспользуемся формулой распределения
Больцмана:

,

где
Wп
=
m0gh
потенциальная
энергия частицы в поле сил тяжести.

Подставив
это выражение в формулу распределения
Больцмана, получим:

Логарифмируем
обе части уравнения по основанию е,
тогда:

,
откуда

Подставив
числовые значения в полученную формулу,
найдем

Выведем
размерность полученной величины:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Молекулярная физика Основные формулы

1. Основы молекулярно-кинетической теории. Газовые законы

1.1 Количество вещества

Количество вещества

m — масса;

μ — молярная масса вещества;

N — число молекул;

NA = 6,02·1023 моль-1 — число Авогадро

1.2 Основное уравнение молекулярно-кинетической теории идеального газа

Основное уравнение молекулярно-кинетической теории идеального газа

p — давление идеального газа;

m — масса одной молекулы;

n = N/V — концентрация молекул;

V — объем газа;

N — число молекул;

Среднее значение квадрата скорости молекул — среднее значение квадрата скорости молекул.

1.3 Средняя квадратичная скорость молекул идеального газа

Средняя квадратичная скорость молекул идеального газа

k = 1,38·10-23 Дж/К — постоянная Больцмана;

R = kNA = 8,31 Дж/(моль·К) — универсальная газовая постоянная;

T = t+273 — абсолютная температура;

t — температура по шкале Цельсия.

1.4 Средняя кинетическая энергия молекулы одноатомного газа

Средняя кинетическая энергия молекулы одноатомного газа

1.5 Давление идеального газа

Давление идеального газа

n — концентрация молекул;

k — постоянная Больцмана;

T — абсолютная температура.

1.6 Закон Бойля-Мариотта

Закон Бойля-Мариотта

p — давление;

V — объем газа.

1.7 Закон Шарля

Закон Закон Шарля

p0 — давление газа при 0 °С;

α = 1/273 °C-1 — температурный коэффициент давления.

1.8 Закон Гей-Люссака

Закон Гей-Люссака

V0 — объем газа при 0 °С.

1.9 Уравнение Менделеева-Клапейрона

Уравнение Менделеева-Клапейрона

1.10 Объединенный закон газового состояния (уравнение Клапейрона)

Объединенный закон газового состояния

1.11 Закон Дальтона

Закон Дальтона

pi — парциальное давление i-й компоненты смеси газов.

2. Основы термодинамики

2.1 Внутренняя энергия идеального одноатомного газа

Внутренняя энергия идеального одноатомного газа

ν — количество вещества;

R = 8,31 Дж/(моль·К) — универсальная газовая постоянная;

T — абсолютная температура.

2.2 Элементарная работа, совершаемая газом,

при изменении объема на бесконечно малую величину dV

Элементарная работа, совершаемая газом

p — давление газа.

При изменении объема от V1 до V2

Работа, совершаемая газом

2.3 Первый закон термодинамики

Первый закон термодинамики

ΔQ — количество подведенной теплоты;

ΔA — работа, совершаемая веществом;

ΔU — изменение внутренней энергии вещества.

2.4 Теплоемкость идеального газа

Теплоемкость идеального газа

ΔQ — количество переданной системе теплоты на участке процесса;

ΔT — изменение температуры на этом участке процесса.

Оглавление:

  • Основные теоретические сведения
    • Основные положения МКТ
    • Основное уравнение МКТ идеального газа
    • Уравнение состояния идеального газа или уравнение Клапейрона-Менделеева
    • Газовые законы
    • Графическое изображение изопроцессов
    • Неизопроцессы
    • Изменение количества или массы вещества
    • Перегородки или поршни
    • Газовые законы и гидростатика
    • Тепловое расширение тел

Основные теоретические сведения

Основные положения МКТ

К оглавлению…

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. В основе молекулярно-кинетической теории лежат три основных положения:

  • Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы (соответственно: катионы и анионы).
  • Атомы и молекулы находятся в непрерывном хаотическом движении и взаимодействии, скорость которого зависит от температуры, а характер – от агрегатного состояния вещества.
  • Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Атом – наименьшая химически неделимая частица элемента (атом железа, гелия, кислорода). Молекула – наименьшая частица вещества, сохраняющая его химические свойства. Молекула состоит из одного и более атомов (вода – Н2О – 1 атом кислорода и 2 атома водорода). Ион – атом или молекула, у которых один или несколько электронов лишние (или электронов не хватает).

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10–10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше. 

Беспорядочное хаотическое движение молекул называется тепловым движением. Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах молекулы конденсируются в жидкое или твердое вещество. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом (аморфные тела) или образовывать упорядоченные объемные структуры (кристаллические тела).

В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка 10–8 м, то есть в сотни раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе.

Идеальный газ – это газ, молекулы которого не взаимодействуют друг с другом, за исключением процессов упругого столкновения и считаются материальными точками.

В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль). Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в 0,012 кг углерода 12C. Молекула углерода состоит из одного атома. Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро: NА = 6,022·1023 моль–1.

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории. Количество вещества определяется как отношение числа N частиц (молекул) вещества к постоянной Авогадро NА, или как отношение массы к молярной массе:

Формула Химическое количество вещества

Массу одного моля вещества принято называть молярной массой M. Молярная масса равна произведению массы m0 одной молекулы данного вещества на постоянную Авогадро (то есть на количество частиц в одном моле). Молярная масса выражается в килограммах на моль (кг/моль). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса. В таблице Менделеева молярная масса указана в граммах на моль. Таким образом имеем еще одну формулу:

Формула Масса одной молекулы вещества

где: M – молярная масса, NA – число Авогадро, m0 – масса одной частицы вещества, N – число частиц вещества содержащихся в массе вещества m. Кроме этого понадобится понятие концентрации (количество частиц в единице объема):

Формула Определение концентрации

Напомним также, что плотность, объем и масса тела связаны следующей формулой:

Формула Связь массы, плотности и объёма

Если в задаче идет речь о смеси веществ, то говорят о средней молярной массе и средней плотности вещества. Как и при вычислении средней скорости неравномерного движения, эти величины определяются полными массами смеси:

Средняя плотность вещества

Средняя молярная масса вещества

Не забывайте, что полное количество вещества всегда равно сумме количеств веществ, входящих в смесь, а с объемом надо быть аккуратными. Объем смеси газов не равен сумме объемов газов, входящих в смесь. Так, в 1 кубометре воздуха содержится 1 кубометр кислорода, 1 кубометр азота, 1 кубометр углекислого газа и т.д. Для твердых тел и жидкостей (если иное не указано в условии) можно считать, что объем смеси равен сумме объемов ее частей.

Основное уравнение МКТ идеального газа

К оглавлению…

При своем движении молекулы газа непрерывно сталкиваются друг с другом. Из-за этого характеристики их движения меняются, поэтому, говоря об импульсах, скоростях, кинетических энергиях молекул, всегда имеют в виду средние значения этих величин.

Число столкновений молекул газа в нормальных условиях с другими молекулами измеряется миллионами раз в секунду. Если пренебречь размерами и взаимодействием молекул (как в модели идеального газа), то можно считать, что между последовательными столкновениями молекулы движутся равномерно и прямолинейно. Естественно, подлетая к стенке сосуда, в котором расположен газ, молекула испытывает столкновение и со стенкой. Все столкновения молекул друг с другом и со стенками сосуда считаются абсолютно упругими столкновениями шариков. При столкновении со стенкой импульс молекулы изменяется, значит на молекулу со стороны стенки действует сила (вспомните второй закон Ньютона). Но по третьему закону Ньютона с точно такой же силой, направленной в противоположную сторону, молекула действует на стенку, оказывая на нее давление. Совокупность всех ударов всех молекул о стенку сосуда и приводит к возникновению давления газа. Давление газа – это результат столкновений молекул со стенками сосуда. Если нет стенки или любого другого препятствия для молекул, то само понятие давления теряет смысл. Например, совершенно антинаучно говорить о давлении в центре комнаты, ведь там молекулы не давят на стенку. Почему же тогда, поместив туда барометр, мы с удивлением обнаружим, что он показывает какое-то давление? Правильно! Потому, что сам по себе барометр является той самой стенкой, на которую и давят молекулы.

Поскольку давление есть следствие ударов молекул о стенку сосуда, очевидно, что его величина должна зависеть от характеристик отдельно взятых молекул (от средних характеристик, конечно, Вы ведь помните про то, что скорости всех молекул различны). Эта зависимость выражается основным уравнением молекулярно-кинетической теории идеального газа:

Формула Основное уравнение молекулярно-кинетической теории идеального газа

где: p — давление газа, n — концентрация его молекул, m0 — масса одной молекулы, vкв — средняя квадратичная скорость (обратите внимание, что в самом уравнении стоит квадрат средней квадратичной скорости). Физический смысл этого уравнения состоит в том, что оно устанавливает связь между характеристиками всего газа целиком (давлением) и параметрами движения отдельных молекул, то есть связь между макро- и микромиром.

Следствия из основного уравнения МКТ

Как уже было отмечено в предыдущем параграфе, скорость теплового движения молекул определяется температурой вещества. Для идеального газа эта зависимость выражается простыми формулами для средней квадратичной скорости движения молекул газа:

Формула Средняя квадратичная скорость молекул

где: k = 1,38∙10–23 Дж/К – постоянная Больцмана, T – абсолютная температура. Сразу же оговоримся, что далее во всех задачах Вы должны, не задумываясь, переводить температуру в кельвины из градусов Цельсия (кроме задач на уравнение теплового баланса). Закон трех постоянных:

Формула Связь постоянной Больцмана, постоянной Авогадро и универсальной газовой постоянной

где: R = 8,31 Дж/(моль∙К) – универсальная газовая постоянная. Следующей важной формулой является формула для средней кинетической энергии поступательного движения молекул газа:

Формула Средняя кинетическая энергия поступательного движения одной молекулы

Оказывается, что средняя кинетическая энергия поступательного движения молекул зависит только от температуры, одинакова при данной температуре для всех молекул. Ну и наконец, самыми главными и часто применяемыми следствиями из основного уравнения МКТ являются следующие формулы:

Формула Следствия из основного уравнения МКТ

Измерение температуры

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты.

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.

Для измерения температуры используются физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура 0°С, а точке кипения воды: 100°С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0°С и 100°С принимается равным 1°С.

Английский физик У.Кельвин (Томсон) в 1848 году предложил использовать точку нулевого давления газа для построения новой температурной шкалы (шкала Кельвина). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

Перевод температуры из шкалы Цельсия в шкалу Кельвина

При этом изменение температуры на 1ºС соответствует изменению температуры на 1 К. Изменения температуры по шкале Цельсия и Кельвина равны. В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К. Например, комнатная температура TС = 20°С по шкале Кельвина равна TК = 293 К. Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

Уравнение состояния идеального газа или уравнение Клапейрона-Менделеева

К оглавлению…

Уравнение состояние идеального газа является очередным следствие из основного уравнения МКТ и записывается в виде:

Формула Уравнение состояния идеального газа Уравнение Клапейрона-Менделеева

Данное уравнение устанавливает связь между основными параметрами состояния идеального газа: давлением, объемом, количеством вещества и температурой. Очень важно, что эти параметры взаимосвязаны, изменение любого из них неизбежно приведет к изменению еще хотя бы одного. Именно поэтому данное уравнение и называют уравнением состояния идеального газа. Оно было открыто сначала для одного моля газа Клапейроном, а впоследствии обобщено на случай большего количество молей Менделеевым.

Если температура газа равна Tн = 273 К (0°С), а давление pн = 1 атм = 1·105 Па, то говорят, что газ находится при нормальных условиях.

Газовые законы

К оглавлению…

Решение задач на расчет параметров газа значительно упрощается, если Вы знаете, какой закон и какую формулу применить. Итак, рассмотрим основные газовые законы.

1. Закон Авогадро. В одном моле любого вещества содержится одинаковое количество структурных элементов, равное числу Авогадро.

2. Закон Дальтона. Давление смеси газов равно сумме парциальных давлений газов, входящих в эту смесь:

Формула Давление смеси газов Закон Дальтона

Парциальным давлением газа называют то давление, которое он бы производил, если бы все остальные газ внезапно исчезли из смеси. Например, давление воздуха равно сумме парциальных давлений азота, кислорода, углекислого газа и прочих примесей. При этом каждый из газов в смеси занимает весь предоставленный ему объем, то есть объем каждого из газов равен объему смеси.

3. Закон Бойля-Мариотта. Если масса и температура газа остаются постоянными, то произведение давления газа на его объем не изменяется, следовательно:

Формула Закон Бойля-Мариотта

Процесс, происходящий при постоянной температуре, называют изотермическим. Обратите внимание, что такая простая форма закона Бойля-Мариотта выполняется только при условии, что масса газа остается неизменной.

4. Закон Гей-Люссака. Сам закон Гей-Люссака не представляет особой ценности при подготовке к экзаменам, поэтому приведем лишь следствие из него. Если масса и давление газа остаются постоянными, то отношение объема газа к его абсолютной температуре не изменяется, следовательно:

Формула Закон Гей-Люссака

Процесс, происходящий при постоянном давлении, называют изобарическим или изобарным. Обратите внимание, что такая простая форма закона Гей-Люссака выполняется только при условии, что масса газа остается неизменной. Не забывайте про перевод температуры из градусов Цельсия в кельвины.

5. Закон Шарля. Как и закон Гей-Люссака, закон Шарля в точной формулировке для нас не важен, поэтому приведем лишь следствие из него. Если масса и объем газа остаются постоянными, то отношение давления газа к его абсолютной температуре не изменяется, следовательно:

Формула Закон Шарля

Процесс, происходящий при постоянном объеме, называют изохорическим или изохорным. Обратите внимание, что такая простая форма закона Шарля выполняется только при условии, что масса газа остается неизменной. Не забывайте про перевод температуры из градусов Цельсия в кельвины.

6. Универсальный газовый закон (Клапейрона). При постоянной массе газа отношение произведения его давления и объема к температуре не изменяется, следовательно:

Формула Универсальный газовый закон Клапейрона

Обратите внимание, что масса должна оставаться неизменной, и не забывайте про кельвины.

Итак, существует несколько газовых законов. Перечислим признаки того, что нужно применять один из них при решении задачи:

  1. Закон Авогадро применяется во всех задачах где речь идет о количестве молекул.
  2. Закон Дальтона применяется во всех задачах, в которых идет речь о смеси газов.
  3. Закон Шарля применяют в задачах, когда объем газа остается неизменным. Обычно это или сказано явно, или в задаче присутствуют слова «газ в закрытом сосуде без поршня».
  4. Закон Гей-Люссака применяют, если неизменным остается давление газа. Ищите в задачах слова «газ в сосуде, закрытом подвижным поршнем» или «газ в открытом сосуде». Иногда про сосуд ничего не сказано, но по условию понятно, что он сообщается с атмосферой. Тогда считается, что атмосферное давление всегда остается неизменным (если в условии не сказано иного).
  5. Закон Бойля-Мариотта. Тут сложнее всего. Хорошо, если в задаче написано, что температура газа неизменна. Чуть хуже, если в условии присутствует слово «медленно». Например, газ медленно сжимают или медленно расширяют. Еще хуже, если сказано, что газ закрыт теплонепроводящим поршнем. Наконец, совсем плохо, если про температуру не сказано ничего, но из условия можно предположить, что она не изменяется. Обычно в этом случае ученики применяют закон Бойля-Мариотта от безысходности.
  6. Универсальный газовый закон. Его используют, если масса газа постоянна (например, газ находится в закрытом сосуде), но по условию понятно, что все остальные параметры (давление, объем, температура) изменяются. Вообще, часто вместо универсального закона можно применять уравнение Клапейрона-Менделеева, вы получите правильный ответ, только в каждой формуле будете писать по две лишние буквы.

Графическое изображение изопроцессов

К оглавлению…

Во многих разделах физики зависимость величин друг от друга удобно изображать графически. Это упрощает понимание взаимосвязи параметров, происходящих в системе процессов. Такой подход очень часто применяется и в молекулярной физике. Основными параметрами, описывающими состояние идеального газа, являются давление, объем и температура. Графический метод решения задач и состоит в изображении взаимосвязи этих параметров в различных газовых координатах. Существует три основных типа газовых координат: (p; V), (p; T) и (V; T). Заметьте, что это только основные (наиболее часто встречающиеся типы координат). Фантазия составителей задач и тестов не ограничена, поэтому Вы можете встретить и любые другие координаты. Итак, изобразим основные газовые процессы в основных газовых координатах.

Изобарный процесс (p = const)

Изобарным процессом называют процесс, протекающий при неизменным давлении и массе газа. Как следует из уравнения состояния идеального газа, в этом случае объем изменяется прямо пропорционально температуре. Графики изобарического процесса в координатах рV; VТ и рТ имеют следующий вид:

График изобарного процесса

Обратите внимание на то, что продолжение графика в VT координатах направлено точно в начало координат, однако этот график никогда не сможет начаться прямо из начала координат, так как при очень низких температурах газ превращается в жидкость и зависимость объема от температура меняется.

Изохорный процесс (V = const)

Изохорный процесс – это процесс нагревания или охлаждения газа при постоянном объеме и при условии, что количество вещества в сосуде остается неизменным. Как следует из уравнения состояния идеального газа, при этих условиях давление газа изменяется прямо пропорционально его абсолютной температуре. Графики изохорного процесса в координатах рV; рТ и VТ имеют следующий вид:

График изохорного процесса

Обратите внимание на то, что продолжение графика в pT координатах направлено точно в начало координат, однако этот график никогда не сможет начаться прямо из начала координат, так как газ при очень низких температурах превращается в жидкость.

Изотермический процесс (T = const)

Изотермическим процессом называют процесс, протекающий при постоянной температуре. Из уравнения состояния идеального газа следует, что при постоянной температуре и неизменном количестве вещества в сосуде произведение давления газа на его объем должно оставаться постоянным. Графики изотермического процесса в координатах рV; рТ и VТ имеют следующий вид:

График изотермического процесса

Заметим, что при выполнении заданий на графики в молекулярной физике не требуется особой точности в откладывании координат по соответствующим осям (например, чтобы координаты p1 и p2 двух состояний газа в системе p(V) совпадали с координатами p1 и p2 этих состояний в системе p(T). Во–первых, это разные системы координат, в которых может быть выбран разный масштаб, а во–вторых, это лишняя математическая формальность, отвлекающая от главного – от анализа физической ситуации. Основное требование: чтобы качественный вид графиков был верным.

Неизопроцессы

К оглавлению…

В задачах этого типа изменяются все три основных параметра газа: давление, объем и температура. Постоянной остается только масса газа. Наиболее простой случай, если задача решается «в лоб» с помощью универсального газового закона. Чуть сложнее, если Вам надо отыскать уравнение процесса, описывающего изменение состояния газа, или проанализировать поведение параметров газа по данному уравнению. Тогда действовать надо так. Записать данное уравнение процесса и универсальный газовый закон (или уравнение Клапейрона-Менделеева, что Вам удобнее) и последовательно исключать ненужные величины из них.

Изменение количества или массы вещества

К оглавлению…

В сущности, ничего сложного в таких задачах нет. Надо только помнить, что газовые законы не выполняются, так как в формулировках любых из них записано «при постоянной массе». Поэтому действуем просто. Записываем уравнение Клапейрона-Менделеева для начального и конечного состояний газа и решаем задачу.

Перегородки или поршни

К оглавлению…

В задачах этого типа опять применяются газовые законы, при этом необходимо учесть следующие замечания:

  • Во-первых, газ через перегородку не проходит, то есть масса газа в каждой части сосуда остается неизменной, и таким образом, для каждой части сосуда выполняются газовые законы.
  • Во-вторых, если перегородка теплонепроводящая, то при нагревании или охлаждении газа в одной части сосуда температура газа во второй части останется неизменной.
  • В-третьих, если перегородка подвижна, то давления по обе ее стороны равны в каждый конкретный момент времени (но это равное с обоих сторон давление может меняться со временем).
  • А дальше пишем газовые законы для каждого газа по отдельности и решаем задачу.

Газовые законы и гидростатика

К оглавлению…

Специфика задач состоит в том, что в давлении надо будет учитывать «довески», связанные с давлением столба жидкости. Какие тут могут быть варианты:

  • Сосуд с газом погружен под воду. Давление в сосуде будет равно: p = pатм + ρgh, где: h – глубина погружения.
  • Горизонтальная трубка закрыта от атмосферы столбиком ртути (или другой жидкости). Давление газа в трубке точно равно: p = pатм атмосферному, так как горизонтальный столбик ртути не оказывает давления на газ.
  • Вертикальная трубка с газом закрыта сверху столбиком ртути (или другой жидкости). Давление газа в трубке: p = pатм + ρgh, где: h – высота столбика ртути.
  • Вертикальная узкая трубка с газом повернута открытым концом вниз и заперта столбиком ртути (или другой жидкости). Давление газа в трубке: p = pатмρgh, где: h – высота столбика ртути. Знак «–» ставится, так как ртуть не сжимает, а растягивает газ. Часто ученики спрашивают, почему ртуть не вытекает из трубки. Действительно, если бы трубка была широкой, ртуть бы стекла вниз по стенкам. А так, поскольку трубка очень узкая, поверхностное натяжение на дает ртути разорваться посередине и пропустить внутрь воздух, а давление газа внутри (меньшее, чем атмосферное) удерживает ртуть от вытекания.

Как только Вы сумели правильно записать давление газа в трубке, применяйте какой-либо из газовых законов (как правило, Бойля-Мариотта, так как большинство таких процессов изотермические, или универсальный газовый закон). Применяйте выбранный закон для газа (ни в коем случае не для жидкости) и решайте задачу.

Тепловое расширение тел

К оглавлению…

При повышении температуры возрастает интенсивность теплового движения частиц вещества. Это приводит к тому, что молекулы более «активно» отталкиваются друг от друга. Из-за этого большинство тел увеличивает свои размеры при нагревании. Не совершите типичную ошибку, сами атомы и молекулы не расширяются при нагревании. Увеличиваются лишь пустые промежутки между молекулами. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

Формула Тепловое расширение жидкостей

где: V0 – объем жидкости при 0°С, V – при температуре t, γ – коэффициент объемного расширения жидкости. Обратите внимание, что все температуры в этой теме нужно брать в градусах Цельсия. Коэффициент объемного расширения зависит от рода жидкости (и от температуры, что не учитывается в большинстве задач). Обратите внимание, что численное значение коэффициента, выраженное в 1/°С или в 1/К, одинаково, так как нагреть тело на 1°С это то же самое, что нагреть его на 1 К (а не на 274 К).

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

Формула Тепловое расширение твердых тел

где: l0, S0, V0 – соответственно длина, площадь поверхности и объем тела при 0°С, α – коэффициент линейного расширения тела. Коэффициент линейного расширения зависит от рода тела (и от температуры, что не учитывается в большинстве задач) и измеряется в 1/°С или в 1/К.

Содержание:

Молекулярная физика:

«Если бы все накопленные научные знания были уничтожены и к грядущим поколениям перешла только одна фраза, то какое утверждение принесло бы наибольшую информацию? Я считаю, что это атомная гипотеза: все тела состоят из атомов, маленьких телец, которые находятся в непрерывном движении, притягиваются на небольших расстояниях, но отталкиваются, если одно из них плотнее прижать к другому». Это слова Ричарда Фейнмана, лауреата Нобелевской премии по физике 1965 г., и они практически дословно повторяют идеи Демокрита, высказанные более 25 веков назад.

Основные положения молекулярно-кинетической теории

Молекулярно-кинетическая теория (МКТ) — теория, рассматривающая строение вещества с точки зрения трех основных положений.

  1. Все вещества состоят из частиц — атомов, молекул, ионов, то есть имеют дискретное строение; между частицами есть промежутки (рис. 26.1).
  2. Частицы вещества пребывают в непрерывном беспорядочном (хаотическом) движении; такое движение называют тепловым.
  3. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Вспомним определения основных структурных единиц вещества.

Атом — наименьшая частица, являющаяся носителем свойств химического элемента. Каждому химическому элементу соответствует атом, обозначаемый символом элемента (атом Гидрогена Н, атом Карбона С, атом Урана U). Атом имеет сложную структуру и представляет собой ядро, окруженное облаком электронов. Число электронов в атоме равно числу протонов в его ядре. Заряд электрона по модулю равен заряду протона, поэтому атом электрически нейтрален. Объединяясь, атомы образуют молекулы.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Рис. 26.1. Микроструктура некоторых веществ в кристаллическом Алмаз состоянии

Молекула — наименьшая частица вещества, обладающая химическими свойствами этого вещества и состоящая из атомов. Молекулы разных веществ имеют разный атомный состав. Все огромное разнообразие веществ обусловлено различными сочетаниями атомов в молекулах.

Если атом (молекула) теряет один или несколько электронов, образуется положительный ион; если же к атому (молекуле) присоединились один или несколько электронов, образуется отрицательный ион.

Какие факты доказывают существование атомов и молекул

Мы не можем увидеть частицы вещества из-за их микроскопических размеров, однако еще философы древности приводили немало косвенных доказательств их существования.

Со временем появились доказательства существования частиц вещества, основанные на строгих количественных расчетах. Так, в конце XVIII в. был установлен закон кратных отношений: если два элемента, вступая в реакцию друг с другом, образуют несколько соединений, то разные массы одного элемента, соединяясь с неизменной массой второго элемента, соотносятся как небольшие целые числа.

Например, азот и кислород дают три соединения: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Сейчас физики создали ряд приборов (ионные проекторы, электронные и туннельные микроскопы), позволяющих исследовать не только состав молекул (рис. 26.2), но и внутреннее строение атома (рис. 26.3).

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Насколько мала молекула

Достаточно точно установлено: размеры большинства молекул и диаметры всех атомов составляют порядка Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами м. Разумеется, что массы атомов и молекул тоже малы (порядка Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами кг). Измерять их в таких единицах, как килограмм, очень неудобно, поэтому была принята внесистемная единица — атомная единица массы, равная 1/12 массы атома Карбона Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Массу молекулы, представленную в атомных единицах массы, называют относительной молекулярной массой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Относительная молекулярная масса показывает, во сколько раз масса Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами молекулы больше, чем 1/12 массы атома Карбона Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами.

В каких единицах считают молекулы

Макроскопические тела состоят из огромного количества частиц. Выясним, например, количество молекул в стакане воды (m= 0,2 кг). Масса молекулы воды Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами кг. Следовательно, в стакане воды содержится: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами молекул! Считают такое огромное количество микрочастиц определенными «порциями» — молями. 1 моль любого вещества содержит одинаковое число частиц, — столько, сколько атомов Карбона содержится в углероде массой 12 г. Это число называют постоянной Авогадро: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами.

Физическая величина, равная количеству молей частиц вещества, называется количеством вещества ν: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, где N — число частиц вещества.

Единица количества вещества в СИ — моль: [ν] = 1 моль (mol)

Размеры молекул

Размеры молекул настолько малы, что это трудно представить. Если молекулу воды (d≈Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамим) увеличить в миллион раз, то она будет иметь размер точки (≈ 0,3 мм). В результате такого же увеличения толщина волоса (0,1 мм) окажется равной 100 м, диаметр вишни (1 см) — 10 км, а средний рост человека (170 см) — 1700 км.

Чтобы продемонстрировать огромное количество молекул, английский физик Уильям Томсон (лорд Кельвин) предложил мысленный эксперимент: «Допустим, мы взяли стакан «меченых» молекул воды, вылили эту воду в Мировой океан и тщательно перемешали его. Затем зачерпнули стакан воды из океана на другом краю Земли и посчитали в ней все «меченые» молекулы. В стакане их окажется около тысячи!»

Массу данного вещества, взятого в количестве 1 моль (Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамимолекул), называют молярной массой M вещества:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

где Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — масса молекулы (атома) вещества.

Единица молярной массы в СИ — килограмм на моль: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №1

Сколько свободных электронов находится в алюминиевом бруске размерами 1 × 4 × 5 см? Считайте, что каждый атом Алюминия дает один свободный электрон.

Анализ физической проблемы. По условию задачи количество электронов равно числу атомов Алюминия в бруске объемом Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами (1 × 4 × 5 см). Молярную массу алюминия найдем, воспользовавшись Периодической системой химических элементов: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами кг /моль. Плотность алюминия найдем в таблице плотностей.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Решение:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами масса Алюминия

Окончательно получим: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Проверим единицу найдём значение искомой величины:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Ответ: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Выводы:

Карта основ молекулярно-кинетической теории:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория и ее основные положения

Вы, наверно, не раз наблюдали движение взвешенных в воздухе пылинок в солнечных лучах, проникающих в комнату через окно.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Известно, что вдыхаемый нами воздух состоит из газов разной плотности — азота Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами кислорода Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами углекислого газа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и других. Эти газы должны были бы расположиться слоями последовательно друг над другом, в соответствии с их плотностями и силе тяжести, действующей на них: сначала, как самый плотный, у поверхности Земли углекислый газ Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами над ним кислород — Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и выше азот —Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Однако этого не происходит — нас окружает однородный газ.

Молекулярно-кинетическая теория (MKT). Мы сами и окружающий нас мир являемся системой макроскопических тел.

Макроскопическое тело — это тело, состоящее из большого числа атомов и молекул.

Примером макроскопических тел могут быть песчинка, вода в сосуде, газ в баллоне, железный стержень, Луна, Солнце и другие. В механике макроскопическое тело рассматривается как объект, обладающий определенной массой, пространственными размерами, энергией, изучается положение этого тела в пространстве и взаимодействие его с другими телами. Однако механика не может объяснить внутреннее строение макроскопических тел, взаимодействие между атомами и молекулами, из которых они состоят, и ряд свойств вещества (тепловое расширение, нагревание, охлаждение, парообразование, конденсацию, плавление, затвердевание, диффузию, конвекцию и др.). В физике выделен раздел — молекулярная физика, в котором собраны результаты изучения внутреннего строения вещества.

Молекулярная физика — это раздел физики, в котором изучаются внутреннее строение макроскопических тел, их свойства и основные закономерности теплового движения материи.

Молекулярно-кинетическая теория (MKT) — теория, объясняющая свойства макроскопических тел и тепловые процессы в этих телах на основе представлений о веществе как о системе атомов и молекул, беспрерывно и хаотически движущихся и взаимодействующих друг с другом.

Основные положения молекулярно-кинетической теории. В основе MKT лежат три положения:

I положение: все вещества состоят из частичек — атомов и молекул. Существование атомов и молекул было предсказано еще древними философами. Однако ясную количественную теорию этого факта впервые предложил английский ученый-химик Джон Далтон (1766-1844). Составив таблицу относительных атомных масс ряда элементов, он заложил основу теории атомного строения вещества. В наше время, используя способность электронного микроскопа увеличивать в миллионы раз размеры объекта, можно увидеть и сфотографировать достаточно большие молекулы.

II положение: частицы, из которых состоит вещество, находятся в непрерывного и беспорядочного (хаотического) движения.

Верность этого положения была установлена на основе открытия, сделанного в 1827 году английским ботаником Робертом Броуном, наблюдавшим в микроскоп за движением цветочной пыльцы в воде. Он обнаружил, что пыльца совершает хаотическое движение и изменяет свое положение по сложной траектории (с).

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Беспорядочное движение частиц, называемое «броуновским движением», теоретически было объяснено А.Эйнштейном в 1905 году, а опытным путем было подтверждено в 1909-1911 годах французским физиком Яном Батистом Перреном (1870— 1942). Он подтвердил предположение Эйнштейна, что причиной хаотического движения частичек краски в воде является тепловое движение молекул воды. Перрен определил, что интенсивность броуновского движения частиц зависит не от их химической природы, а от температуры: с увеличением температуры интенсивность броуновского движения также увеличивается. Таким образом:

Броуновским движением называется беспорядочное движение частиц, взвешенных в жидкости (или газе).

Другим явлением, подтверждающим второе положение MKT, является диффузия.

Диффузией называется процесс самопроизвольного взаимного проникновения атомов или молекул одного вещества в межатомные или межмолекулярные промежутки другого вещества.

Первое количественнное описание процесса диффузии дал в 1855 году немецкий физик и физиолог Адольф Фик (1829-1901) в законе, названном «законом диффузии Фика «.

III положение: частицы вещества взаимодействуют друг с другом, то есть между ними существуют силы взаимного притяжения и отталкивания.

Подтверждением этого положения является возникновение силы упругости во время деформации тела. Эти силы имеют характер близкодействия, электромагнитную природу и в значительной степени зависят от расстояния между частицами. Например, было определено, что силы притяжения между молекулами уменьшаются по закону Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами а силы отталкивания между ними уменьшаются по закону Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Равнодействующая этих сил на расстояниях, в 2-3 раза больших диаметра молекулы Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и на расстоянии, равном диаметру молекулы Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами можно сказать, равна нулю (d).

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Характеристика атомов и молекул

Вам известны характеристики атомов и молекул: их линейные размеры, относительная масса, их число в единице объема, количество вещества и другие количественные характеристики (см.: таблица 6.1).

Таблица 6. 1

Характеристика частицы Выражается
Атомная единица массы (а.е.м)

Атомная единица массы (а.е.м.) — это единица измерения массы в атомной и ядерной физике, равна 1/12 массы изотопа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — масса атома углерода.

Относительная молекулярная масса вещества

Относительной молекулярной (атомной) массой вещества называется отношение массы молекулы (атома) вещества Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами к 1/12 массы атома углерода:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — относительная молекулярная масса, Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — масса молекулы (атома) вещества, Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — масса атома углерода. Относительная молекулярная масса не имеет размерности.

Число Авогадро Число Авогадро — это постоянная величина, равная числу молекул ( или атомов) в одном моле любого вещества: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Количество вещества

Количество вещества Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — это отношение числа молекул или атомов данного вещества, к числу Авогадро Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — число молекул в данном веществе. Единица количества вещества является основной единицей в СИ: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

1 моль — это количество вещества, в котором содержится столько же молекул или атомов, сколько их в 0,012 кг углерода.

Молярная масса

Молярной массой называется масса одного моля вещества:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Единицей молярной массы в СИ является килограмм на моль

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Следовательно, количество вещества равно отношению массы вещества его молярной массе: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Число молекул в веществе Число молекул в любом веществе массой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и молярной массой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами определяется формулой: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярная физика — раздел физики, в котором изучают свойства тел и происходящие в них процессы, связанные с огромным числом частиц, содержащихся в этих телах.

В основе молекулярной физики лежит молекулярно-кинетическая теория, объясняющая свойства тел в зависимости от их строения, сил взаимодействия между частицами, из которых состоят тела, характера движения этих частиц. Термодинамика изучает способы и формы передачи энергии от одного тела к другому, закономерности превращения одних видов энергии в другие.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Применяя законы молекулярной физики и термодинамики, конструируют тепловые двигатели, холодильные аппараты, установки для сжижения газов (рис. 1) и другие технические устройства, создают новые материалы (различные сплавы, керамики, пластмассы, сорта резины, стекла, бетона, всевозможные полупроводниковые материалы и др.) с заданными физическими (механическими, электрическими, магнитными, оптическими) свойствами. Новейшие открытия в молекулярной физике и термодинамике оказывают влияние на развитие химии и биологии. Например, возникшая на стыке наук молекулярная биология объясняет явления, происходящие в живых организмах.

В 9-м классе, изучая механику, вы рассматривали механическую форму движения материи, т. е. перемещение тел относительно друг друга и их взаимодействие. При этом внутреннее строение того или иного тела не имело значения.

В молекулярной физике и термодинамике рассматривают явления, происходящие с макроскопическими телами и обусловленные тепловой формой движения материи. Макроскопическими телами (системами) в физике называют тела (системы), состоящие из огромного числа частиц. Капля воды, газ в воздушном шаре, деревянная доска, серебряная ложка, наша планета (рис. 2) — всё это макроскопические тела.

Для описания тепловых явлений, происходящих с макроскопическими телами (системами), необходимы подходы и методы, отличные от тех, которые применяют в механике. Движение одной молекулы, происходящее в пространстве, может быть описано с использованием законов динамики одним векторным уравнением или его проекциями на координатные оси. Однако применить законы Ньютона ко всем молекулам, число которых в любом макроскопическом теле огромно, не реально. Пользуясь законами динамики для нахождения характеристик макроскопического тела, например воздуха в объёме Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами понадобилось бы решить приблизительно Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами уравнений движения частиц.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Для описания макроскопической системы, например газа в сосуде, можно использовать любой из двух методов — молекулярно-кинетический (статистический) или термодинамический. Эти методы качественно различны, но взаимно дополняют друг друга. Первый лежит в основе молекулярной физики, второй — термодинамики.

При молекулярно-кинетическом описании используют средние значения физических величин, характеризующих поведение частиц, образующих систему. Например, среднюю кинетическую энергию и среднюю квадратичную скорость теплового (беспорядочного) движения частиц.

При термодинамическом описании используют физические величины, характеризующие систему в целом. Например, давление, объём, температуру системы.

Основы молекулярно-кинетической теории

Что представляет собой внутреннее строение любого вещества? Сплошное оно или имеет дискретную структуру? Почему свойства различных веществ отличаются друг от друга? От чего зависят те или иные свойства вещества?

Представление о том, что все тела состоят из мельчайших частиц — атомов, возникло ещё в глубокой древности, и его достаточно отчётливо сформулировали древнегреческие философы Левкипп (приблизительно 500—440 до н. э.) и Демокрит (460—371 до н. э.). Однако в дальнейшем атомистические воззрения были забыты. Только во второй половине XVII в. английский учёный Р. Бойль в книге «Химик-скептик» придал понятию «химический элемент» новый смысл, близкий к современному. Затем в XVIII—XIX вв. М. В. Ломоносов, Д. Дальтон, А. Крёниг, Л. Больцман, Д. Максвелл и другие учёные разрабатывали и совершенствовали атомистические воззрения в качестве научной теории, получившей название классической молекулярно-кинетической теории.

В основе молекулярно-кинетической теории лежат три положения:

  1. Вещество имеет дискретное строение, т. е. состоит из микроскопических частиц.
  2. Частицы вещества беспорядочно движутся.
  3. Частицы вещества взаимодействуют между собой.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Дискретное строение вещества

Как вы уже знаете, реальность существования молекул подтверждают экспериментальные факты. Например, растворение веществ в воде и в других растворителях, механическое дробление вещества (рис. 3), сжатие и расширение всех тел и особенно газов, диффузия, броуновское движение и многое другое.

Вещество имеет дискретное строение, т. е. состоит из отдельных частиц (молекул, атомов, ионов). Глаз может различить две точки, если расстояние между ними не менее 0,1 мм. Благодаря современным оптическим микроскопам можно различать структуры с расстоянием между элементами порядка 200 нм и более. Они позволяют наблюдать и фотографировать очень большие молекулы, состоящие из сотен и даже тысяч атомов (молекулы некоторых витаминов, гормонов и белков). На рисунке 4 представлена фотография молекулы нуклеиновой кислоты нитевидной формы, общая длина которой 34 мкм.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Использование электронных микроскопов позволяет наблюдать и фотографировать атомарные структуры.

От теории к практике:

Расстояние между центрами соседних атомов золота Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами м. Какое число атомов определяет толщину листочка золота, числовое значение которой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Из истории физики:

4 марта 1981 г. немецкий учёный Герд Бинниг и швейцарский учёный Генрих Рорер впервые в мире наблюдали отдельные атомы на поверхности кремния с помощью туннельного микроскопа (рис. 5). За разработку и создание электронного микроскопа (рис. б, а) немецкому учёному Эрнсту Руске и за изобретение сканирующего туннельного микроскопа (рис. 6, б) Г. Биннигу и Г. Рореру присуждена Нобелевская премия по физике за 1986 г.
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Тепловое движение частиц вещества

Молекулы, атомы п другие частицы, образующие вещество, находятся в непрерывном тепловом движении.

Тепловое движение — беспорядочное движение частиц вещества, интенсивность которого зависит от температуры тела.

В 1827 г. английский ботаник Роберт Броун (1773—1858), наблюдая в микроскоп взвесь цветочной пыльцы в воде, обнаружил, что частицы взвеси непрерывно двигались, описывая весьма причудливые траектории. Это движение частиц, признанное экспериментальным подтверждением теплового движения частиц вещества, назвали броуновским движением.

Броуновское движение — беспорядочное движение взвешенных* в жидкости или газе мельчайших нерастворимых твёрдых частиц размерами порядка 1 мкм и меньше.

Броуновские частицы движутся непрерывно и беспорядочно, а траектории их движений очень сложны. На рисунке 7 изображена упрощённая траектория движения броуновской частицы. Точками отмечены положения частицы через одинаковые промежутки времени. Траектория движения в течение каждого промежутка времени заменена отрезком прямой, который представляет собой модуль результирующего перемещения частицы.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Броуновское движение обусловлено свойствами жидкости или газа. Оно не зависит от природы вещества броуновской частицы и внешних воздействий (кроме температуры). Причиной броуновского движения является тепловое движение частиц среды, окружающих броуновскую частицу, и отсутствие точной компенсации ударов, испытываемых частицей со стороны окружающих её молекул (атомов или ионов) (рис. 8).

Чем меньше размеры и масса броуновской частицы, тем заметнее становятся изменения её импульса под воздействием ударов.

* Взвешенные частицы — это частицы с плотностью вещества, сравнимой с плотностью среды (жидкости или газа), в которой они находятся, распределившиеся определённым образом по всему объёму этой среды.

Интенсивность движения броуновских частиц растёт с повышением температуры и уменьшением вязкости среды. Броуновское движение едва удаётся подметить в глицерине, а в газах оно, напротив, чрезвычайно интенсивно.
 

Из истории физики:

Первую количественную теорию броуновского движения предложил в 1905 г. Альберт Эйнштейн (1879-1955). Польский физик Мариан Смолуховский (1872-1917) в 1906 г. также разработал количественную теорию броуновского движения. Экспериментальное подтверждение предложенной учёными теории явилось заслугой французского физика Жана Перрена (1870-1942). «За доказательство существования молекул» Ж. Перрену присуждена Нобелевская премия по физике за 1926 г.

Ещё одним подтверждением теплового движения частиц (молекул, атомов или ионов) вещества является диффузия (лат. diffusio — распространение, растекание, рассеивание).

Диффузия — процесс взаимного проникновения частиц соприкасающихся веществ между частицами другого вещества вследствие их теплового движения.

Если частицы соприкасающихся веществ распределены в пространстве неоднородно, то данный процесс приводит к самопроизвольному выравниванию их концентраций.

Концентрация частиц — физическая величина, численно равная числу частиц, содержащихся в единичном объёме:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Если в разных частях одного и того же тела концентрации частиц не совпадают, то вследствие их теплового движения при постоянной температуре и отсутствии внешних сил происходит упорядоченное перемещение. Оно приводит к выравниванию концентраций (рис. 11).

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Скорость диффузии зависит от характера движения частиц вещества, который определяется температурой и особенно агрегатным состоянием. В газах диффузия происходит быстрее, чем в жидкостях, а тем более в твёрдых телах.

Диффузия играет важную роль в природе и технике. Благодаря диффузии осуществляется питание растений необходимыми веществами из почвы, в живых организмах происходит всасывание питательных веществ через стенки сосудов пищеварительного тракта. Для увеличения твёрдости стальных деталей их поверхностный слой подвергают диффузионному насыщению углеродом. Диффузию используют в ядерных технологиях как один из способов обогащения урана.

Интересно знать:

Впервые воочию убедиться, что диффузия происходит не только в газах и жидкостях, но и в твёрдых телах, удалось в 1896 г. английскому металлургу Робертсу-Аустену. Он прижал друг к другу золотой диск и свинцовый цилиндр и поместил их на 10 суток в печь, в которой поддерживалась температура 200 °С. Когда печь открыли и извлекли из неё диск и цилиндр, оказалось, что их невозможно разъединить. Диффузия привела к тому, что золото и свинец буквально «проросли» друг в друга. В настоящее время такая технология соединения деталей хорошо изучена и получила название диффузионной сварки.

Взаимодействие частиц вещества

Факт существования твёрдых и жидких тел подтверждает, что между частицами веществ, образующих эти тела, действуют силы взаимного притяжения. Именно этими силами частицы (молекулы, атомы или ионы) в телах удерживаются вместе.

Из повседневного опыта известно, что силы взаимного притяжения нагляднее всего проявляются в твёрдых телах. Тонкий стальной трос диаметром 2 мм достаточно прочен, чтобы удержать на весу гирю, масса которой 150 кг.

То, что газы занимают весь предоставленный им объём, указывает на весьма незначительное проявление сил взаимного притяжения между их молекулами*. Причина в том, что усреднённое расстояние между молекулами газов существенно превышает размеры самих молекул, а также расстояния между центрами соседних частиц жидкости и твёрдых тел.

Относительно малая сжимаемость жидкостей и твёрдых тел указывает на то, что между молекулами вещества существуют и силы взаимного отталкивания. Силы притяжения и силы отталкивания действуют одновременно. В противном случае устойчивых состояний больших совокупностей молекул не могло бы существовать: составляющие их частицы стягивались бы в одном месте пли разлетались в разные стороны.
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

* Несмотря на то что не все газы и жидкости состоят из молекул (они могут состоять и из атомов, и из ионов), в дальнейшем, говоря о газах и жидкостях, мы будем использовать термин «молекула».

1. В одном из учебников, изданном в 1885 г., можно прочитать: «Твёрдый атом… живёт в виде невероятной, но всё ещё неопровергнутой гипотезы… Однако несравненно правдоподобнее теория, по которой материя… непрерывна, то есть не состоит из частиц с промежутками». Какие аргументы вы можете привести автору этих строк, чтобы доказать существование мельчайших частиц вещества?

2. Представьте себе, что ваш друг скептически относится к атомам и молекулам и полагает, что броуновское движение не является доказательством их существования. Он считает, что движение взвешенных в жидкости или газе частиц может быть также хорошо объяснено движением потоков воздуха или жидкости, их окружающих. Какие аргументы вы можете привести против такой интерпретации экспериментальных наблюдений (рис. 12)?

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
 

3. Почему броуновское движение заметно лишь у частиц с малыми размерами Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и массой?

4. Почему стеклянную хорошо притёртую пробку трудно вынуть из горлышка стеклянного флакона?

5. Дополните схему в кратких выводах, добавив опытные обоснования основных положений молекулярно-кинетической теории.

Масса и размеры молекул и количество вещества

В Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами любого газа, находящегося при нормальных условиях (температура Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами давление Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами), содержится Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами молекул. Чтобы представить, насколько велико это число, предположим, что из отверстия в ампуле вместимостью Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами ежесекундно вылетает 100 молекул. Тогда, для того чтобы все молекулы вылетели из ампулы, потребуется 8,6 млрд лет, т. е. промежуток времени, сравнимый с возрастом Вселенной (12—15 млрд лет). Такое огромное число молекул в веществе свидетельствует о том, что их размеры очень малы. Каковы же размеры и масса частиц вещества? Как определить число атомов в любом макроскопическом теле?

Молекулярно-кинетическая теория предоставляет возможность оценить массу и размеры частиц, образующих макроскопические тела. Молекулы, как и атомы, не имеют чётких границ. Если представить молекулу в виде шарика, то её радиус имеет значение от 0,1 нм у простейших до 100 нм у сложных 

молекул, состоящих из нескольких тысяч атомов. Например, оценочный диаметр молекулы водорода составляет 0,2 нм, а диаметр молекулы воды — 0,3 нм. При таких размерах число частиц в веществе очень велико. Например, в одном грамме воды содержится Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами молекул.

Размеры и масса молекулы возрастают с увеличением числа атомов, которые входят в её состав. Атомы и молекулы (кроме многоатомных молекул органических веществ) имеют массу порядка Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами кг. Из-за малых значении выражать массы атомов и молекул в килограммах (кг) неудобно. Поэтому для измерения масс атомов и молекул в химии и физике используют атомную единицу массы (а. е. м.). Атомную единицу массы выражают через массу изотопа углерода Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Массу молекулы (или атома), выраженную в атомных единицах массы, называют относительной молекулярной массой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами (или относительной атомной массой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами). Относительная молекулярная (или атомная) масса Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами показывает, во сколько раз масса Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами молекулы (пли атома) больше атомной единицы массы: 

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

В периодической системе химических элементов Д. И. Менделеева (см. форзац 2) возле символов элементов указаны и их относительные атомные массы. В большинстве случаев при проведении расчётов значение относительной атомной массы округляют до целого числа, используя правила приближённых вычислений. Так, например, относительная атомная масса водорода равна 1, кислорода — 16, азота — 14.

Количество вещества, содержащегося в макроскопическом теле, определяют числом частиц в нём. Приведённые выше примеры показывают, насколько велико это число. Поэтому при расчётах принято использовать не абсолютное число частиц вещества, а относительное:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

т. е. количество вещества Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами определяют отношением числа частиц N этого вещества к постоянной Авогадро Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Основной единицей количества вещества в СИ является 1 моль (моль). 1 моль равен количеству вещества, содержащему столько же частиц, сколько атомов содержится в 0,012 кг изотопа углерода Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Значит, в одном моле любого вещества находится одинаковое число атомов или молекул. Это число частиц обозначили Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и назвали постоянной Авогадро в честь итальянского учёного Амедео Авогадро (1776—1856). Постоянная Авогадро является одной из фундаментальных физических постоянных, её значение

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

В молекулярно-кинетической теории наряду с относительной молекулярной (или атомной) массой используют молярную массу М — массу вещества, взятого в количестве Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами моль. Молярную массу М определяют отношением массы т вещества к его количеству Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Основной единицей молярной массы в СИ является килограмм на моль Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Молярная масса вещества связана с его относительной молекулярной массой следующим соотношением:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молярную массу вещества также можно вычислить по формуле

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

С учётом того, что Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами получим формулу для расчёта числа молекул в данном веществе:    

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №2

Определите молярную массу и массу одной молекулы сульфата меди(II) Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Решение. Чтобы вычислить молярную массу М любого вещества, необходимо по химической формуле найти относительную молекулярную массу Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами этого вещества и полученное значение умножить на Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Поскольку химическая формула сульфата меди(II) имеет вид Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами то

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Тогда молярная масса Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Для определения массы молекулы Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами воспользуемся формулой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Ответ:  Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №3

Определите количество вещества и число атомов, содержащихся в железном бруске объёмом Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Плотность железа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Решение. Количество вещества можно определить, воспользовавшись формулой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами где Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — масса железного бруска, а Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — молярная масса железа. Поскольку Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Число атомов в данном железном бруске Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Ответ: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

* При решении задач постоянную Авогадро принять равной Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория

Что представляет собой внутреннее строение любого вещества? Сплошное оно или имеет дискретную структуру? Почему свойства различных веществ отличаются друг от друга? От чего зависят те или иные свойства вещества?

В основе молекулярно-кинетической теории лежат три положения:

  1. Вещество имеет дискретное строение, т. е. состоит из микроскопических частиц.
  2. Частицы вещества хаотически движутся.
  3. Частицы вещества взаимодействуют между собой.

Дискретное строение вещества

Согласно первому положению молекулярно-кинетической теории вещество имеет дискретное строение, т. е. состоит из отдельных частиц (молекул, атомов, ионов). При изучении физики в 6 и 8 классах вы узнали, что реальное существование молекул подтверждают экспериментальные факты. Такими фактами, в частности, являются растворение веществ в воде и в других растворителях, сжатие и расширение любых тел и особенно газов, механическое дробление вещества, диффузия, броуновское движение и многое другое.

Глаз может различить две точки, если расстояние между ними не менее 0,1 мм. Современные оптические микроскопы позволяют различать структуры с расстоянием между элементами порядка двухсот нанометров и более (Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами200 нм), что обеспечивает возможность наблюдать и фотографировать очень большие молекулы, состоящие из сотен и даже тысяч атомов (молекулы некоторых витаминов, гормонов и белков). На рисунке 2 приведена

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

фотография молекулы нуклеиновой кислоты нитевидной формы, общая длина которой 34 мкм.

Переход от световых волн в оптических микроскопах к ускоренным пучкам электронов, управляемым электрическими и магнитными полями, в электронных микроскопах улучшил пределы разрешения до десятых долей нанометра. Использование электронных микроскопов позволило наблюдать и фотографировать атомарные структуры.

4 марта 1981 г. немецкий учёный Герд Бинниг и швейцарский учёный Генрих Рорер впервые в мире наблюдали отдельные атомы на поверхности кремния (рис. 3). На рисунке 4, а, б изображены электронный и туннельный микроскопы. За создание первого электронного микроскопа немецкому учёному Эрнсту Руске и за изобретение сканирующего туннельного микроскопа Г. Биннигу и Г. Рореру была присуждена Нобелевская премия по физике за 1986 год.
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
 

Тепловое движение частиц вещества

Согласно второму положению молекулярно-кинетической теории частицы, составляющие вещество, находятся в непрерывном хаотическом движении, которое называют тепловым.

Наиболее ярким экспериментальным подтверждением теплового движения частиц вещества (молекул, атомов и ионов) является броуновское движение, т. е. движение «взвешенных» в жидкости или газе мельчайших нерастворимых твёрдых частиц размерами примерно 1 мкм и меньше. «Взвешенные» частицы — это частицы, плотность вещества которых близка к плотности окружающей их среды (жидкости или газа). Они распределяются по всему объёму среды, не оседая на дно сосуда и не поднимаясь на её поверхность (рис. 5).
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Первым обратил внимание на указанное явление в 1827 г. английский ботаник Роберт Броун (1773—1858). Броуновские частицы движутся непрерывно и хаотично, а траектории их движений очень сложны. На рисунке 6 изображена упрощённая траектория движения броуновской частицы. Точками отмечены положения частицы через одинаковые промежутки времени. Траектория движения в течение каждого промежутка времени заменена отрезком прямой, который представляет собой модуль результирующего перемещения частицы.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Броуновское движение обусловлено свойствами жидкости или газа, не зависит от природы вещества броуновской частицы и внешних воздействий (кроме температуры). Причиной броуновского движения является тепловое движение частиц среды, окружающей броуновскую частицу, и отсутствие точной компенсации ударов, испытываемых частицей со стороны окружающих её молекул (атомов или ионов) (рис. 7). Чем меньше размеры и масса броуновской частицы, тем заметнее становятся изменения её импульса под воздействием ударов. Интенсивность движения броуновских частиц растёт с повышением температуры и уменьшением вязкости среды, т. е. внутреннего трения, оказываемого ею. Броуновское движение едва удаётся подметить в глицерине, а в газах оно, напротив, чрезвычайно интенсивно.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Первую количественную теорию броуновского движения предложил в 1905 г. Альберт Эйнштейн (1879—1955). Польский физик Мариан Смолуховский (1872—1917) в 1906 г. также разработал количественную теорию броуновского движения. Экспериментальное подтверждение предложенной теории явилось заслугой французского физика Жана Перрена (1870—1942). «За доказательство существования молекул» Ж. Перрену присуждена Нобелевская премия по физике за 1926 г. Броуновское движение свидетельствует, что молекулы действительно существуют и что они непрерывно и хаотически движутся.

Подтверждением теплового движения частиц вещества является также диффузия — процесс выравнивания концентраций неоднородно распределённых в пространстве атомов, молекул или ионов вещества. Концентрация — величина, равная отношению числа частиц N к занимаемому ими N объёму V: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Если в разных частях одного и того же тела в объёмах Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами концентрацииМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамичастиц не совпадают, то вследствие их теплового движения происходит упорядоченное перемещение, приводящее к выравниванию концентрации при постоянной температуре и отсутствии внешних сил. Если температура не постоянна или на систему действуют внешние силы, то в результате диффузии устанавливается пространственно неоднородное равновесное распределение концентраций частиц.

Скорость диффузии зависит от характера движения частиц вещества, который определяется температурой и особенно агрегатным состоянием. В газах диффузия происходит быстрее, чем в жидкостях, а тем более в твёрдых телах. Диффузия играет важную роль в природе и технике. Благодаря диффузии осуществляется питание растений необходимыми веществами из почвы, в живых организмах происходит всасывание питательных веществ через стенки сосудов пищеварительного тракта. Для увеличения твёрдости стальных деталей их поверхностный слой подвергают диффузному насыщению углеродом. Диффузия используется в ядерных технологиях как один из способов обогащения урана.

Взаимодействие частиц вещества

Сам факт существования твёрдых и жидких тел свидетельствует, что между частицами веществ, образующих эти тела, действуют силы взаимного притяжения. Частицы (атомы или молекулы) в этих телах удерживаются вместе именно силами взаимного притяжения. Из повседневного опыта известно, что эти силы нагляднее всего проявляются в твёрдых телах. Тонкий стальной трос диаметром 2 мм достаточно прочен, чтобы удержать на весу гирю массой 100 кг. То, что газы занимают весь предоставленный им объём, указывает на весьма незначительное проявление сил взаимного притяжения между их молекулами*. Усреднённое расстояние между молекулами газов существенно превышает размеры самих молекул,

* Несмотря на то что не все газы и жидкости состоят из молекул (они могут состоять и из атомов, и из ионов), в дальнейшем, говоря о газах и жидкостях, мы будем использовать термин «молекула».

а также расстояния между частицами, из которых состоят жидкости и твердые тела. Такое различие в проявлении сил взаимного притяжения между частицами твёрдых тел и жидкостей, с одной стороны, и частицами газов — с другой возможно в том случае, когда модуль сил взаимного притяжения между частицами быстро убывает с возрастанием расстояния между их центрами. При этом кинетическая энергия Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами теплового движения молекул газов намного превышает модуль потенциальной энергииМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами их взаимодействия: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Относительно малая сжимаемость жидкостей и твёрдых тел указывает на то, что между молекулами вещества существуют и силы взаимного отталкивания. Силы притяжения и силы отталкивания действуют одновременно. В противном случае устойчивых состояний больших совокупностей молекул не могло бы существовать: составляющие их частицы стягивались бы в одном месте или разлетались в разные стороны. Зависимость модулей сил взаимного притяжения и взаимного отталкивания от расстояния между центрами частиц должна быть различной. Кроме того, должно существовать некоторое расстояние Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамимежду центрами частиц, при котором силы притяжения уравновешиваются силами отталкивания — их равнодействующая равна нулю (рис. 8, а). Расстояние Молекулярно-кинетическая теория - основные понятия, формулы и определения с примераминазывают равновесным.

Рассмотрим взаимодействие электрически нейтральных частиц — атомов и молекул. В 8 классе вы узнали, что перераспределение заряда в теле, вызываемое воздействием другого заряженного тела, называют электризацией через влияние. Если расстояние между центрами молекул превышает их размеры (рис. 8, б), то происходит своеобразная «электризация» этих молекул через влияние. Чтобы уяснить, почему это происходит, надо учесть следующее. Во-первых, протоны и электроны, имеющие заряды противоположных знаков, внутри частицы не находятсяв одной точке, поэтому вблизи всякого атома или молекулы существует электрическое поле.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Во-вторых, под воздействием этого поля положение и движение заряженных частиц внутри соседних молекул слегка изменяется таким образом, что ядра, содержащие протоны, смещаются в направлении внешнего электрического поля, а электроны — в противоположную сторону. Это явление получило название электрической поляризации. Электрическое поле, созданное поляризационными зарядами молекулы 2, в свою очередь, вызывает перераспределение ядер, содержащих протоны, и электронов в молекуле 1. В результате молекулы будут обращены друг к другу противоположно заряженными частями, что и обеспечивает их взаимное притяжение.

Согласно теоретическим и экспериментальным исследованиям на близких расстояниях, когда электронные оболочки взаимодействующих молекул перекрываются (рис. 8, в), силы молекулярного отталкивания преобладают над силами притяжения. Модуль сил отталкивания очень велик при малых расстояниях между центрами взаимодействующих молекул, но быстро убывает с увеличением расстояния. Взаимному перекрытию электронных оболочек препятствует взаимное отталкивание электронов.

Модуль сил межмолекулярного взаимодействия обратно пропорционален n-й степени расстояния между центрами молекул Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, где для сил притяжения n = 1, а для сил отталкивания n= 13.

Зависимость проекции равнодействующей Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамисил притяжения и отталкивания двух соседних молекул от расстояния r между их центрами можно изобразить графически. Направим ось Or от молекулы 1, центр которой совпадает с началом координат, к находящемуся от него на изменяющемся расстоянии r центру молекулы 2 (рис. 9). Будем считать молекулу 1 условно неподвижной, а молекулу 2 изменяющей своё положение относительно молекулы 1.
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Тогда проекция силы отталкивания молекулы 2 от молекулы 1 на ось Or будет положительной, а проекция силы притяжения молекулы 2 к молекуле 1 — отрицательной.

На малых расстояниях Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами модуль силы отталкивания (см. рис. 9) больше модуля силы притяжения, но с увеличением расстояния r он убывает быстрее, чем модуль силы притяжения. Начиная с некоторого расстояния Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамивзаимодействием молекул можно пренебречь. Наибольшее расстояние Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, на котором ещё учитывают взаимодействие молекул, называют радиусом молекулярного действия. Расстояние Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамисоответствует устойчивому (равновесному) взаимному положению молекул. Тонкие «вертикальные» (параллельные Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами) линии проведены при выполнении сложения проекций сил.

График зависимости проекции равнодействующей Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамисил притяжения и отталкивания двух соседних молекул от расстояния г между их центрами (кривая проекции силы взаимодействия Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамина рисунке 9) позволяет объяснить молекулярный механизм возникновения сил упругости в твёрдых телах. При действии на тело растягивающих внешних сил расстояние r между центрами частиц вещества становится больше равновесного расстояния Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами. Модуль силы притяжения на расстояниях Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами превышает модуль силы отталкивания (см. рис. 9). Действие сил притяжения между частицами возвращает их в первоначальные положения после прекращения внешнего воздействия. При сжатии твёрдого тела его частицы сближаются на расстояния Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами. Теперь силы отталкивания становятся преобладающими и препятствуют дальнейшему сжатию. При малых смещениях частиц из первоначальных положений устойчивого равновесия, вызванных деформацией твёрдого тела, зависимость проекции результирующей силы Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиот расстояния r практически линейна (участок АВ кривой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиграфика на рисунке 9 можно считать отрезком прямой).

1.    В основе молекулярно-кинетической теории лежат три положения:

  • 1)    Вещество имеет дискретное строение, т. е. состоит из микроскопических частиц.
  • 2)    Частицы вещества хаотически движутся.
  • 3)    Частицы вещества взаимодействуют между собой.

2.    Силы взаимодействия между частицами вещества имеют электромагнитную природу и очень быстро убывают с увеличением расстояния между частицами.

Масса и размеры молекул

Количество вещества:

1,0 Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами любого газа, находящегося при нормальных условиях (температура Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами= 0,0°С, давление Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами= 1,0Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Па), содержит Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамимолекул. Насколько велико это число, показывает следующий пример. Предположим, что из отверстия в ампуле вместимостью К=1,0 Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами ежесекундно вылетает сто молекул. Тогда для того, чтобы все молекулы вылетели из ампулы, потребуется 8,6 миллиардов лет, т. е. промежуток времени, сравнимый с возрастом Вселенной (12—15 млрд лет). Такое огромное число молекул в веществе свидетельствует о том, что их размеры очень малы. Каковы же размеры и масса частиц вещества? Как их можно определить?

Молекулярно-кинетическая теория дала возможность оценить массу и размеры частиц, образующих макроскопические тела. Молекулы, как и атомы, не имеют чётких границ. Если представить молекулу в виде шарика, то её радиус имеет значение от 0,1 нм у простейших до 100 нм у сложных молекул, состоящих из нескольких тысяч атомов. Например, оценочный диаметр молекулы водорода составляет 0,2 нм, а молекулы воды — 0,3 нм. При таких размерах число частиц в веществе очень велико. Например, в одном грамме воды содержится 3,3Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамимолекул.

Размеры и масса молекулы возрастают с увеличением числа атомов, которые входят в её состав. Атомы и молекулы (кроме многоатомных молекул органических веществ) имеют массу порядка Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамикг. Из-за малых значений выражать массы атомов и молекул в килограммах (кг) неудобно. Поэтому для измерения масс молекул в химии и физике используют атомную единицу массы (а. е. м.).

Атомную единицу массы выражают через массу изотопа углеродаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Массу молекулы (атома), выраженную в атомных единицах массы, называют относительной молекулярной (атомной) массой и обозначают символом Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиОтносительная молекулярная (атомная) масса Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамипоказывает, во сколько раз масса молекулы (атома) больше атомной единицы массы:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Количество вещества v определяют отношением числа частиц этого вещества N к постоянной Авогадро Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Основной единицей количества вещества в СИ является моль (моль). / моль равен количеству вещества, содержащему столько же частиц, сколько атомов содержится в 0,012 кг изотопа углеродаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами В одном моле любого вещества находится одинаковое число атомов или молекул, которое в честь итальянского учёного Амедео Авогадро (1776—1856) получило название постоянная Авогадро Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиЭта величина является одной из фундаментальных физических постоянных, её значение

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

В молекулярно-кинетической теории наряду с относительной молекулярной (атомной) массой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамииспользуют молярную массу M.

Молярная масса — масса вещества, взятого в количестве v=l моль. Молярную массу М определяют отношением массы m вещества к его количеству v:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Основной единицей молярной массы в СИ является килограмм на
мольМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиМолярная масса вещества связана с его относительной молекулярной (атомной) массой следующим соотношением:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

При решении задач относительную атомную массу определяют, пользуясь периодической системой химических элементов. В большинстве случаев значение относительной атомной массы округляют до целого числа. Так, например, относительная атомная масса водорода равна 1, кислорода — 16, азота — 14.

Молярную массу М вещества можно вычислить, умножив массу одной молекулы Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамина число молекул в одном моле (постоянная Авогадро Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами):Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

С учётом того, чтоМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, получим формулу для расчёта числа А моле-
кул в данном веществе:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
где m — масса вещества, v — количество вещества (число молей). Используя данную формулу, можно рассчитать число молекул в одном грамме воды. Сделайте это самостоятельно и убедитесь в справедливости приведённого в начале параграфа значения. *

  1. Один моль — количество вещества, в котором содержится столько же частиц (атомов, молекул или ионов), сколько атомов находится в 0,012 кг изотопа углеродаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
  2. Постоянная Авогадро — фундаментальная физическая постоянная, равная числу частиц в одном моле любого вещества: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
  3. Количество вещества (число молей) определяют отношением числа частиц этого вещества к постоянной Авогадро: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
  4. Молярную массу определяют отношением массы вещества к количеству вещества: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
  5. Массу молекулы вещества можно вычислить по формуле Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №4

Определите молярную массу и массу одной молекулы сульфата меди(Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами) Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Решение. Чтобы вычислить молярную массу M любого вещества, необходимо по химической формуле найти относительную молекулярную массу Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами. этого вещества и полученное значение умножить на Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Поскольку химическая формула сульфата меди(Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами) имеет вид Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, то Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Тогда молярная массаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Для определения массы молекулы Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами воспользуемся формулойМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Ответ: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
*При решении задач постоянную Авогадро можно принять Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №5

Определите количество вещества, содержащегося в железном бруске, объём которого Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Чему равно число атомов железа в бруске? Плотность железа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Дано:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

v — ?

N — ?
Решение. Количество определить по формуле Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамигде m —масса железного бруска, а Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами  —молярная масса железа. Поскольку Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамитоМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Число атомов в железном бруске Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Ответ: v = 14 моль, Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
 

Основное уравнение молекулярно-кинетической теории идеального газа

Наиболее простым из всех агрегатных состояний вещества является газообразное. Поэтому изучение свойств веществ начинают с газов. Газ (греч. chaos — хаос) — такое агрегатное состояние вещества, когда составляющие его частицы почти свободно и хаотически движутся между соударениями, во время которых происходит резкое изменение их скорости. Термин «газ» предложил в начале XVII в. нидерландский химик Ян Батист ван Бельмонт (1579—1644). Из физики 7 класса вы знаете, что давление газа на стенки сосуда, в котором он находится, как и на любое тело, помещённое внутрь сосуда, создаётся в результате ударов частиц, образующих газ (рис. II). Вследствие хаотичности их движения усреднённое по времени давление газа во всех точках сосуда одинаково. В общем случае давление — физическая скалярная величина, равная отношению модуля силы давления, действующей на плоскую поверхность, к площади этой поверхности:Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами основной единицей давления является паскаль (Па).

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Макро- и микропараметры

При изучении механики вы познакомились с понятием «состояние механической системы тел» и параметрами этого состояния — координатами, скоростями и импульсами. В тепловых процессах основными физическими величинами, характеризующими некоторое количество газа как макроскопическую систему, являются давление р, объём V и температура Т. Эти физические величины называют макроскопическими параметрами состояния газа. К микроскопическим параметрам состояния газа относят индивидуальные характеристики молекул: массу отдельной молекулы Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, а также скорость Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, импульс Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и кинетическую энергию Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиеё теплового движения. Заметим, что речь идёт о средних значениях как макро-, так и микроскопических параметров.

Одна из важнейших задач молекулярно-кинетической теории состоит в установлении связи между макроскопическими и микроскопическими параметрами.

Идеальный газ

Для теоретического объяснения свойств газов используют их упрощённую модель. Идеальный газ — модель газа, удовлетворяющая следующим условиям: 1) молекулы газа можно считать материальными точками, которые хаотически движутся; 2) силы взаимодействия между молекулами идеального газа практически отсутствуют (потенциальная энергия взаимодействия равна нулю); они действуют только при столкновениях молекул, причём это силы отталкивания. Поведение молекул идеального газа можно описать,

пользуясь законами Ньютона. Между соударениями молекулы движутся практически равномерно и прямолинейно.

Для реальных газов модель идеального газа можно использовать в ограниченном как снизу, так и сверху диапазоне температур и при достаточно малых давлениях. Так, например, свойства водорода и гелия при нормальном атмосферном давлении и комнатной температуре близки к свойствам идеального газа.

Конечно, ни одна модель, в том числе и модель идеального газа, не в состоянии описать все свойства системы. Однако использование модели идеального газа существенно упрощает задачу нахождения количественных соотношений между макроскопическими и микроскопическими параметрами газа.

Давление газа в молекулярно-кинетической теории

С точки зрения молекулярно-кинетической теории давление газа возникает в результате ударов молекул, образующих газ, по телу, соприкасающемуся с ним. При ударе

импульс молекулы газа изменяется: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, где Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— её масса, a Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — скорости до и после удара. Если Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— промежуток времени между двумя последовательными ударами о тело одной и той же молекулы, то

средней силе Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами   с которой тело действует на молекулу во время удара

продолжительностью Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамисоответствует средняя сила Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами с которой одна молекула действует на тело (например, стенку сосуда) на протяжении промежутка времени Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами. Используя второй закон Ньютона для описания удара молекулы Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и третий закон Ньютона для мгновенных значений сил взаимодействия молекулы и тела Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами получим:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами (3.1)

При нормальных условиях и макроскопических размерах сосуда число ударов молекул газа о плоскую поверхность площадью 1 Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами составляет порядка Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами в секунду. Очень слабые силы ударов отдельных молекул Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами складываются для громадного количества молекул в значительную по величине и почти постоянную силу, действующую на тело. Усреднённое по времени значение этой силы, отнесенное к единичной площадке, и есть давление газа.

Пусть в сосуде, имеющем форму куба с ребром длиной l (рис. 12), находится идеальный газ, состоящий из одинаковых молекул массой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамикаждая. Будем считать, что молекулы упруго ударяются только о стенки сосуда, не сталкиваясь друг с другом. Так как молекулы, образующие стенки сосуда, совершают тепловые колебания, то скорости движения молекул газа при соударениях с ними изменяются случайным образом. Однако если газ и сосуд находятся в тепловом равновесии, то средняя кинетическая энергия молекул не изменяется со временем. Это позволяет реальное хаотическое движение молекул газа со всевозможными направлениями и модулями скоростей упрощённо рассматривать как движение, при котором модули проекций скорости на каждую из координатных осей одинаковые, т. е.Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамии остаются неизменными, а при соударениях изменяется знак только у одной из трёх проекций скорости на координатные оси.

Для описания удара молекулы газа о стенку ABCD (см. рис. 12) запишем соотношение (3.1) в проекциях на координатные оси:Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Так как промежуток времени между двумя последовательными соударениями молекулы со стенкой ABCD Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамито

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Проекция полной средней силы, с которой все N молекул, находящиеся в сосуде, действуют на стенку ABCD Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами так какМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Следовательно,Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — усреднённый но всем N частицам квадрат проекций их скоростей на ось Ох.

Разделив обе части соотношения для Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами на площадь стенки Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами получим формулу для давления, оказываемого молекулами газа на стенку ABCD:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Так как Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиПоскольку молекулы газа совершенно одинаково отражаются от трёх пар противоположно расположенных граней куба, то Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами С учётом того, что занимаемый газом объём Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами а концентрация молекул газа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами получим:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(3.2)

Уравнение (3.2) называют основным уравнением молекулярно-кинетической теории идеального газа. Это уравнение позволяет рассчитать макроскопический параметр давление р газа через концентрацию п молекул, массу т0 молекулы и среднюю квадратичную скорость её теплового движения, определяемую по формуле Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Иначе говоря, формула (3.2) связывает между собой макро- и микроскопические параметры системы «идеальный газ».

Зависимость давления газа от среднего квадрата скорости движения его молекул объясняется тем, что с увеличением скорости, во-первых, возрастает импульс молекулы, а следовательно, и сила удара о стенку. Во-вторых, возрастает число ударов, так как молекулы чаще соударяются со стенками.

Обозначим черезМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами среднюю кинетическую энергию поступательного движения молекул. Тогда основное уравнение молекулярно-кинетической теории примет следующий вид:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(3.3)

Из выражения (3.3) видно, что давление идеального газа зависит от средней кинетической энергии поступательного движения его молекул и их концентрации.

Проиллюстрировать зависимость давления от скорости движения молекул газа можно, используя механическую модель. Соберём установку, изображённую на рисунке 13. Закрепим пластину П таким образом, чтобы она могла поворачиваться вокруг горизонтальной оси. Насыплем в воронку с узким горлышком мелкую дробь. Используя наклонный жёлоб, направим на пластину струйку дроби (дробинки играют роль молекул). В результате многочисленных ударов дробинок пластина отклонится на некоторый угол под действием силы давления дробинок. Увеличив высоту, с которой скатываются дробинки, а следовательно, и их скорость в момент удара о пластину, можно заметить, что пластина отклонилась на больший угол. Отсюда можно сделать вывод: чем больше скорость движения дробинок, тем больше производимое на пластину давление.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
 

1.    Идеальный газ — модель газа, удовлетворяющая следующим условиям: 1 ) молекулы газа можно считать материальными точками, которые хаотически движутся; 2) силы взаимодействия между молекулами идеального газа практически отсутствуют (потенциальная энергия взаимодействия равна нулю); они действуют только при столкновениях молекул, причём это силы отталкивания.

2.    Уравнение, связывающее микронараметры состояния идеального газа (массу молекулы и её среднюю квадратичную скоростьМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами с его макропараметром (давлением, характеризующим газ как целое), непосредственно измеряемым на опыте, называют основным уравнением молекулярно-кинетической теории идеального газа:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

3.    Давление идеального газа зависит от средней кинетической энергии поступательного движения его молекул и их концентрации:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №6

Электрическая лампа наполнена газом, плотность которого кг

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами После включения лампы давление газа в ней увеличилось отМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Определите, на сколько при этом увеличился средний квадрат скорости теплового движения молекул газа.

Дано

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Решение.

Пример №7

В сосуде вместимостью V= 10 л находится одноатомный газ, количество вещества которого v = 2,0 моль и давление Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Па. Определите среднюю кинетическую энергию теплового движения атомов этого газа.

Дано    
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
v = 2,0 моль
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — ?

Решение. Из основного уравнения молекулярно-кинетической теории, записанного в виде Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиследует, что Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Так как концентрация атомовМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиа число атомов газа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, тоМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Ответ: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиДж.

Тепловое равновесие

Температура — мера средней кинетической энергии теплового движения частиц вещества.

В повседневной жизни под температурой мы понимаем степень нагретости тела (холодное, тёплое, горячее). Такой подход является довольно субъективным, он зависит не только от состояния рассматриваемого тела, но и от наших ощущений. Чтобы избежать субъективной неопределенности, необходимо установить способ измерения температуры.

Тепловое равновесие

Если привести в соприкосновение два тела, то молекулы этих тел будут взаимодействовать между собой. При этом происходит передача энергии от молекул с большей кинетической энергией к молекулам с меньшей кинетической энергией. В результате средняя энергия поступательного движения молекул одного тела увеличивается, а другого — уменьшается. Отдающее энергию тело называют более нагретым, а тело, к которому энергия переходит, — менее нагретым. Как показывает опыт, такой переход энергии продолжается до тех пор, пока не установится некоторое состояние, в котором тела могут находиться сколь угодно долго. В этом состоянии степень нагретости тел становится и остаётся одинаковой, а следовательно, тела имеют одинаковую температуру. Это учитывают при измерении температуры тела. Термометр приводят в соприкосновение с телом, но отсчёт его показаний производят не сразу, а через некоторый промежуток времени. Это необходимо для того, чтобы между термометром и телом установилось тепловое равновесие.

Тепловым равновесием называют такое состояние, при котором все макроскопические параметры изолированной системы остаются неизменными в течение неограниченно большого промежутка времени. Под изолированной, или замкнутой, системой понимают систему тел, которая не обменивается энергией с окружающими телами.

Отметим, что у тел, входящих в физическую систему, находящуюся в состоянии теплового равновесия, могут быть различные значения плотности, концентрации, давления и объёма. Однако температура всех тел, входящих в такие системы, всегда одинакова.

Температура и средняя кинетическая энергия поступательного движения молекул газа

Определение температуры должно основываться на такой физической величине, которая характеризует состояние тел и является одинаковой для любых тел, находящихся в состоянии теплового равновесия. Необходимым свойством обладает средняя кинетическая энергия теплового движения частиц вещества. Эту энергию легче всего определять для идеального одноатомного газа, атомы которого совершают только поступательное движение.

Возьмём несколько сосудов разной вместимости, снабжённых манометрами для измерения давления (рис. 14). Заполнив их различными газами, например, аргоном, неоном и гелием, поместим сначала в сосуд с тающим льдом (Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами=0 °С), а затем будем изменять температуру содержимого сосудов, пока она не станет равной температуре кипения воды (t = 100 °С). Давления газов в сосудах могут отличаться. Массы газов можно определить взвешиванием откачанных и заполненных сосудов. Зная массу m и молярную массу М газа, по
формуле Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами можно вычислить число частиц и, следовательно, определить их концентрацию Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами в каждом из сосудов.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Опытным путём было установлено, что в состоянии теплового равновесия, несмотря на различные значения давления р и концентрации n частиц, отношение Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами давления к концентрации во всех сосудах оказалось практически п

одинаковым: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиЭто отношение для разреженных газов (удовлетворяющих требованиям модели «идеальный газ») зависит только от температуры, и эта зависимость является линейной, т. е.
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Здесь Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамихарактеризует температуру газов в энергетических единицах (в СИ измеряют в джоулях), k — коэффициент пропорциональности, зависящий от выбора температурной шкалы. Коэффициент k носит название постоянной Больцмана в честь австрийского физика Людвига Больцмана (1844 — 1906), одного из основателей молекулярно-кинетической теории газов:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Если для измерения температуры использовать шкалу Кельвина, то при определении числового значения температуры по этой шкале полагают

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами    (4.1)

Соотношение (4.1) позволяет создать температурную шкалу, не зависящую от рода вещества (газа). Такую шкалу, называемую абсолютной (термодинамической) шкалой температур, предложил в 1848 г. выдающийся английский физик Уильям Томсон (1824—1907), удостоенный за работы в области физики в 1892 г. титула лорда Кельвина. Поэтому эту шкалу обычно называют шкалой Кельвина.

Нулевая точка по шкале Кельвина соответствует самой низкой теоретически возможной температуре (абсолютный нуль температуры). Температура тающего льда по этой шкале Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами=273,15 К. Связь между температурами по шкале Цельсия (t) и по шкале Кельвина (Т) имеет вид Т = t + 273,15.

Единица температуры по абсолютной шкале один кельвин (1К) является основной единицей температуры в СИ и совпадает с одним градусом (1 °С) по шкале Цельсия. Поэтому разность температур по шкале Кельвина и по шкале Цельсия одинакова, т. е. Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(рис. 15).

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Из основного уравнения молекулярно-кинетической теории идеального газа (3.2) следует:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Средняя кинетическая энергия поступательного движения молекул газов, находящихся при одинаковой температуре, одинакова для разных газов, причём её значение пропорционально температуре и не зависит от массы молекулы газа:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(4.2)

Данное соотношение устанавливает связь между макроскопическим параметром состояния идеального газа — температурой Т и микроскопическим — средней кинетической энергией Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамипоступательного движения его частиц. Таким образом, из формулы (4.2) следует, что средняя кинетическая энергия поступательного движения частиц идеального газа пропорциональна его абсолютной температуре.

Этот вывод, основанный на экспериментах с разреженными газами, справедлив для жидкостей и твёрдых тел.

Уравнение (4.2) можно записать следующим образом:Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
откуда
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

С учётом формулы (4.2) основное уравнение молекулярно-кинетической теории идеального газа может быть записано в виде
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(4.3)

Из уравнения (4.3) видно, что при одинаковых значениях температуры Т и концентрации n частиц давление любых газов одинаково независимо от того, из каких частиц они состоят.

Закон Дальтона

Рассмотрим смесь химически не реагирующих разреженных газов, находящихся в сосуде вместимостью V. Тепловое движение частиц каждого газа равномерно распределяет их по всему объёму сосуда. В результате столкновений частиц друг с другом в смеси устанавливается тепловое равновесие. Докажем, что давление каждого газа, входящего в состав смеси, не зависит от наличия остальных разреженных газов и результирующее давление определяется суммарным давлением всех компонентов смеси газов.

Общее число частиц газов в сосудеМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами где Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — число частиц каждого газа.

Обозначим через Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— парциальные давления каждого газа. Парциальное давление — давление газа, входящего в состав газовой смеси, если бы он один занимал весь объём, предоставленный смеси, при той же температуре. Тогда, учитывая соотношение (4.3), запишем:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиследовательно,
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(4.4)
Формула (4.4) является математическим выражением закона, экспериментально установленного в 1801 г. английским учёным Джоном Дальтоном (1766—1844) и называемого законом Дальтона. Согласно этому закону давление смеси химически не реагирующих между собой газов равно сумме парциальных давлений каждого из газов.
 

  1. Тепловым равновесием называют такое состояние изолированной физической системы, при котором все её макроскопические параметры остаются неизменными с течением времени. В состоянии теплового равновесия температура различных частей физической системы одинакова.
  2. Средняя кинетическая энергия поступательного движения молекул газа пропорциональна абсолютной температуре: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
  3. Средняя квадратичная скорость молекул газа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
     
  4. Давление идеального газа прямо пропорционально концентрации его молекул и абсолютной температуре газа: p = nkT.
  5. Температурную шкалу, не зависящую от рода вещества, называют абсолютной (термодинамической) шкалой температур (шкалой Кельвина). Температура по шкале Кельвина (Т) приближённо связана с температурой по шкале Цельсия (t) соотношением Т = t + 273.
  6. Давление смеси химически не реагирующих между собой разреженных газов равно сумме парциальных давлений каждого из газов (закон Дальтона): Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами где парциальное давление — давление газа, входящего в состав газовой смеси, если бы он один занимал весь объём, предоставленный смеси, при той же температуре.

Пример №8

Сравните средние квадратичные скорости атомов гелия и молекул кислорода, если оба газа находятся в состоянии теплового равновесия.
Дано:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Решение. Из основного уравнения молекулярно-кинетической теории Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамии уравненияМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами следует, чтоМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Поскольку Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами тоМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиТак как газы находятся в состоянии теплового равновесия, т. е. Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамито средние квадраты скоростей атомов гелия Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами молекул кислорода —Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Отсюда Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
ТогдаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Ответ: в состоянии теплового равновесия средняя квадратичная скорость атомов гелия в 2,8 раза больше средней квадратичной скорости молекул кислорода.

Пример №9

В баллоне вместимостью V= 14 л находится газ, температура которого 7=290 К. Расходуя газ, из баллона выпустили N= 1,0Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами молекул. Определите, на сколько уменьшилось давление газа в баллоне, если через некоторый промежуток времени его температура увеличилась до первоначального значения.
Дано:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Решение. Начальное давление газа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Когда израсходовали часть газа, его давление после того, как температура увеличилась до первоначального значения T, стало Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиТогда убыль давления газа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Ответ:Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами=2,9 кПа.

Изотермический, изобарный и изохорный процессы

Мы рассмотрели идеальный газ с позиций молекулярно-кинетической теории. Выяснили зависимость давления идеального газа от концентрации его молекул и температуры. Но как связаны между собой давление идеального газа, его масса, объём и температура?

Уравнение состояния идеального газа

Состояние макроскопической системы полностью определено, если известны её макроскопические параметры — давление р, температура Т и объём V. Уравнение, которое связывает параметры данного состояния, называют уравнением состояния системы. Изменение двух и более параметров состояния системы с течением времени называют процессом.

Если при переходе идеального газа из одного состояния в другое число его т

молекул Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами остаётся постоянным, т. е. масса и молярная масса газа не изменяются, то из уравнении Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами иМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами следует:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(5.1)
где k — постоянная Больцмана,Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — параметры начального состояния газа, а Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— конечного. Из соотношений (5.1) следует, что
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(5.2)

Уравнение состояния в виде (5.2) впервые вывел в 1834 г. французский физик Бенуа Клапейрон (1799—1864), поэтому его называют уравнением Клапейрона.

Таким образом, при неизменных массе и молярной массе идеального газа отношение произведения его давления и объёма к абсолютной температуре является величиной постоянной. Уравнение (5.2) связывает два состояния идеального газа независимо от того, каким образом газ перешёл из одного состояния в другое.

В справедливости уравнения состояния можно убедиться, используя установку, изображённую на рисунке 16. Манометром 1, соединённым с герметичным гофрированным сосудом, регистрируют давление газа внутри сосуда. Объём газа в сосуде можно измерить, используя линейку 2. Температура газа в сосуде равна температуре окружающей среды и может быть измерена термометром.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Измерив параметры газа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами в начальном состоянии, вычисляют отношениеМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиПосле этого помещают сосуд в горячую воду, тем самым изменяя температуру газа и его давление. Вращая винт 3, изменяют вместимость сосуда. Измерив снова
давление газа Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, его объём Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамии температуру Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, вычисляют отношениеМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Как показывают расчёты, уравнение состояния (5.2) выполняется в пределах погрешности эксперимента.

Реальные газы удовлетворяют уравнению состояния идеального газа при не очень больших давлениях (пока собственный объём всех молекул газа пренебрежимо мал по сравнению с вместимостью сосуда, в котором находится газ) и при не слишком низких или же высоких температурах (пока абсолютное значение потенциальной энергии межмолекулярного взаимодействия пренебрежимо мало по сравнению с кинетической энергией теплового движения молекул).

Поскольку число частиц Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, где m — масса газа, М — его молярная масса, Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— число Авогадро, то из (5.1) следует:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Введём новую постоянную R, равную произведению постоянных Больцмана и Авогадро:Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Постоянную R называют универсальной газовой постоянной. Тогда
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

или с учетом того, что количество вещества Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

pV = vRT.

Уравнение состояния в виде (5.3) впервые получено русским учёным Д. И. Менделеевым (1834—1907) в 1874 г., поэтому его называют уравнением Клапейрона — Менделеева.

Отметим, что уравнение Клапейрона—Менделеева связывает между собой параметры конкретного состояния идеального газа. Используя уравнение Клапейрона — Менделеева, можно описать различные процессы, происходящие в идеальном газе.

Процессы в газах часто происходят так, что изменяются только два параметра из пяти (р, V, Т, m, М). Если один из макропараметров (р, V, Т), входящих в уравнение состояния идеального газа, не изменяется, то такие процессы называют изопроцессами.

Изотермический процесс

Процесс изменения состояния газа при постоянной температуре (Т = const) называют изотермическим. Если масса идеального газа и его молярная масса не изменяются, то из уравнения Клапейрона— Менделеева следует:Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Следовательно, давление данной массы газа при постоянных молярной массе и температуре обратно пропорционально его объёму. Это утверждение называют законом Бойля — Мариотта. Закон Бойля—Мариотта описывает изотермический процесс в идеальном газе, масса и молярная масса которого при переходе из начального состояния в конечное не изменяются.

Справедливость закона Бойля—Мариотта можно проверить экспериментально, используя установку, изображённую на рисунке 16. Если поддерживать постоянной температуру газа, то уменьшение его объёма при вращении винта 3 повлечёт за собой увеличение давления, и наоборот, увеличение объёма приведёт к уменьшению давления. Однако произведение pV остаётся постоянным: pV = const.

График такого процесса в координатах (р, V) представляет собой гиперболу (рис. 17). В физике эту кривую называют изотермой. Разным значениям температуры соответствуют разные изотермы.
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Согласно уравнению состояния Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамидля одного и того же объёма газа, чем больше давление, тем больше его температура (см. рис. 17).

Опыты показали, что реальные газы подчиняются закону Бойля — Мари-отта тем точнее, чем меньше их плотность. При значительном увеличении давления этот закон перестаёт выполняться.

Изотермический процесс можно изобразить и в координатах (р, Т) и (V, Т). Сделайте это самостоятельно.

Изобарный процесс

Процесс изменения состояния газа при постоянном давлении (р = const) называют изобарным. Впервые он был рассмотрен в 1802 г. французским учёным Жозефом Гей-Люссаком (1778—1850). Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, то объём газа, как следует из уравнения Клапейрона—Менделеева (5.3):

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(5.5)

Таким образом, изобарный процесс в идеальном газе описывает закон, согласно которому объём данной массы газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре. Справедливость закона Гей-Люссака можно проверить экспериментально, используя установку, изображённую на рисунке 18. Жидкость в сосуде находится в тепловом равновесии с тонкой трубкой, заполненной воздухом, запертым столбиком масла. При увеличении температуры жидкости объём воздуха, находящегося в трубке под столбиком масла, возрастает, а при уменьшении температуры — уменьшается.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Поскольку V~ Т, то в координатах (V, Т) график изобарного процесса для идеального газа представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 19). Эту линию называют изобарой. Изобара реального газа не может быть продлена до нулевого значения температуры (на графике пунктирная линия), потому что при низких температурах все газы начинают существенно отличаться от модели «идеальный газ» и при дальнейшем уменьшении температуры превращаются в жидкости. В одних и тех же координатах (V, Т) можно построить несколько изобар, которые будут соответствовать разным давлениям данной массы идеального газа при неизменной молярной массы.

Анализ графиков (см. рис. 19) и соотношения Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами  позволяет сделать вывод, что большему давлению р соответствует меньший наклон изобары к оси температур Т.

Изобарный процесс можно изобразить и в координатах (р, V) и (р, Т). Сделайте это самостоятельно.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Рис. 19

Уравнение (5.5) изобарного процесса можно записать в другом виде. Пусть данная масса идеального газа при давлении р и температуре  Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамизанимает некоторый объём  Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиУравнение состояния газа для этого случая имеет вид Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Будем считать, что газ изобарно нагрели до температуры Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами где t — температура по шкале Цельсия. Для этого состояния можно записать Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

После сопоставления двух равенств приходим к выводу, что Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Тогда

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Отношение Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, являющееся постоянной величиной для всех разреженных газов, называют температурным (термическим) коэффициентом объёмного расширения газа при постоянном давлении, который характеризует относительное увеличение объёма газа при изменении его температуры на один градус Коэффициент Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами измеряют в Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиС учётом этого уравнение для изобарного процесса будет иметь вид Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Как видно из последнего соотношения, объём данной массы газа при постоянном давлении линейно возрастает с ростом температуры.

Изохорный процесс

Процесс изменения состояния газа при постоянном объёме  (V = const) называют изохорным. Впервые он был рассмотрен в 1787 г. французским учёным Жаком Шарлем (1746—1823). Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, 

то давление газа, как следует из уравнения Клапейрона — Менделеева (5.3):

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Таким образом, изохорный процесс в идеальном газе описывает закон, согласно которому давление данной массы газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре. Справедливость закона Шарля можно проверить экспериментально, используя установку, изображённую на рисунке 20. Колба с воздухом, соединённая с манометром, находится в тепловом равновесии с жидкостью в сосуде. При увеличении температуры жидкости давление воздуха в колбе возрастает, а при уменьшении температуры давление воздуха уменьшается.

В координатах (р, Т) график изохорного процесса для идеального газа, масса и молярная масса которого постоянны, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 21). Эту линию называют изохорой.

Как и в случае изобарного процесса, изохора реального газа не может быть продлена до нулевого значения температуры. Изохору можно изобразить и в координатах (р, V) и (V, Т). Сделайте это самостоятельно.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
В одних и тех же координатах (р, Т) можно построить несколько изохор, соответствующих разным объёмам данной массы газа при неизменной молярной массе. Анализ соотношений (5.6) показывает, что большему объёму V соответствует меньший наклон изохор к оси температур Т (см. рис. 21).

Если температуру t измерять по шкале Цельсия, то Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — давление газа при температуре Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— температурный коэффициент давления, который для всех разреженных газов Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

1. При постоянных массе и молярной массе идеального газа отношение произведения давления газа и его объёма к абсолютной температуре является величиной постоянной (уравнение состояния идеального газа):

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

2.    Давление данной массы идеального газа при постоянных молярной массе и температуре обратно пропорционально объёму газа (изотермический процесс):

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

3.    Объём данной массы идеального газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре (изобарный процесс):

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

4.    Давление данной массы идеального газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре (изо-хорный процесс):

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №10

В двух сосудах вместимостью Молекулярно-кинетическая теория - основные понятия, формулы и определения с примераминаходятся химически не реагирующие идеальные газы, давления которыхМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами соответственно. Определите давление в сосудах, после того как их соединили тонкой короткой трубкой. Температура газов до и после соединения сосудов одинаковая.

Дано:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Решение. Давление смеси газов равно сумме парциальных давлений (закон Дальтона): Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Найдём парциальные давления газов после соединения сосудов. Так как температура и массы газов не изменяются, то начальное и конечное состояния каждого из газов связаны законом Бойля — Мариотта, т. е. Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Отсюда парциальные давления газов после соединения сосудов соответственно
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Следовательно,Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Ответ: р = 0,64 МПа.

Пример №11

Баллон с газом, давление которого Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами находился в неотапливаемом помещении, где температура воздуха Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами После того как некоторое количество газа было израсходовано, баллон внесли в помещение, где температура воздухаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиОпределите, какая часть газа была израсходована, если после длительного пребывания баллона в помещении давление газа в нём сталоМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Дано:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Решение. Если пренебречь тепловым расширением баллона, то его вместимость не изменяется. Запишем уравнения Клапейрона— Менделеева для начального и конечного состояний газа, считая его идеальным:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
ТогдаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
 

Пример №12

На рисунке 22 изображён график процесса изменения состояния некоторой массы идеального газа. Как изменялись параметры газа на участках Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Изобразите этот процесс в координатах Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами рис.22
Решение. На участкеМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами объём газа прямо пропорционален температуре, следовательно, процесс перехода газа из состояния 1 в состояние 2 является изобарным. Из графика видно, что в состоянии 2 температура и объём газа больше, чем в состоянии 1. Следовательно, в процессе изобарного расширения некоторой массы газа из состояния 1 в состояние 2 температура и объём газа увеличились. Это можно записать таким образом: переход Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамипроисходит изобарное нагревание газа.

В процессе перехода газа из состояния 2 в состояние 3 остаётся постоянным объём (процесс изохорный), а температура газа уменьшается. Непосредственно из графика не видно, что будет происходить с давлением газа, но из соотношения (5.6) следует, что при изохорном охлаждении давление газа уменьшается пропорционально его температуре. Поэтому можно записать: переходМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамипроисходит изохорное охлаждение газа.

Процесс перехода газа из состояния 3 в состояние 1 — изотермический. При этом объём газа уменьшается, что влечёт за собой, согласно закону Бой-ля— Мариотта, увеличение давления газа:

переход Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамипроисходит изотермическое сжатие газа.

Опираясь на сделанные выводы, изобразим все три процесса в координатах Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Строение и свойства твёрдых тел

В повседневной жизни мы считаем твёрдым любое тело, сохраняющее форму и объём в отсутствие внешних воздействий. Например, мы считаем твёрдыми тела, изготовленные из металлов, пластмассы, льда, стекла. Твёрдые тела делят на две группы, различающиеся по своим свойствам: кристаллические и аморфные. К кристаллическим телам относят минералы, например поваренную соль, медный купорос, кварц, квасцы, горный хрусталь, и металлы в твёрдом состоянии; к аморфным телам — опал, обсидиан, эбонит, сургуч, стекло, различные пластмассы, смолы (вар, канифоль, янтарь) и др. В чём отличие между кристаллическими и аморфными твёрдыми телами?

Кристаллы

Кристаллами называют такие твёрдые тела, атомы, ионы или молекулы которых совершают тепловые колебания около определённых, упорядоченных в пространстве положений равновесия. Упорядоченное размещение частиц твёрдого кристаллического тела обусловливает его правильную геометрическую форму, вследствие чего поверхность кристалла образована плоскими гранями (рис. 25).

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Рис. 25

Частицы кристалла удерживаются на определённом усреднённом расстоянии друг от друга (-0,1 нм) силами межатомного и межмолекулярного взаимодействия. Несмотря на тепловые колебания, они образуют упорядоченную пространственную структуру, геометрическим образом которой является кристаллическая решётка. Узлы кристаллической решётки — это положения устойчивого равновесия колеблющихся частиц (ионов, атомов или молекул), из которых состоит кристалл. Основой строения кристалла служит так называемая элементарная кристаллическая ячейка — многогранник наименьших размеров, последовательным переносом которого вместе с частицами, находящимися внутри этого многогранника, можно построить весь кристалл. На рисунке 26 показаны самые простые элементарные ячейки: кубические (а — примитивная, б — объёмно-центрированная, в — гранецентрированная) и гексагональная призма (г).Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

В кристаллических телах упорядоченное размещение частиц повторяется во всём объёме кристалла, поэтому говорят, что в кристалле существует дальний порядок в расположении частиц.

В зависимости от вида частиц, из которых состоит кристалл, и от характера сил взаимодействия между ними, различают четыре основных типа кристаллов: ионные, атомные, металлические и молекулярные. В узлах ионной кристаллической решётки размещены положительно и отрицательно заряженные ионы, «связанные» между собой электростатическими силами. Типичным примером ионного кристалла является кристалл хлорида натрия NaCl (рис.27). Кристаллы с ионной решёткой тугоплавки и обладают высокой твёрдостью.

В узлах атомной кристаллической решётки находятся нейтральные атомы. Связь между атомами осуществляется электронными парами — по одному валентному электрону от каждого атома. Примером атомных кристаллов могут служить алмаз и графит. Эти кристаллы тождественны по химической природе (они состоят из атомов углерода), но отличаются по своему строению (рис. 28). Это существенно сказывается на их свойствах: алмаз — твёрдый минерал (рис. 28, а), графит — наоборот, мягкий и крохкий (рис. 28, б).

В узлах кристаллической решётки металлов находятся положительные ионы, например, полония Ро (рис. 26, а), железа Fe (рис. 26, б), серебра Ag (рис. 26, в), магния Mg (рис. 26, г). Между колеблющимися ионами непрерывно движутся свободные электроны.Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

В узлах молекулярных кристаллических решёток находятся молекулы. Большинство простых веществ неметаллов в твёрдом состоянии, например под Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиводород Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и их соединений друг с другом, например лёд Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(рис. 29, б), а также практически все твёрдые органические вещества образуют молекулярные кристаллы.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Твёрдые тела, имеющие во всём объёме единую кристаллическую решётку, называют монокристаллами. Это одиночные кристаллы, которые могут иметь довольно большие размеры (встречаются кристаллы горного хрусталя, размеры которых соизмеримы с ростом человека). Многие твёрдые тела состоят из большого числа сросшихся между собой маленьких кристаллов. Такие твёрдые тела называют поликристаллами. Вы сами можете в домашних условиях вырастить монокристаллы (рис. 30, а) и поликристаллы (рис. 30, б) медного купоросаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Характерной особенностью монокристаллов является их анизотропия, т. е. зависимость физических свойств (механических, тепловых, электрических, оптических) от направления. Анизотропия монокристаллов обусловлена взаимодействием частиц и их упорядоченным расположением. На рисунке 31 показано, что расстояния между атомными плоскостями в кристалле неодинаковыМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Поэтому, в частности, отличаться будут и модули сил, необходимых для его разрываМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

В отличие от монокристаллов поликристаллы изотропны, т. е. их свойства одинаковы по всем направлениям. Это следствие того, что поликристалл состоит из большого количества хаотически ориентированных маленьких монокристаллов.

Аморфные тела

Аморфное состояние (от греч. amorphous — бесформенный) — твёрдое некристаллическое состояние вещества, характеризующееся изотропией свойств и отсутствием определённой температуры плавления.

При повышении температуры аморфное вещество размягчается и постепенно переходит в жидкое состояние. В аморфном состоянии вещество не имеет строгого порядка в расположении атомов и молекул. На рисунке 32 схематически изображено строение кристаллического кварца (рис. 32, а) и аморфного кварца (рис. 32, б). Аморфное состояние — бесформенное состояние со слабо выраженной текучестью. Аморфные тела называют переохлаждёнными жидкостями, так как у них, как и у жидкостей, существует только ближний порядок расположения частиц.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Аморфные тела при определённых условиях могут кристаллизоваться. Сахар-песок является кристаллическим телом. Если его расплавить, то, застывая, он превращается в прозрачный стеклообразный леденец, который является аморфным телом. Через некоторый промежуток времени леденец «засахаривается», т. е. опять становится кристаллическим.

При скоростях охлаждения, превышающих миллион градусов в секунду, удалось получить аморфные металлические сплавы — стеклообразные металлы. Аморфный металл чрезвычайно твёрд и прочен. Его используют как режущий инструмент. Он обладает высокими магнитными свойствами, поэтому незаменим при изготовлении магнитных головок для звуко- и видеозаписи. Кроме того, аморфные металлы обладают высокой антикоррозийной стойкостью.

  1. Твёрдые тела делят на две группы, различающиеся по своим свойствам: кристаллические и аморфные.
  2. Атомы, ионы или молекулы в твёрдых кристаллических телах совершают тепловые колебания около определённых, упорядоченных в пространстве положений равновесия.
  3. Монокристаллическим телам присуща анизотропия, т. е. зависимость физических свойств от направления. Поликристаллические тела изотропны, т. е. их физические свойства одинаковы по всем направлениям.
  4. Аморфное состояние — твёрдое некристаллическое состояние вещества, характеризующееся изотропией свойств и отсутствием определённой температуры плавления.

Строение и свойства жидкостей и поверхностное натяжение

Среднее расстояние между молекулами вещества в жидком состоянии меньше (рис. 33, а), чем среднее расстояние между молекулами этого же вещества в газообразном состоянии (рис. 33, б). Оно равно приблизительно одному-двум диаметрам молекулы. Это приводит к тому, что плотность жидкости приблизительно в 103 раз превышает плотность пара, находящегося в динамическом равновесии с жидкостью (насыщенного пара). Например, плотность воды при температуре Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамираз больше плотности насыщенного водяного пара. Свойства жидкостей зависят как от особенностей движения молекул, так и от взаимодействия между ними.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Строение и свойства жидкостей:

В опытах по рассеянию рентгеновских лучей в жидкостях обнаружен ближний порядок в расположении частиц (см. рис. 33, а). В отличие от твёрдых тел (рис. 33, в) в жидкостях упорядоченность в расположении молекул сохраняется лишь среди ближайших соседей (на расстояниях, равных нескольким диаметрам молекул), сочетаясь с непрерывными и беспорядочными колебаниями около положений равновесия. Средняя кинетическая энергия колебаний молекул определяет температуру жидкости. Молекулы, получившие дополнительную энергию в результате столкновений с другими молекулами, могут «перепрыгнуть» в новое положение равновесия. Таким образом, ближний порядок в жидкости постоянно разрушается в результате теплового движения молекул и вновь создаётся силами молекулярного действия.

Расстояния между молекулами, соизмеримые с их собственными размерами, и возможность молекул относительно свободно перемещаться определяют свойства жидкостей. Жидкости, как и твёрдые тела, практически несжимаемы, но они текучи, поэтому их форма определяется формой предоставленного им сосуда. На форму жидкости оказывают влияние внешние силы (например, сила тяжести совместно с силами реакции дна и стенок сосуда, в котором находится жидкость) и силы поверхностного натяжения.

Поверхностное натяжение:

Рассмотрим явления, происходящие на границе раздела жидкости с воздухом или с её паром. Своим возникновением эти явления обязаны особым физическим условиям, в которых находятся молекулы поверхностного слоя жидкости.

В поверхностном слое жидкости проявляется нескомпенсированность молекулярных сил притяжения. В самом деле, любая молекула внутри жидкости со всех сторон окружена соседними (одинаковыми) молекулами, действие которых взаимно компенсируется (рис. 34). Поэтому здесь молекулярные силы притяжения уравновешиваются и равнодействующая этих сил равна нулю. Так как концентрация молекул в воздухе (паре) значительно меньше, чем в жидкости, то равнодействующая сил притяжения каждой молекулы поверхностного слоя к молекулам газа меньше равнодействующей сил её притяжения к молекулам жидкости. Таким образом, равнодействующие сил притяжения, действующих на молекулы поверхностного слоя, направлены внутрь жидкости. Под действием этих сил молекулы поверхностного слоя втягиваются внутрь, число молекул на поверхности уменьшается и площадь поверхности жидкости сокращается до определённой величины. Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Толщина поверхностного слоя, в котором проявляется нескомпенсирован-ность сил молекулярного притяжения, равна приблизительно радиусу сферы молекулярного действия (-1 нм). Под действием сил притяжения и вследствие текучести жидкости на её поверхности остаётся такое количество молекул, при котором площадь поверхности минимальна для данного объёма жидкости. Процесс сокращения площади поверхности на этом прекращается, жидкость переходит в состояние равновесия. В этом состоянии силы притяжения молекул поверхностного слоя, направленные внутрь жидкости, уравновешиваются силами отталкивания, возникшими при сближении молекул поверхностного слоя с молекулами внутри жидкости, вызванном её сжатием.

Чтобы переместить молекулу, расположенную внутри жидкости, на поверхность (увеличить площадь поверхности жидкости), необходимо совершить работу против сил взаимодействия этой молекулы с молекулами поверхностного слоя жидкости. Следовательно, молекулы, образующие поверхностный слой жидкости, обладают избыточной потенциальной энергией по сравнению с молекулами, находящимися внутри жидкости. Эту энергию называют поверхностной энергией.

Так как потенциальная энергия тела (системы тел) в состоянии устойчивого равновесия минимальна, то наличие поверхностной энергииМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами у жидкости обусловливает её стремление к сокращению площади S своей поверхности. Работу внешних сил по увеличению площади поверхности жидкости на единицу площади при сохранении объёма и температуры жидкости неизменными называют коэффициентом поверхностного натяженияМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами или, кратко, поверхностным натяжением. Эту физическую скалярную величину можно определить по формуле

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами                             Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Минимальную площадь поверхности при данном объёме имеют шарообразные тела. Например, капли жидкости при соприкосновении сливаются в одну, форма которой отличается от сферической только из-за действия силы тяжести и силы реакции опоры. Чем меньше радиус капли, тем большую роль играет поверхностная энергия по сравнению с потенциальной энергией капли в гравитационном поле Земли и тем ближе форма капель жидкости на опоре к сферической. Поэтому маленькие капельки росы на листьях растений принимают форму, близкую к шарообразной (рис. 35).

Рассмотрим следующий опыт. Опустим проволочное кольцо с привязанной к нему нитью в мыльный раствор. Контур кольца, извлечённого из раствора, затянут мыльной плёнкой, а нить в ней размещается случайным образом (рис. 36, а). Если проколоть плёнку с одной стороны нити, то оставшаяся часть плёнки сократится так, что площадь её поверхности станет минимальной (рис. 36, б). Нить удерживается в натянутом состоянии силами, получившими название сил поверхностного натяжения. Они направлены по касательным к свободным поверхностям плёнки перпендикулярно к линии, ограничивающей эти поверхности.

Рассмотрим ещё один опыт. Прямоугольную рамку с подвижной перекладиной длиной Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами опустим в мыльный раствор. После извлечения рамки из раствора видим, что перекладина перемещается, так как мыльная плёнка стремится сократить площадь своей поверхности. Чтобы перекладину удержать в

равновесии, к ней следует приложить силу Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами которая уравновесит действующие на каждой из двух поверхностей плёнки силы поверхностного натяжения:Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами так как Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами (рис.37). Если проводить опыты с рамками разных размеров, можно установить, что отношение Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамидля пленки данной жидкости при фиксированной температуре всегда одинаковое.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Значит, это отношение можно взять в качестве характеристики поверхностного слоя жидкости:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Поверхностное натяжениеМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамичисленно равно отношению модуля силы поверхностного натяжения Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами действующей на прямолинейный участок границы поверхностного слоя жидкости, к длине Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиэтого участка.

Силовое определение поверхностного натяжения дополняет энергетическое. Единицей поверхностного натяжения в СИ является джоуль на метр в квадрате Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
или ньютон на метрМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Покажите самостоятельно, что

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Поверхностное натяжение зависит от рода жидкости и той среды, с которой она граничит, наличия растворённых в жидкости других веществ и от её температуры. Повышение температуры жидкости, добавление в неё так называемых поверхностно-активных веществ (мыло, жирные кислоты) приводит к уменьшению поверхностного натяжения. Чрезвычайно разнообразны проявления сил поверхностного натяжения жидкости в природе и технике. Поверхностное натяжение приводит к тому, что вода собирается в капли (рис. 38), образуются мыльные пузыри (рис. 39), жук-водомерка передвигается по поверхности воды (рис. 40), а в состоянии невесомости любой объём жидкости принимает сферическую форму.
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Смачивание

На границе соприкосновения твёрдых тел, жидкостей и газов наблюдается явление смачивания или несмачивания, являющееся результатом взаимодействия между молекулами жидкости, твёрдого тела и газа, которое приводит к искривлению поверхности жидкости около поверхности твёрдого тела на границе с газом. При контакте жидкости с твёрдым телом возможны случаи, когда жидкость смачивает (частично или полностью) или не смачивает (частично или полностью) его. Так, ртуть хорошо смачивает чистые поверхности металлов и не смачивает чистое стекло. Вода хорошо смачивает чистое стекло и не смачивает жирные поверхности.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами
Свободная поверхность жидкости на границе с твёрдым телом искривляется, образуя мениск. Если жидкость смачивает поверхность тела, образуется вогнутый мениск (рис. 41, а), если не смачивает — выпуклый мениск (рис. 41, б). На границе соприкосновения трёх сред — твёрдой, жидкой и газообразной — жидкость принимает такую форму, при которой сумма потенциальной энергии жидкости в гравитационном поле Земли и поверхностной энергии всех тел минимальна (твёрдые тела также обладают поверхностной энергией). Поверхностное натяжение на границе твёрдого тела и жидкости обозначают Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамина границе твёрдого тела и газа — Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамина границе жидкости и газа — Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиЕсли Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами то жидкость полностью смачивает поверхность твёрдого тела, покрывая его тонкой плёнкой. Если Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамито жидкость полностью не смачивает поверхность твёрдого тела, стягиваясь в каплю, несколько сплюснутую действием силы тяжести и силы реакции опоры. В большинстве случаев имеет место частичное смачивание (рис. 42, а) или частичное несмачивание (рис. 42, б).

Явление смачивания используют в промышленности и в быту. Хорошее смачивание необходимо при окраске и мытье разных тканей, нанесении лакокрасочных покрытий и т. д. На явлении смачивания основано склеивание различных изделий. Покрытие металлических изделий масляной плёнкой для их защиты от коррозии основано на несмачивании водой жирных поверхностей.

Непромокаемую одежду изготавливают из тканей, которые не смачиваются водой. Со свойством смачивания связана пайка металлов. Чтобы расплавленный припой хорошо растекался по поверхности металлических изделий и прилипал к ним, нужно эти поверхности очистить от жира, пыли и оксидной плёнки.

Капиллярные явления

Под капиллярными явлениями понимают явление подъёма или опускания жидкости в узких трубках, называемых капиллярами. Если жидкость смачивает стенки капилляра, то при его опускании в сосуд с этой жидкостью уровень жидкости в капилляре будет выше, чем в сосуде (рис. 43, а). При несмачивании уровень жидкости в капилляре устанавливается ниже уровня жидкости в сосуде (рис. 43, б). Такое явление наблюдается, например, при опускании стеклянного капилляра в сосуд с ртутью.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Высота подъёма (опускания) жидкости в капилляре зависит от свойств жидкости и радиуса капилляра (рис. 44). Если жидкость полностью смачивает капилляр, то высоту подъёма жидкости в капилляре определяют по формуле

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

гдеМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — внутренний радиус капилляра, Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами — поверхностное натяжение жидкости, Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— плотность жидкости. Если жидкость полностью не смачивает капилляр, тоМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— глубина, на которую опускается жидкость в капилляре.

Капиллярные явления играют значительную роль в природе и технике. Так, ствол, ветви, стебель и листва растений пронизаны множеством капиллярных каналов, по которым поступают питательные вещества. По капиллярам в почве грунтовые воды поднимаются к корневой системе растений. Мелкие кровеносные сосуды человека и животных можно также рассматривать как капилляры. Капиллярные явления довольно часто встречаются и в быту. Полотенца хорошо впитывают в себя воду при вытирании, в авторучке чернила поступают к перу по капилляру. Чтобы избежать поглощения воды кожаной обувью, её насыщают жирным гуталином. Капиллярные явления лежат в оенове множеетва технических процессов: при смазке деталей машин и механизмов применяют фитильный способ; при окраске кожи и тканей краска заполняет капилляры изделия; при строительстве домов фундамент отделяют от стен рубероидом или битумом, чтобы избежать капиллярного подъёма воды из почвы.

1.    Расстояния между молекулами, соизмеримые с их собственными размерами, и подвижность молекул определяют свойства жидкостей: малую зависимость объёма жидкости от давления и её текучесть.

2.    Работу внешних сил по увеличению площади поверхности жидкости на единицу площади при сохранении объёма и температуры жидкости неизменными называют коэффициентом поверхностного натяжения (поверхностным натяжением):

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

3.    Силы поверхностного натяжения направлены по касательной к свободной поверхности жидкости и стремятся сократить эту поверхность до минимума.

4.    Поверхностное натяжение численно равно отношению модуля силы поверхностного натяжения, действующей на прямолинейный участок границы поверхностного слоя жидкости, к длине этого участка:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

5.    Высота подъёма (опускания) жидкости в капилляре зависит от поверхностного натяжения жидкости, плотности жидкости и внутреннего радиуса капилляра:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №13

Тонкостенное кольцо массойМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и радиусом Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамисоприкасается с мыльным раствором (рис. 45, а). Кольцо изготовлено из материала, хорошо смачиваемого мыльным раствором. Определите модуль силы, с которой надо подействовать на кольцо, чтобы оторвать его от поверхности раствора (рис. 45, б). Поверхностное натяжение мыльного раствораМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Решение. В момент отрыва от поверхности раствора на кольцо действуют искомая сила Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами сила тяжестиМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамии сила поверхностного натяжения Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(рис. 45, в). «Разрежем» поверхность жидкой плёнки, тянущейся от раствора к кольцу, воображаемой горизонтальной поверхностью. Нижняя часть плёнки граничит с верхней по кольцу, ограниченному двумя окружностями — внутренней и внешней, общая длина которых близка кМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Модуль силы поверхностного натяжения определим по формуле

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Условие равновесия кольца в проекции на осьМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами в момент его отрыва от раствора, как видно из рисунка 45, в, имеет вид

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Испарение и конденсация

Из повседневного опыта мы знаем, что жидкости, например вода, находясь в открытых сосудах, с течением времени переходят в газообразное состояние — испаряются. Причём скорость испарения зависит от рода жидкости, её температуры, площади свободной поверхности и от притока воздуха. Вследствие испарения воды с поверхности водяной оболочки Земли — гидросферы, с поверхности почвы и растительного покрова в воздухе всегда находятся водяные пары, которые могут конденсироваться, образовывать облака, выпадать в виде осадков. Процессы испарения и конденсации распространены в природе и технике, и изучение их особенностей имеет большое практическое значение.

Рассмотрим сосуд, который частично заполнили водой и плотно закрыли. В сосуде одновременно протекают два противоположно направленных процесса — переход воды в газообразное состояние (испарение) и переход водяного пара в жидкость (конденсация) (рис. 47). Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

В течение некоторого промежутка времени после герметизации сосуда испарение жидкости преобладает над конденсацией её пара. Если энергия к системе жидкость—пар не поступает из окружающей среды, то при испарении жидкость охлаждается. Это происходит вследствие того, что поверхностный слой жидкости покидают молекулы, обладающие наибольшей скоростью и, соответственно, кинетической энергией теплового движения, что позволяет им преодолеть силы притяжения, действующие в жидкости. Скорость вылетающих из жидкости молекул уменьшается, а скорость молекул, влетающих в жидкость, наоборот, увеличивается. Такие изменения скорости, а значит, и кинетической энергии молекул, пересекающих поверхность жидкости, позволяют системе достичь состояния теплового равновесия, при котором температуры жидкости и её пара одинаковы.

Концентрация молекул пара возрастает до тех пор, пока число молекул, покидающих жидкость, не станет равным числу молекул, возвращающихся в неё, за тот же промежуток времени. В этом случае говорят, что между жидкостью и паром устанавливается состояние динамического равновесия. Оно будет существовать до тех пор, пока не изменится температура или объём системы.

Воздушная оболочка Земли — атмосфера — представляет собой смесь газов. Атмосферный воздух всегда содержит водяной пар, концентрация молекул которого у поверхности Земли колеблется от 3% в тропиках до Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами в Антарктиде. Из океанов, морей и рек, а также суши за год испаряется свышеМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиводы, что приблизительно равно объёму воды в Чёрном море. На испарение затрачивается около половины всей поглощённой поверхностью Земли энергии солнечного излучения. При конденсации пара количество теплоты, ранее потребовавшееся для испарения жидкости выделяется в атмосферу. Это приводит к нагреванию атмосферы и предотвращает резкие колебания температуры. При перемещении водяных паров в атмосфере на большие расстояния происходит их конденсация в областях с более низкой температурой. Таким образом, в одних областях поверхности и атмосферы Земли преобладают процессы испарения воды, а в других — процессы конденсации водяного пара.

Насыщенный пар

Пар, находящийся в состоянии динамического равновесия с жидкостью, называют насыщенным. Насыщенный пар обладает свойствами, отличающимися от свойств идеального газа. Во-первых, давление насыщенного пара не зависит от его объёма при постоянной температуре. Количество молекул, переходящих из жидкости в пар через единичную площадку за единичный промежуток времени, зависит только от температуры и является постоянной величиной. Количество молекул, переходящих из пара в жидкость, зависит от концентрации пара, а значит, от его давления. Поэтому сразу при уменьшении объёма пара его давление увеличивается, что тут же приводит к возрастанию количества молекул, переходящих в жидкость. В результате количество молекул пара уменьшается и спустя некоторый промежуток времени устанавливается прежнее давление. При увеличении объёма пара его давление, наоборот, уменьшается. Вместе с этим уменьшается и количество молекул, переходящих из пара в жидкость. В результате количество молекул, которые покидают поверхность жидкости (оно не изменяется при Т= const), превышает количество молекул, возвращающихся в жидкость. Равновесие опять восстанавливается при достижении первоначального значения давления.

Второе отличительное свойство насыщенного пара связано с зависимостью его давления от температуры. Давление Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами насыщенного пара возрастает значительно быстрее, чем давление Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами идеального газа при увеличении температуры. В случае идеального газа рост давления обусловлен только увеличением его температурыМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами В случае же насыщенного пара рост температуры приводит к увеличению числа молекул, переходящих из жидкости в пар, т. е. к росту концентрации молекул пара. В соответствии с формулой Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами давление пара увеличивается не только в результате непосредственного повышения температуры, но и в результате увеличения концентрации молекул пара, вызванного всё тем же повышением температуры.

При переходе из одного состояния в другое масса насыщенного пара изменяется. Поэтому законы идеального газа для изопроцессов можно применять к пару только в том случае, если он далёк от насыщения и его масса остаётся неизменной. Однако уравнение Клапейрона—Менделеева Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиможно использовать для нахождения любых параметров Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами насыщенного пара.

Давление (плотность) насыщенного пара при данной температуре — мак-симальное давление (плотность), которое может иметь пар, находящийея в состоянии динамического равновесия с жидкостью при этой температуре. Пар, давление (плотность) которого меньше давления (плотности) насыщенного пара при той же температуре, называют ненасыщенным паром.

Влажность воздуха

Воздух, содержащий водяной пар, называют влажным воздухом. Основными количественными характеристиками такого воздуха являются его абсолютная и относительная влажности.

Абсолютной влажностью Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамивоздуха называют физическую величину, равную плотности водяного пара, находящегося в воздухе при данных условиях. Обычно абсолютную влажность выражают в граммах на кубический метр Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Используя уравнение Клапейрона — Менделеева, плотность пара можно определить через его парциальное давление Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

где Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами— молярная масса воды, Т — температура воздуха.

Зная только плотность Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами или парциальное давлениеМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами пара, нельзя судить о том, в каком состоянии находится пар в данных условиях и насколько он далёк от насыщения. Вот почему вводят вторую характеристику влажности воздуха — относительную влажностьМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами Относительная влажность показывает, насколько водяной пар при данной температуре далёк от насыщения.

Относительной влажностьюМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами воздуха называют физическую величину, равную отношению абсолютной влажности Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами к плотности Молекулярно-кинетическая теория - основные понятия, формулы и определения с примераминасыщенного водяного пара при данной температуре. Обычно относительную влажность выражают в процентах:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами                               Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Поскольку плотность пара и его парциальное давление связаны соотношением (8.1), то относительную влажность можно определить как отношение парциального давления Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиводяного пара, находящегося в воздухе при данной температуре, к давлениюМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами насыщенного пара при той же температуре:

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами                             Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Таким образом, относительная влажность определяется не только абсолютной влажностью, но и температурой воздуха. Значения давления Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами и плотности Молекулярно-кинетическая теория - основные понятия, формулы и определения с примераминасыщенного водяного пара при различных температурах приведены в таблице 1.
Таблица 1 — Давление и плотность насыщенного водяного параМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Когда парциальное давление водяного пара в воздухе равно давлению насыщенного пара при той же температуре, говорят, что воздух насыщен водяными парами. Если же плотность водяного пара превышает плотность насыщенного пара, то пар в воздухе считают пересыщенным. Такое состояние является неустойчивым и заканчивается конденсацией.

Температуру, при которой водяной пар в результате изобарного охлаждения становится насыщенным, называют точкой росы. При понижении температуры ниже точки росы происходит конденсация водяного пара. Например, днём температура воздуха былаМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами а плотность водяного пара Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Ночью температура понизилась до Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами При этой температуре плотность насыщенного водяного пара Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерамиЗначит, избыток пара сконденсируется и выпадет в виде росы. Этот процесс является причиной образования тумана, облаков и дождя. В технике конденсация обычно осуществляется на охлаждаемых поверхностях.

Если относительная влажность меньше 100 %, то температура, соответствующая точке росы, всегда ниже температуры воздуха, и тем ниже, чем меньше относительная влажность.

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Приборы для измерения влажности

Относительную влажность воздуха обычно измеряют психрометром (рис. 48). Психрометр состоит из двух термометров — сухого и влажного. Сухой термометр показывает температуру воздуха. Резервуар влажного термометра обёрнут полоской ткани, конец которой опущен в воду. Вода с ткани испаряется, в результате чего термометр охлаждается. Чем меньше относительная влажность воздуха, тем более интенсивно идёт процесс испарения воды из ткани и тем сильнее охлаждается влажный термометр. И наоборот — при большой относительной влажности влажный термометр охлаждается незначительно. Если относительная влажность Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, вода и её пар находятся в динамическом равновесии, и показания обоих термометров совпадают. Зная показания сухого и влажного термометров, относительную влажность воздуха определяют, используя специальную таблицу, называемую психрометрической (таблица 2).

Живые организмы и растения весьма восприимчивы к относительной влажности воздуха. При температуре 20 — 25 °С наиболее благоприятная для человека относительная влажность составляет 40—60 %. При высокой влажности, особенно в жаркий день, испарение влаги с поверхности кожи затрудняется, что приводит к нарушению важнейших биологических механизмов регулирования температуры тела. При низкой влажности происходит интенсивное испарение с поверхности тела и высыхание слизистой оболочки носа, гортани, лёгких, что приводит к ухудшению самочувствия. При низкой влажности в воздухе дольше сохраняются патогенные микроорганизмы, что также небезопасно для человека. В случае низкой влажности воздуха интенсивность испарения с листьев увеличивается, и при малом запасе влаги в почве они быстро вянут и засыхают. Влажность воздуха нужно учитывать и в различных технологических процессах, таких, например, как сушка и хранение готовых изделий. Стальные изделия при высокой влажности быстро ржавеют. Сохранение произведений искусства и книг также требует поддержания влажности воздуха на необходимом уровне.
Большое значение имеет влажность в метеорологии для предсказания погоды. Если воздух у поверхности Земли охлаждается ниже точки росы, то могут образовываться туман, облака, роса или иней.
Таблица 2 — Психрометрическая таблица
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

1. Давление насыщенного пара при постоянной температуре не зави-

сит от его объёма.

2.    Давление насыщенного пара зависит от температуры пара и концентрации его молекул:

р = nkT.

3.    Абсолютной влажностью воздуха называют физическую величину, равную плотности водяного пара, находящегося в воздухе при данных условиях.
4.    Относительной влажностью воздуха называют физическую величину, равную отношению абсолютной влажности к плотности насыщенного водяного пара при данной температуре:
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Пример №14

Вечером при температуреМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами = 20 °С относительная влажность воздуха Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами= 60%. Выпадет ли роса, если ночью температура понизится до Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами = 12 °С?

Дано

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Выпадает ли?

Решение. Для того чтобы узнать, выпадет ли роса при понижении температуры воздуха до Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами= 12 °С, необходимо сравнить плотность (давление) насыщенного пара при этой температуре с плотностью (парциальным давлением) пара при температуре Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами = 20 °С. При температуре Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами= 12 °С плотность насыщенного водяного пара Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(см. таблицу 1 § 8).
Плотность водяного пара, содержащегося в воздухе при температуре Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами = 20 °С,
можно найти из формулыМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, где Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами (см. таблицу 1 § 8):

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Поскольку Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами, то имеющегося в воздухе количества водяного пара недостаточно для насыщения, роса не выпадет.

Ответ: роса не выпадет.
 

Пример №15

В помещении вместимостью V=1,0103 м3 при температуреМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами = 10 °С относительная влажность воздуха Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами = 40%. Определите массу воды, которую надо испарить в помещении, чтобы при температуреМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами=18 °С относительная влажность воздуха повысилась до Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами = 60%.
Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Решение. При температуре Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами = 10 °С в воздухе помещения содержится водяной пар массойМолекулярно-кинетическая теория - основные понятия, формулы и определения с примерами где Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(см. таблицу 1 § 8). Масса водяного пара в данном объёме воздуха при температуре Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами где Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами(см. таблицу 1 § 8). Тогда Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами или Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами

Ответ: Молекулярно-кинетическая теория - основные понятия, формулы и определения с примерами= 5,5 кг.

  • Работа в термодинамике
  • Первый закон термодинамики
  • Второй закон термодинамики
  • Тепловые двигатели и их КПД
  • Теория относительности Эйнштейна
  • Термодинамика — основные понятия, формулы и определения
  • Необратимость тепловых процессов
  • Адиабатический процесс

Молекулярная физика – раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения, силы взаимодействия между частицами, образующими тела и характеры теплового движения этих частиц.

Многочисленные исследования, проведенные этими учеными позволили сформулироватьосновные положения молекулярно-кинетической теории – МКТ.

МКТ объясняет строение и свойства тел на основе закономерностей движения и взаимодействия молекул, из которых состоят тела.

В основе МКТ лежат три важных положения, подтвержденные экспериментально и теоретически.

  1. Все тела состоят из мельчайших частиц – атомов, молекул, в состав которых входят еще более мелкие элементарные частицы (электроны, протоны, нейтроны). Строение любого вещества дискретно (прерывисто).
  2. Атомы и молекулы вещества всегда находятся в непрерывном хаотическом движении.
  3. Между частицами любого вещества существуют силы взаимодействия – притяжения и отталкивания. Природа этих сил электромагнитная.

Эти положения подтверждаются опытным путем.

Опытное обоснование 1 положения.

Все тела состоят из мельчайших частиц. Во-первых, об этом говорит возможность деления вещества (все тела можно разделить на части).

Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение.

Оно было открыто английским ботаником Р. Броуном (1827 г.). В 1827 году англ. ботаник Броун, изучая внутреннее строение растений с помощью микроскопа обнаружил, что частички твердого вещества в жидкой среде совершают непрерывное хаотическое движение.

Тепловое движение взвешенных в жидкости (или газе) частиц получило название броуновского движения.

Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую. Теория броуновского движения была создана А. Эйнштейном (1905 г.). Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена (1908–1911 гг.).

Причиной броуновского движения является непрерывное хаотическое движение молекул жидкости или газа, которые , беспорядочно ударяясь со всех сторон о частичку, приводят её в движение. Причина броуновского движения частицы в том, что удары молекул о неё не компенсируются. Значит броуновское движение является еще и опытным обоснованием 2 положения МКТ.

Непрерывное движение молекул любого вещества (твердого, жидкого, газообразного) подтверждается многочисленными опытами по диффузии.

Диффузией называют явление самопроизвольного проникновения молекул одного вещества в промежутки между молекулами другого. Т.е. это самопроизвольное перемешивание веществ.

Если пахучее вещество (духи) внести в помещение, то через некоторое время запах этого вещества распространится по всему помещению. Это свидетельствует о том, что молекулы одного вещества без воздействия внешних сил проникают в другое. Диффузия наблюдается и в жидкостях, и в твердых телах.

При изучении строения вещества было установлено, что между молекулами одновременно действуют силы притяжения и отталкивания, называемые молекулярными силами. Это силы электромагнитной природы.

Способность твердых тел сопротивляться растяжению, особые свойства поверхности жидкости приводят к выводу , что между молекулами действуют силы притяжения.

Малая сжимаемость весьма плотных газов и особенно жидкостей и твердых тел означает, что между молекулами существуют силы отталкивания.

Эти силы действуют одновременно. Если бы этого не было, то тела не были бы устойчивыми: либо разлетелись бы на частицы, либо слипались.

Межмолекулярное взаимодействие – это взаимодействие электрически нейтральных молекул и атомов.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы представляют собой сложные пространственные структуры, содержащие как положительные, так и отрицательные заряды. Если расстояние между молекулами достаточно велико, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания. Зависимости результирующей силы F и потенциальной энергии Epвзаимодействия между молекулами от расстояния между их центрами качественно изображены на рисунке. При некотором расстоянии rr0 сила взаимодействия обращается в нуль. Это расстояние условно можно принять за диаметр молекулы. Потенциальная энергия взаимодействия при rr0 минимальна. Чтобы удалить друг от друга две молекулы, находящиеся на расстоянии r0, нужно сообщить им дополнительную энергию E0. Величина Eназывается глубиной потенциальной ямы или энергией связи.

Между электронами одной молекулы и ядрами другой действуют силы притяжения, которые условно принято считать отрицательными (нижняя часть графика). Одновременно между электронами молекул и их ядрами действуют силы отталкивания, которые условно считают положительными (верхняя часть графика). На расстоянии равном размеру молекул результирующая сила равна нулю, т.е. силы притяжения уравновешивают силы отталкивания. Это наиболее устойчивое расположение молекул. При увеличении расстояния притяжение превосходит силу отталкивания, при уменьшении расстояния между молекулами – наоборот.

Атомы и молекулы взаимодействуют и значит обладают потенциальной энергией.

Атомы и молекулы находятся в постоянном движении, и значит, обладают кинетической энергией.

Масса и размеры молекул

Большинство веществ состоит из молекул, поэтому для объяснения свойств макроскопических объектов, объяснения и предсказания явлений важно знать основные характеристики молекул. 

Молекулой называют наименьшую устойчивую частицу данного вещества, обладающую его основными химическими свойствами.

Молекула состоит из ещё более мелких частиц – атомов, которые в свою очередь , состоят из электронов и ядер.

Атомом называют наименьшую частицу данного химического элемента.

Размеры молекул очень малы.

Порядок величины диаметра молекулы 1*108 см = 1*1010 м

Порядок величины объёма молекулы 1*1020 м3

О том что размеры молекул малы можно судить и из опыта. В 1 л (м3 ) чистой воды разведем 1 м3 зеленых чернил, тете разбавим чернила в 1 000 000 раз. Увидим, что раствор имеет зеленую окраску и вместе с тем однороден. Это говорит о том, что даже при разбавлении в 1 000 000 раз в воде находится большое количество молекул красящего вещества. Этот опыт показывает, как малы размеры молекул.

В 1 см3 воды содержится 3,7*10-8 молекул.

Порядок величины массы молекул 1*10-23 г = 1*10-26кг

В молекулярной физике принято характеризовать массы атомов и молекул не их абсолютными значениями (в кг), а относительными безразмерными величинами относительной атомной массой и относительной молекулярной массой.

По международному соглашению в качестве единичной атомной массы m0 принимается 1/12 массы изотопа углерода 12С (m):

m0 =1/12 m=1,66 *10-27

Относительную молекулярную массу можно определить, если абсолютное значение массы молекулы (mмол в кг) разделить на единичную атомную массу.

M0 = mмол / 1/12 m

Относительная молекулярная (атомарная) масса вещества (из таблицы Менделеева)

714N Азот           M0N = 14         M0N2 = 28

Относительное число атомов или молекул, содержащихся в веществе характеризуется физической величиной, называемой количеством вещества.

Количество вещества ע – это отношение числа молекул (атомов) N в донном макроскопическом теле к числу молекул в 0,012 кг углерода NA

Количество вещества выражают в молях

Один моль – это количество вещества, в котором столько же молекул (атомов), сколько атомов содержится в 0,012 кг углерода.

Моль любого вещества содержит одинаковое число молекул. Это число называют постоянной Авогадро NA =6, 02 * 1023моль -1

Масса одного моля вещества называется молярной массой.

 

Число молекул в данной массе вещества: 

Масса вещества (любого количества вещества): 

Определение молярной массы: 

Видеоресурс: Масса молекул. Количество вещества.

Понятие температуры – одно из важнейших в молекулярной физике.

Температура — это физическая величина, которая характеризует степень нагретости тел.

Беспорядочное хаотическое движение молекул называется тепловым движением.

Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах средняя кинетическая энергия молекулы может оказаться небольшой. В этом случае молекулы конденсируются в жидкое или твердое вещество; при этом среднее расстояние между молекулами будет приблизительно равно диаметру молекулы. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты.

Рассмотрим пример. Если положить нагретый металл на лед, то лед начнет плавится, а металл – охлаждаться до тех пор, пока температуры тел не станут одинаковыми. При контакте между двумя телами разной температуры происходит теплообмен, в результате которого энергия металла уменьшается, а энергия льда увеличивается.

Энергия при теплообмене всегда передается от тела с более высокой температурой к телу с более низкой температурой. В конце концов, наступает состояние системы тел, при котором теплообмен между телами системы будет отсутствовать. Такое состояние называют тепловым равновесием.

Тепловое равновесие это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными.

Температура это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики.

Тела, находящиеся в тепловом равновесии, имеют одинаковые температуры.

Для измерения температур чаще всего используют свойство жидкости изменять объем при нагревании (и охлаждении).  

Прибор, с помощью которого измеряется температура, называется термометр.

Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании). Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. 

Обыкновенный жидкостный термометр состоит из небольшого стеклянного резервуара, к которому присоединена стеклянная трубка с узким внутренним каналом. Резервуар и часть трубки наполнены ртутью. Температуру среды, в которую погружен термометр определяют по положению верхнего уровня ртути в трубке. Деления на шкале условились наносить следующим образом. Цифру 0 ставят в том месте шкалы, где устанавливается уровень столбика жидкости, когда термометр опущен в тающий снег (лед), цифру 100 – в том месте, где устанавливается уровень столбика жидкости, когда термометр погружен в пары воды, кипящей при нормальном давлении (105 Па). Расстояние между этими отметками делят на 100 равных частей, называемых градусами. Такой способ деления шкалы введен Цельсием. Градус по шкале Цельсия обозначают ºС.

 

По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды – 100 °С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0 °С и 100 °С принимается равным 1 °С.

В ряде стран (США) широко используется шкала Фаренгейта (TF), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно,

 

Ртутные термометры применяют для измерения температуры в области от -30 ºС до +800 ºС. Наряду с жидкостными ртутными и спиртовыми термометрами применяются электрические и газовые термометры.

Электрический термометр – термосопротивление – в нем используется зависимость сопротивления металла от температуры.

Особое место в физике занимают газовые термометр, в которых термометрическим веществом является разреженный газ (гелий, воздух) в сосуде неизменного объема (V = const), а термометрической величиной – давление газа p. Опыт показывает, что давление газа (при V = const) растет с ростом температуры, измеренной по шкале Цельсия.

 

Чтобы проградуировать газовый термометр постоянного объема, можно измерить давление при двух значениях температуры (например, 0 °C и 100 °C), нанести точки p0 и p100 на график, а затем провести между ними прямую линию. Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления.

 

Газовые термометры громоздки и неудобны для практического применения: они используются в качестве прецизионного стандарта для калибровки других термометров.

Показания термометров, заполненных различными термометрическими телами, обычно несколько различаются. Чтобы точное определение температуры не зависело от вещества, заполняющего термометр, вводится термодинамическая шкала температур.

Чтобы её ввести, рассмотрим, как зависит давление газа от температуры, когда его масса и объём остаются постоянными.

Термодинамическая шкала температур. Абсолютный нуль.

Возьмем закрытый сосуд с газом, и будем нагревать его, первоначально поместив в тающий лед. Температуру газа t определим с помощью термометра, а давление p манометром. С увеличением температуры газа его давление будет возрастать. Такую зависимость нашел французский физик Шарль. График зависимости p от t, построенный на основании такого опыта, имеет вид прямой линии.

 

Если продолжить график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах все газы переходят в жидкие или твердые состояния. Давление идеального газа определяется ударами хаотически движущихся молекул о стенки сосуда. Значит, уменьшение давления при охлаждении газа объясняется уменьшением средней энергии поступательного движения молекул газа Е; давление газа будет равно нулю, когда станет равна нулю энергия поступательного движения молекул.

Английский физик У. Кельвин (Томсон) выдвинул идею о том, что полученное значение абсолютного нуля соответствует прекращению поступательного движения молекул всех веществ. Температуры ниже абсолютного нуля в природе быть не может. Это предельная температура при которой давление идеального газа равно нулю.

Температуру, при которой должно прекратиться поступательное движение молекул, называют абсолютным нулем (или нулем Кельвина).

Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы – термодинамической шкалы температур (шкала Кельвина). За начало отсчета по этой шкале принята температура абсолютного нуля.  

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К. 

Размер градуса кельвина определяют так, чтобы он совпадал с градусом Цельсия, т.е 1К соответствует 1ºС.

Температура, отсчитанная по термодинамической шкале температур, обозначается Т. Её называют абсолютной температурой или термодинамической температурой.

Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры, достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01 °С), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной 273,16 К.

Связь между абсолютной температурой и температурой по шкале Цельсия выражается формулой Т = 273,16 + t   , где t – температура в градусах Цельсия. 

Чаще пользуются приближенной формулой Т = 273 + t             и             t = Т – 273

Абсолютная температура не может быть отрицательной.

Температура газа – мера средней кинетической энергии движения молекул.

В опытах Шарлем была найдена зависимость p от t. Эта же зависимость будет и между р и Т: т.е. между р и Т прямопропорциональная зависимость.

С одной стороны, давление газа прямопропорционально его температуре, с другой стороны, мы уже знаем, что давление газа прямопропорционально средней кинетической энергии поступательного движения молекул Е (p = 2/3*E*n ). Значит, Е прямопропорциональна Т.

Немецкий ученый Больцман предложил ввести коэффициент пропорциональности (3/2)k в зависимость Е от Т

Е = (3/2)kТ

Из этой формулы следует, что среднее значение кинетической энергии поступательного движения молекул не зависит от природы газа, а определяется только его температурой.

Так как Е = m*v2/2, то m*v2/2 = (3/2)kТ

откуда средняя квадратичная скорость молекул газа

 

Постоянная величина k называется постоянная Больцмана.

В СИ она имеет значение k = 1,38*10-23 Дж/К

Если подставить значение Е в формулу     p = 2/3*E*n   , то получим  p = 2/3*(3/2)kТ* n, сократив, получим p = n* k

Давление газа не зависит от его природы, а определяется только концентрацией молекул n и температурой газа Т.

Соотношение p = 2/3*E*n устанавливает связь между микроскопическими (значения определяются с помощью расчетов) и макроскопическими (значения можно определить по показаниям приборов) параметрами газа, поэтому его принято называть основным уравнением молекулярно – кинетической теории газов.

Понравилась статья? Поделить с друзьями:
  • Как найти значение скорости звука
  • Как сложно найти свою половинку
  • Как правильно составить доход для банка
  • Как найти футбол онлайн наш футбол
  • Как найти игрушечный дом